
RQAS: A Rapid QA Scheme with Exponential Elevations of Keyword
Rankings

Cheng Zhang and Jie Wang
Department of Computer Science, University of Massachusetts, Lowell, MA 01854, U.S.A.

Keywords: Question Answering, Information Retrieval, Keyword Ranking.

Abstract: We present a rapid question-answering scheme (RQAS) for constructing a chatbot over specific domains with
data in the format of question-answer pairs (QAPs). We want RQAS to return the most appropriate answer
to a user question in realtime. RQAS is based on TF-IDF scores and exponential elevations of keyword
rankings generated by TextRank to overcome the common problems of selecting an answer based on the
highest similarity of the user question and questions in the existing QAPs, making it easy for general QAS
builders to construct a QAS for a given application. Experiments show that RQAS is both effective and
efficient regardless the size of the underlying QAP dataset.

1 INTRODUCTION

Question-answering systems (QAS), a particu-
lar type of information retrieving system, must
return an appropriate answer in realtime to a
question asked by the user. Both questions and
answers are expressed in natural languages in
the form of text or voice. Since IBM Watson
won the “Jeopardy!” champion in 2011 (see
https://en.wikipedia.org/wiki/Watson (computer)),
QAS has attracted increasing attentions. Most QA
technologies either require large sets of training data
to train deep-learning models or require constructions
of knowledge graphs. These requirements may
present an obstacle to general OAS builders, or at the
very least introduce a steep learning curve. Thus, it
would be helpful to find a solution that lowers the bar
for constructing a QAS.

Finding the right answer to a question in realtime
from a large dataset is a challenge. It is a common
practice for a QAS to combine information retrieval
techniques and keyword matching to identify answer
candidates. However, this technique may not return
the most appropriate answer in realtime. This moti-
vates us to devise a new method for finding the most
appropriate answer in realtime to a user question from
a set of candidates.

We present RQAS, a rapid QAS platform over
datasets in the form of question-answer pairs (QAP).
Based on keyword rankings, RQAS does not involve
training, which makes it simple for general QAS

builders to construct a QAS over specific domains
(a.k.a. vertical QAS). To build a QAS, we simply sup-
ply QAP data to RQAS either through an excel file or
a web interface. We may also harvest QAPs automati-
cally from community-based QA web sites (Yang and
Wang, 2017).

In particular, RQAS first preprocesses QAPs and
extracts keywords. It saves the preprocessed data and
the original QAPs in a search-engine database. Upon
receiving a question, the search engine returns all can-
didates QAPs that include at least one of the keywords
in the user question. We then narrow the range of can-
didate answers by the rankings of answers. We return
the final answer to the question by selecting a QAP
with the highest score by exponentially elevating the
rankings of certain keywords.

Experiment results show that RQAS achieves a
high accuracy in realtime. We also implement a back-
end system to allow user to easily import QAP data
and manage the system.

The rest of the paper is organized as follows: We
describe in Section 2 the related work, in Section 3
the architecture of RQAS. We then present in Section
4 the preprocessing procedure, in Section 5 the cen-
tral processing and in Section 6 our keyword-ranking-
elevation algorithm. We report experiment results in
Section 7 for evaluations of question-answering accu-
racy and efficiency. Finally, we conclude the paper in
Section 8.

Zhang C. and Wang J.
RQAS: A Rapid QA Scheme with Exponential Elevations of Keyword Rankings.
DOI: 10.5220/0006582203020309
In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR 2017), pages 302-309
ISBN: 978-989-758-271-4
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

Natural language QAS, first studied in the mid 1960’s
(Simmons, 1965; Simmons, 1970), is an active re-
search area. For example, Zajac (Zajac, 2001)
devised an ontology-based semantic framework for
QAS. Moldovan (Moldovan and Novischi, 2002) pre-
sented a method for constructing a QAS using Word-
Net. Rinaldi et al (Rinaldi et al., 2003) described
a knowledge-based QAS from a collection of docu-
ments. Lopez et al (Lopez et al., 2005) presented
an Ontology-Portable QAS for the Semantic Web.
Parthasarathy (Parthasarathy and Chen, 2007) devised
a QAS based on entity recognitions and thematic
analysis. Ferrucci et al (Ferrucci et al., 2010) offered
an overview of a knowledge-based QAS for IBM
Watson. Recently, Hixon et al (Hixon et al., 2015)
presented a QAS based on knowledge graphs. Wang
et al (Wang et al., 2010) presented a machine-learning
method to model semantic relevance among QAPs.
Zhou et al (Zhou et al., 2015) proposed a method
to select answers in community question answering
systems using convolution neural networks. Mishra
(Mishra and Jain, 2016) classified QAS techniques
into four categories: information retrieval, knowledge
retrieval, data mining, and natural language under-
standing

Among these techniques, the information-retrieval
method is the most studied. Salton et al (Salton et al.,
1993) described several passage-retrieving methods
in a full-text information system. Tellex et al (Tellex
et al., 2003) studied QAS based on information re-
trievals and discovered that most systems can be di-
vided into the following four components: question
analysis, document retrieval, passage retrieval, and
answer extraction. These methods use documents
as QA data. Michael (Michael Kaisser, 2004) pre-
sented approaches using linguistic syntax-based pat-
terns for QAS. Jeon et al (Jeon et al., 2005) presented
a method for a translation-based model to retrieve an
answer to a question based on similarities of answers
to find similar questions in the question and answer
archives. Recently, Jovita et al (Jovita et al., 2015)
presented a QAS using a vector-space model; how-
ever, this system does not meet the realtime require-
ment, where each retrieval process takes around 10 to
30 seconds of time. Devi and Dua (Devi and Dua,
2016) implemented a QAS using similarity and clas-
sification methods, which only works on the Hindi
Language. Abdi et al (Abdi et al., 2016) presented
a QAS which integrates NLP, ontology and informa-
tion retrieval technologies, which only applies to the
physics domain.

Early methods were focused on the accuracy of re-

trieving an answer to a user question and seldom paid
attention to the time complexity of getting an answer.
We would like to construct a QAS that can provide
an accurate answer to a user question in realtime. For
this purpose, we focus on QAS over any specific do-
main to help reduce answer-searching time (see Sec-
tion 5.2 for more discussions).

3 SYSTEM ARCHITECTURE

Assume that we already have sets of QAPs avail-
able over different domains. These data sets may
be provided by users or harvested from crawling
community-based question-answering web sites. It is
likely that in some QAPs, the answers do not match
well with the corresponding questions. Even if in
each QAP, the answer matches well with the ques-
tion, we note that a question asked by the QAS user
may not match well with any existing question in the
QAPs. This presents a problem if we simply select
an answer to an existing question in a QAP with the
highest similarity to the user question, for there may
be multiple existing questions with the same highest
similarity and the corresponding answers address dif-
ferent things, all of which are less appropriate com-
pared to an answer in another QAP whose question
has a smaller similarity to the user question. This is
evident from the following example:

Suppose that a user asks the following question:
“What is diabetes and symptoms?” In the database
about diabetes, the question of each of the following
two QAPs has the highest cosine similarity of 0.85
with the user question:

• QAP1:
Q: What is diabetes diet?
A: A diabetes diet is a healthy-eating plan that’s
naturally rich in nutrients and low in fat and calo-
ries. Key elements are fruits, vegetables and
whole grains.

• QAP2:
Q: What is diabetes treatment?
A: Blood sugar monitoring, insulin and oral medi-
cations. Eating healthy diet, maintaining a healthy
weight and participating in regular activity also
are important factors in managing diabetes.

We can see that none of the answers in these two
QAPs is appropriate.

On the other hand, the answer in the following
QAP, whose question has a smaller cosine similarity
of 0.81 with the user question is actually the correct
answer:

• QAP3:
Q: What is the definition of diabetes mellitus?
A: Diabetes is a group of metabolic disorders in
which there are high blood sugar levels over a pro-
longed period. Symptoms of high blood sugar in-
clude frequent urination, increased thirst, and in-
creased hunger.
Taking these two issues into consideration, we

should avoid selecting an answer from directly com-
puting similarities of questions.

RQAS consists of a preprocessing component, a
central-processing component, and a database shared
by both components (see Figure 1). The prepro-
cessing component, shown on the left-hand pane,
processes keywords of QAPs, computes a weight
for each QAP, and stores all processed data in the
database. The central-processing component, shown
on the right-hand pane, consists of four modules:
question analysis, answer searching, answer scoring,
and answer selection. Questions asked by QAS users
(also referred to as user question) are forwarded to the
question analysis module, which converts the ques-
tion to a set of keywords. The answer searching mod-
ule searches for the keywords from the database, and
returns all candidate QAPs that contain at least one
keyword. The answer scoring module evaluates can-
didate QAPs and narrows the candidate pool. Finally,
the answer selection module selects the most appro-
priate answer as the final answer.

We use inverted indexing for the database to facil-
itate realtime searching.

4 PREPROCESSING

The first step of data preprocessing is to segment
phrases (including words) and eliminate stop words
(such as ”the”, ”of”).

In what follows, we will simply use keywords to
denote segmented phrases and words extracted by a
keyword extraction algorithm, denoted by w with or
without subscripts. In general, give a block of text
t, we use Kt to denote the multi-set of keywords ex-
tracted from t. We use d = (q,a) to denote a QAP
with or without subscripts, where q is the question
and a is the answer. Note that we allow q to be empty,
which means that we allow the system to take in a
block of text as an answer. Thus, Kq and Ka de-
note, respectively, the multi-set of keywords extracted
from q and the multi-set of keywords extracted from
a. Without loss of generality, we may also use d to
denote Kq∪Ka.

Given a QAP d = (q,a), compute the following
three values:

Figure 1: RQAS architecture and data flow.

1. Term frequency (TF). The TF value of w for each
keyword w ∈ d is computed as follows:

TF(w ∈ d) =
√

f (w), (1)

where f (w) is the frequency of w in Kq∪Ka.

2. Inverse document frequency (IDF). Let N be the
total number of QAPs in the dataset. For each
keyword w ∈ d, let F(w) denote the number of

QAPs containing w. The IDF value of w is com-
puted as follows:

IDF(w) = 1+ ln
(

N
F(w)+1

)
. (2)

3. Document length normalization (DLN). Let d be
a QAP and denote by |d| the number of keywords
contained in the multi-set Kq∪Ka. Compute DLN
of d as follows:

DLN(d) =
1√
|d|

. (3)

The DLN is the inverse square root of the length
of the QAP. A longer QAP will result in a smaller
DLN. If a keyword appears in a shorter QAP
and also a longer QAP, then we consider that the
shorter QAP is more important than the longer
QAP. The value of DLN reflects this considera-
tion.
For each keyword w ∈ d, compute its TF-IDF
value as follows:

TF-IDF(w) = TF(w) · IDF2(w) ·DLN(d).

Next, we extract keywords from each QAP and
calculate the initial score for each keyword. Through
extensive experiments, we find that the RAKE (Rose
et al., 2010) and TextRank (Mihalcea and Tarau,
2004) keyword extraction algorithms work well over
short passages. Moreover, while RAKE runs slightly
faster than TextRank, we find that TextRank works
better than RAKE for QAPs written in Chinese. As
RQAS is primarily targeted at the English and Chi-
nese languages, we will use TextRank to extract key-
words. Examples of keywords extraction using Tex-
tRank are shown below, where the numbers are as-
signed by TextRank and only the top keywords are
shown:
• Q: How can we prevent diabetes?

A: Eat healthy food, do more exercise, and control
weight; doing so can help prevent or delay type-2
diabetes for adults at high risk of diabetes.
Keywords: (diabetes, 0.52), (eat healthy, 0.36),
(food, 0.21), (prevent, 0.20)

• Q: What is diabetes?
A: Diabetes is a group of metabolic disorders with
high blood sugar levels over a prolonged period.
Symptoms of high blood sugar include frequent
urination, increased thirst, and increased hunger.
Keywords: (high blood sugar levels, 0.24),
(symptoms, 0.19), (thirst, 0.15), (hunger, 0.15)
The size of the entire database of QAPs maybe be

large, and so preprocessing QAPs can save tremen-
dous computing time for the central-processing com-
ponent.

Finally, each QAP and the corresponding list of
keywords with TextRank and TF-IDF scores are com-
bined into one data item and saved in the database.

5 CENTRAL PROCESSING

After preprocessing QAPs, RQAS waits for user
questions.

5.1 Question Analysis

Upon receiving a user question Q, the question anal-
ysis module eliminates stop words from Q, applies
TextRank on Q to obtain as a multi-set of keywords
KQ, and pass both Q and KQ to the answer searching
module.

5.2 Answer Searching

Upon receiving Q and KQ from the answer analy-
sis module, the answer searching module performs a
searching over the keywords in the database, which
returns all QAPs that contain at least one of the key-
words.

Let D denote the set of the returned QAPs from
the search. We first narrow D. For each QAP d ∈ D,
compute its TF-IDF score with respect to Q as follows
(Jones, 1972) (Robertson, 2004):

TF-IDF(d|Q) = ∑
w∈d∩WQ

TF-IDF(w),

where the values of TF-IDF(w) were already com-
puted in the preprocessing module and stored in the
database. The TF-IDF value of d with respect to Q is
referred to as the searching score under Q, where Q
may be omitted when there is no confusion.

The search engine uses the inverted index (Zobel
and Moffat, 2006) data structure and the already com-
puted values of TF-IDF of keywords, and so searching
can be done in realtime.

Through extensive experiments, we observe that
the most appropriate answer to the user question over
a specific domain is typically contained in a very
small number of QAPs with top searching scores. In
particular, this number is between 10 and 30. To
achieve realtime performances, we will only consider
the set of top n QAPs for a small fixed value of n,
referred to as the candidate set. We choose a default
value of n to be 20. Depending on the actual dataset
of QAPs over a given domain, n may be smaller. If we
consider a general dataset of multiple domains, then
n may be large, which may affect realtime responds.

We also note that in a QAP, the critical keywords
may only appear in the question and not in the an-
swer. Thus, it is possible that a QAP contains the
most appropriate answer to the user question, but is
excluded from the candidate set. For example, sup-
pose that the user question is ”What should I do to
prevent diabetes?” and the following QAP is in the
dataset:

Q: How do we prevent diabetes?
A: Exercise regularly, eat healthy, ...
In this example, the critical keyword “prevent di-

abetes” appears in the question but not in the answer,
If the answer is long, then the searching score of this
QAP may be too small to be selected as a candidate.
Thus, if a keyword of the user question also appears
in the question component of QAP, then regardless its
searching score, add QAP into the candidate set. Let
m denote the number of QAPs in the candidate set.

5.3 Answer Scoring

The module receives the candidate set to the user
question Q, with a searching score with respect to
Q for each candidate QAP and a TextRank score for
each keyword in the candidate. We use the following
data structure to represent candidate QAPs:

QAP1

question

answer

keyword1: TextRank score
keyword2: TextRank score

· · ·
keywordn: TextRank score
searching score

QAP2 · · ·
· · · · · ·

QAPm · · ·

Next, we adjust the weight for each candidate
QAP, with the searching score as the initial weight. In
particular, we elevate the scores of certain keywords
so that more important QAPs have larger weights.
The reader is referred to Section 6 for details of the
algorithm.

After the weight is adjusted for each candidate
QAP, append the weight to each candidate QAP, and
return the candidate set with new weights to the next
module.

5.4 Answer Selection

The answer selection module is responsible for select-
ing the final answer. This module is needed to han-
dle the situations when more models are introduced
to rank QAPs. For the current system setup, we only

have one model, so it simply returns the answer com-
ponent of the QAP with the highest weight as the final
answer to the user question Q.

6 ELEVATE KEYWORD
RANKINGS

We would want to elevate the rankings of certain key-
words, so that the most appropriate QAP for the user
question Q will have the highest ranking.

The algorithm involves the following four types of
parameters:

1. A list of keywords KQ from the user question Q.

2. A set of candidate QAPs with respect to Q.

3. A list of keywords extracted from each candidate
QAP.

4. A weight of each keyword in each candidate QAP.

We define the following notations.

• Given a QAP d = (q,a), and a keyword w ∈ Kq∪
Ka, let r(w) and t(w) denote, respectively, the TF-
IDF value of w and the TextRank score of w. let
sd(w) denote the new score of w with respect to d.

• Let

r∗d = max{r(w) | w ∈ d},
t∗d = max{t(w) | w ∈ d}.

• Let f ∗d denote the final score of d.

Given a candidate d = (q,a), for each keyword
w ∈ KQ, we have the following three cases:

Case 1: If w ∈ Kq, let

sd(w) = r(w)+2λ·t∗d ,

where λ≥ 1 is a fixed constant.
Case 2: If w 6∈ Kq but w ∈ Ka, then let

sd(w) = r(w)+2t∗d .

Case 3: If w 6∈ Kq and w 6∈ Ka, then let

sd(w) = r(w).

The constant coefficient λ in Case 1 serves the fol-
lowing purpose: When w appears in Kq, then (q,a)
should be elevated to a higher score compared to the
case when w 6∈ Kq. To figure out an appropriate value
of λ, we tested the value of λ in the range of 1 to 2.5
with a small increment. We found that, through ex-
tensive experiments, when the value of λ is less than
2, some answers returned are not satisfactory; when
λ = 2, all answers returned are satisfactory in the ex-
periments. We therefore choose λ = 2.

Note that in Case 1 we do not further distinguish
the case whether w ∈ Ka. The reason is the following:
Suppose that w1,w2 ∈ Kq. If w1 ∈ Ka but w2 6∈ Ka,
then it is likely that r(w1)> r(w2). Hence, it is likely
that sd(w1)> sd(w2), which is what we desire.

Finally, let

f ∗d = ∑
w∈KQ

sd(w).

Let (q∗,a∗) be a candidate with the largest f ∗, then a∗

is returned as the answer to user question Q.

7 EVALUATIONS

We use human judgment to evaluate the accuracy and
efficiency of RQAS. We collected 138 QAPs in the
Chinese language about diabetes as evaluation data.

The criteria of evaluation are listed as follows:

• S: RQAS returns a satisfactory answer.

• F1: RQAS returns an irrelevant answer but it has
relevant QAPs.

• F2: RQAS returns an irrelevant answer and it con-
tains no relevant QAPs.

7.1 Experiment 1

To evaluate the accuracy of the answers returned by
RAQS, we recruited 10 evaluators of with solid dia-
betes knowledge. They were asked to glance the an-
swer part of every QAP for the purpose of knowing
what knowledge points are contained in the QAPs,
without looking at the question part. Then each evalu-
ator asked 10 questions on their own in their own way
about the knowledge points they got from the glance,
and judged whether the RQAS returned a satisfactory
answer. The evaluation results are shown in Table 1.

Table 1: Evaluation results in Experiment 1.

Evaluators S F1 F2 Success Ratio
1 9 0 1 90%
2 10 0 0 100%
3 9 1 0 90%
4 7 2 1 70%
5 9 1 0 90%
6 9 1 0 90%
7 6 1 3 60%
8 10 0 0 100%
9 6 0 4 60%

10 10 0 0 100%

The results indicate that different evaluators saw
different success ratios. This may be caused by people

having different memories. Thus, we devised another
experiment.

7.2 Experiment 2

We asked a volunteer to browse the QAPs in the di-
abetes domain and extract keywords of knowledge
points, such as “blood glucose”, “diets”, “protect
eyes”. We then provided these keywords to the eval-
uators, based on which they asked any question in
their own way. Examples of the questions asked by
the evaluators include “How to regulate blood sugar
level?”, “What is blood sugar?”, and “How can I con-
trol blood sugar level?”, to name just a few. Results
are shown in Table 2.

Table 2: Evaluation results in Experiment 2.

Evaluators S F1 F2 Success Ratio
1 8 1 1 80%
2 7 2 1 70%
3 8 1 1 80%
4 8 2 0 80%
5 7 2 1 70%
6 8 0 2 80%
7 7 1 2 70%
8 7 2 1 70%
9 6 2 2 60%

10 7 1 2 70%

The results show that the average success ratio is
73%. We also note that 13% of the failure results are
F2. This indicates that our dataset does not have suffi-
cient number of QAPs. If the dataset of QAPs covers
every knowledge points in the diabetes domain, the
success ratio will be substantially higher.

7.3 Experiment 3

Next, we evaluate the runtime for RQAS to return an
answer. We carried out this experiment on a desktop
computer with an Intel Core I5 2.6Ghz CPU and 8Gb
memory. We tested the runtime to answer one ques-
tion over datasets with 100 QAPs, 1,000 QAPs, 5,000
QAPs, and 10,000 QAPs. For each dataset we asked
10 different questions and the results are shown id-
dddn Table 3, where “Min (sec)” means the minimum
runtime in seconds, “Max (sec)” the maximum run-
time in seconds, and ‘Avg (sec)” the average runtime
in seconds.

The results show that the runtime is about the
same regardless the size of the dataset, with slightly
more time on larger dataset. This indicates the real-
time robustness of RQAS.

Table 3: Runtime evaluation results in Experiment 3.

Dataset Min (sec) Max (sec) Avg (sec)
100 0.012 0.031 0.021

1,000 0.016 0.027 0.022
5,000 0.017 0.025 0.022

10,000 0.018 0.026 0.023

8 CONCLUSIONS

We presented RQAS, a rapid QA scheme based on
exponential elevations of keyword rankings. Our ex-
periments show that RQAS is efficient and achieves
high accuracies. We may improve accuracy and effi-
ciency of RQAS on the following four aspects:

1. Explore other methods to compute QAP rankings
for a given question and improve the best QAP
by aggregating multiple models. For example, in-
stead of treating keywords as basic units, we may
compute QAP rankings by treating sentences as
basic units.

2. Optimize data structure.

3. Add semantic analysis to enhance accuracy.

4. Explore question classification models to improve
efficiency.

ACKNOWLEDGEMENTS

This work was supported in part by Eola Solutions
Inc. The authors are grateful to members of the Text
Automation Lab at UMass Lowell for discussions.

REFERENCES

Abdi, A., Idris, N., and Ahmad, Z. (2016). QAPD:
an ontology-based question answering system in the
physics domain. Soft Computing.

Devi, R. and Dua, M. (2016). Performance evaluation of
different similarity functions and classification meth-
ods using web based hindi language question answer-
ing system. Procedia Computer Science, 92:520–525.

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek,
D., Kalyanpur, A. A., Lally, A., Murdock, J. W.,
Nyberg, E., Prager, J., Schlaefer, N., and Welty, C.
(2010). Building watson: An overview of the DeepQA
project. AI Magazine, 31(3):59.

Hixon, B., Clark, P., and Hajishirzi, H. (2015). Learn-
ing knowledge graphs for question answering through
conversational dialog. pages 851–861.

Jeon, J., Croft, W. B., and Lee, J. H. (2005). Finding sim-
ilar questions in large question and answer archives.

In Proceedings of the 14th ACM International Con-
ference on Information and Knowledge Management,
CIKM ’05, pages 84–90, New York, NY, USA. ACM.

Jones, K. S. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 28(1).

Jovita, Linda, Hartawan, A., and Suhartono, D. (2015). Us-
ing vector space model in question answering system.
Procedia Computer Science, 59:305–311.

Lopez, V., Pasin, M., and Motta, E. (2005). AquaLog: An
Ontology-Portable Question Answering System for the
Semantic Web, pages 546–562. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Michael Kaisser, T. B. (2004). Question answering by
searching large corpora with linguistic methods.

Mihalcea, R. and Tarau, P. (2004). TextRank: Bringing or-
der into texts. In Proceedings of EMNLP-04and the
2004 Conference on Empirical Methods in Natural
Language Processing.

Mishra, A. and Jain, S. K. (2016). A survey on ques-
tion answering systems with classification. Journal
of King Saud University - Computer and Information
Sciences, 28(3):345 – 361.

Moldovan, D. and Novischi, A. (2002). Lexical chains for
question answering. In COLING 2002: The 19th In-
ternational Conference on Computational Linguistics.

Parthasarathy, S. and Chen, J. (2007). A web-based ques-
tion answering system for effective e-learning. In
Seventh IEEE International Conference on Advanced
Learning Technologies (ICALT 2007). IEEE.

Rinaldi, F., Dowdall, J., Hess, M., Mollá, D., Schwitter, R.,
and Kaljurand, K. (2003). Knowledge-based question
answering. In Lecture Notes in Computer Science,
pages 785–792. Springer Berlin Heidelberg.

Robertson, S. (2004). Understanding inverse document fre-
quency: on theoretical arguments for idf. Journal of
Documentation, 60:503–520.

Rose, S., Engel, D., Cramer, N., and Cowley, W. (2010).
Automatic keyword extraction from individual docu-
ments. In Berry, M. W. and Kogan, J., editors, Text
Mining. Applications and Theory, pages 1–20. John
Wiley and Sons, Ltd.

Salton, G., Allan, J., and Buckley, C. (1993). Approaches
to passage retrieval in full text information systems.
In Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’93, pages 49–58, New
York, NY, USA. ACM.

Simmons, R. F. (1965). Answering english questions by
computer: A survey. Commun. ACM, 8(1):53–70.

Simmons, R. F. (1970). Natural language question-
answering systems: 1969. Communications of the
ACM, 13(1):15C30.

Tellex, S., Katz, B., Lin, J., Fernandes, A., and Marton, G.
(2003). Quantitative evaluation of passage retrieval
algorithms for question answering. In Proceedings
of the 26th Annual International ACM SIGIR Con-
ference on Research and Development in Informaion
Retrieval, SIGIR ’03, pages 41–47, New York, NY,
USA. ACM.

Wang, B., Wang, X., Sun, C., Liu, B., and Sun, L.
(2010). Modeling semantic relevance for question-
answer pairs in web social communities. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL ’10, pages 1230–
1238, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Yang, W. and Wang, J. (2017). Generating appropri-
ate question-answer pairs for chatbots harvested from
community-based qa sites. In Knowledge Discovery,
Knowledge Engineering and Knowledge Management
(IC3K), 2017 9th International Joint Conference on.

Zajac, R. (2001). Towards ontological question answering.
Proceedings of the workshop on ARABIC language
processing status and prospects -.

Zhou, X., Hu, B., Chen, Q., Tang, B., and Wang, X. (2015).
Answer sequence learning with neural networks for
answer selection in community question answering.
CoRR, abs/1506.06490.

Zobel, J. and Moffat, A. (2006). Inverted files for text search
engines. ACM Comput. Surv., 38(2).

