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Abstract: Our task is to generate an effective summary for a given document with specific realtime requirements. We use
the softplus function to enhance keyword rankings to favor important sentences, based on which we present a
number of summarization algorithms using various keyword extraction and topic clustering methods. We show
that our algorithms meet the realtime requirements and yield the best ROUGE recall scores on DUC-02 over
all previously-known algorithms. To evaluate the quality of summaries without human-generated benchmarks,
we define a measure called WESM based on word-embedding using Word Mover’s Distance. We show that
the orderings of the ROUGE and WESM scores of our algorithms are highly comparable, suggesting that
WESM may serve as a viable alternative for measuring the quality of a summary.

1 INTRODUCTION

Text summarization algorithms have been studied in-
tensively and extensively. An effective summary must
be human-readable and convey the central meanings
of the original document within a given length bound-
ary. The common approach of unsupervised summa-
rization algorithms extracts sentences based on im-
portance rankings (e.g., see (DUC, 2002; Mihalcea
and Tarau, 2004; Rose et al., 2010; Lin and Bilmes,
2011; Parveen et al., 2015)), where a keyword may
also be a phrase. A sentence with a larger num-
ber of keywords of higher ranking scores is consid-
ered more important for extraction. Supervised algo-
rithms include CNN and RNN models for generating
extractive and abstractive summaries (e.g., see (Rush
et al., 2015; Nallapati et al., 2016; Cheng and Lapata,
2016)).

We were asked to construct a general-purpose
text-automation tool to produce, among other things,
an effective summary for a given document with the
following realtime requirements: Generate a sum-
mary instantly for a document of up to 2,000 words,
under 1 second for a document of slightly over 5,000
words, and under 3 seconds for a very long document
of around 10,000 words. Moreover, we need to deal
with documents of arbitrary topics without knowing
what the topics are in advance. After investigating
all existing summarization algorithms, we conclude

that unsupervised single-document summarization al-
gorithms would be the best approach to meeting our
requirements.

We use topic clusterings to obtain a good topic
coverage in the summary when extracting key sen-
tences. In particular, we first determine which topic
a sentence belongs to, and then extract key sentences
to cover as many topics as possible within the given
length boundary.

Human judgement is the best evaluation of the
quality of a summarization algorithm. It is a stan-
dard practice to run an algorithm over DUC data and
compute the ROUGE recall scores with a set of DUC
benchmarks, which are human-generated summaries
for articles of a moderate size. DUC-02 (DUC, 2002),
in particular, is a small set of benchmarks for single-
document summarizations. When dealing with a large
number of documents of unknown topics and various
sizes, human judgement may be impractical, and so
we would like to have an alternative mechanism of
measurement without human involvement. Ideally,
this mechanism should preserve the same ordering as
ROUGE over DUC data; namely, if S1 and S2 are two
summaries of the same DUC document produced by
two algorithms, and the ROUGE score of S1 is higher
than that of S2, then it should also be the case under
the new measure.

Louis and Nenkova (Louis and Nenkova, 2009)
devised an unsupervised method to evaluate sum-
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marization without human models using common
similarity measures: Kullback-Leibler divergence,
Jensen-Shannon divergence, and cosine similarity.
These measures, as well as the information-theoretic
similarity measure (Aslam and Frost, 2003), are
meant to measure lexical similarities, which are un-
suitable for measuring semantic similarities.

Word embeddings such as Word2Vec can be
used to fill this void and we devise WESM (Word-
Embedding Similarity Measure) based on Word
Mover’s Distance (WMD) (Kusner et al., 2015) to
measure word-embedding similarity of the summary
and the original document. WESM is meant to eval-
uate summaries for new datasets when no human-
generated benchmarks are available. WESM has an
advantage that it can measure the semantic similar-
ity of documents. We show that WESM correlates
well with ROUGE on DUC-02. Thus, WESM may
be used as an alternative summarization evaluation
method when benchmarks are unavailable.

The major contributions of this paper are summa-
rized below:
1. We present a number of summarization algo-

rithms using topic clustering methods and en-
hanced keyword rankings by the softplus func-
tion, and show that they meet the realtime require-
ments and outperform all the previously-known
summarization algorithms under the ROUGE
measures over DUC-02.

2. We propose a new mechanism WESM as an al-
ternative measurement of summary quality when
human-generated benchmarks are unavailable.

The rest of the paper is organized as follows: We
survey in Section 2 unsupervised single-document
summarization algorithms. We present in Section 3
the details of our summarization algorithms and de-
scribe WESM in Section 4. We report the results of
extensive experiments in Section 5 and conclude the
paper in Section 6.

2 EARLY WORK

Early work on single-topic summarizations can be de-
scribed in the following three categories: keyword ex-
tractions, coverage and diversity optimizations, and
topic clusterings.

2.1 Keyword Extractions

To identify keywords in a document over a corpus of
documents, the measure of term-frequency-inverse-
document-frequency (TF-IDF) (Salton and Buckley,

1987) is often used. When document corpora are
unavailable, the measure of word co-occurrences
(WCO) can produce a comparable performance to
TF-IDF over a large corpus of documents (Matsuo
and Ishizuka, 2003). The methods of TextRank (Mi-
halcea and Tarau, 2004) and RAKE (Rapid Auto-
matic Keyword Extraction) (Rose et al., 2010) further
refine the WCO method from different perspectives,
which are also sufficiently fast to become candidates
for meeting the realtime requirements.

TextRank computes the rank of a word in an undi-
rected, weighted word-graph using a slightly modi-
fied PageRank algorithm (Brin and Page, 1998). To
construct a word-graph for a given document, first re-
move stop words and represent each remaining word
as a node, then link two words if they both appear in
a sliding window of a small size. Finally, assign the
number of co-occurrences of the endpoints of an edge
as a weight to the edge.

RAKE first removes stop words using a stoplist,
and then generates words (including phrases) using a
set of word delimiters and a set of phrase delimiters.
For each remaining word w, the degree of w is the
frequency of w plus the number of co-occurrences of
consecutive word pairs ww′ and w′′w in the document,
where w′ and w′′ are remaining words. The score of
w is the degree of w divided by the frequency of w.
We note that the quality of RAKE also depends on
a properly-chosen stoplist, which is language depen-
dent.

2.2 Coverage and Diversity
Optimization

The general framework of selecting sentences gives
rise to optimization problems with objective functions
being monotone submodular (Lin and Bilmes, 2011)
to promote coverage and diversity. Among them is an
objective function in the form of L(S)+λR(S) with a
summary S and a coefficient λ ≥ 0, where L(S) mea-
sures the coverage of the summary and R(S) rewards
diversity. We use SubmodularF to denote the algo-
rithm computing this objective function. Submod-
ularF uses TF-IDF values of words in sentences to
compute the cosine similarity of two sentences. While
it is NP-hard to maximize a submodular objective
function subject to a summary length constraint, the
submodularity allows a greedy approximation with a
proven approximation ratio of 1−1/

√
e.

SubmodularF needs labeled data to train the pa-
rameters in the objective function to achieve a bet-
ter summary and it is intended to work on multiple-
document summarizations. While it is possible to
work on a single document without a corpus, we note



that the greedy algorithm has at least a quadratic-
time complexity and it produces a summary with low
ROUGE scores over DUC-02 (see Section 2.4), and
so it would not be a good candidate to meet our needs.
This also applies to a generalized objective function
consisting of a submodular component and a non-
submodular component (Dasgupta et al., 2013).

2.3 Topic Clusterings

Two unsupervised approaches to topic clusterings for
a given document have been investigated. One is
TextTiling (Hearst, 1997) and the other is LDA (La-
tent Dirichlet Allocation) (Blei et al., 2003). Text-
Tiling represents a topic as a set of consecutive para-
graphs in the document. It merges adjacent para-
graphs that belong to the same topic. TextTiling iden-
tifies major topic-shifts based on patterns of lexical
co-occurrences and distributions. LDA computes for
each word a distribution under a pre-determined num-
ber of topics. LDA is a computation-heavy algorithm
that incurs a runtime too high to meet our realtime
requirements. TextTiling has a time complexity of
almost linear, which meets the requirements of effi-
ciency.

2.4 Other Algorithms

Following the general framework of selecting sen-
tences to meet the requirements of topic coverage and
diversity, a number of unsupervised single-document
summarization algorithms have been devised. The
most notable is CP3 (Parveen et al., 2016), which
produces the best ROUGE-1 (R-1), ROUGE-2 (R-2),
and ROUGE-SU4 (R-SU4) scores on DUC-02 among
all early algorithms, including Lead (Parveen et al.,
2015), DUC-02 Best, TextRank, LREG (Cheng and
Lapata, 2016), Mead (Radev et al., 2004), ILPphrase
(Woodsend and Lapata, 2010), URANK (Wan, 2010),
UniformLink (Wan and Xiao, 2010), Egraph + Co-
herence (Parveen and Strube, 2015), Tgraph + Co-
herence (Topical Coherence for Graph-based Extrac-
tive Summarization) (Parveen et al., 2015), NN-SE
(Cheng and Lapata, 2016), and SubmodularF.

CP3 maximizes importance, non-redundancy, and
pattern-based coherence of sentences to generate a co-
herent summary using ILP. It computes the ranks of
selected sentences for the summary by the Hubs and
Authorities algorithm (HITS) (Kleinberg, 1999), and
ensures that each selected sentence has unique infor-
mation. It then uses mined patterns to extract sen-
tences if the connectivity among nodes in the projec-
tion graph matches the connectivity among nodes in
a coherence pattern. Because of space limitation, we

omit the descriptions of the other algorithms.
Table 1 shows the comparison results, where the

results for SubmodularF is obtained using the best pa-
rameters trained on DUC-03 (Lin and Bilmes, 2011).
Thus, to demonstrate the effectiveness of our algo-
rithms, we will compare our algorithms with only CP3
over DUC-02.

Table 1: ROUGE scores (%) on DUC-02 data.

Methods R-1 R-2 R-SU4
Lead 45.9 18.0 20.1
DUC 2002 Best 48.0 22.8
TextRank 47.0 19.5 21.7
LREG 43.8 20.7
Mead 44.5 20.0 21.0
ILPphrase 45.4 21.3
URANK 48.5 21.5
UniformLink 47.1 20.1
Egraph + Coh. 48.5 23.0 25.3
Tgraph + Coh. 48.1 24.3 24.2
NN-SE 47.4 23.0
SubmodularF 39.6 16.9 17.8
CP3 49.0 24.7 25.8

Solving ILP, however, is time consuming even on
documents of a moderate size, for ILP is NP-hard.
Thus, CP3 does not meet the requirements of time ef-
ficiency. We will need to investigate new methods.

3 OUR METHODS

We use TextRank and RAKE to obtain initial rank-
ing scores of keywords, and use the softplus function
(Glorot et al., 2011)

sp(x) = ln(1+ ex) (1)

to enhance keyword rankings to favor sentences that
are more important.

3.1 Softplus Ranking

Assume that after filtering, a sentence s consists of
k keywords w1, · · · ,wk, and wi has a ranking score ri
produced by TextRank or RAKE. We can rank s using
one of the following two methods:

Rank(s) =
k

∑
i=1

ri (2)

Ranksp(s) =
k

∑
i=1

sp(ri) (3)

Let DTRank (Direct TextRank) and ETRank (En-
hanced TextRank) denote the methods of ranking sen-
tences using, respectively, Rank(s) and Ranksp(s)



over TextRank keyword rankings, and DRAKE (Di-
rect RAKE) and ERAKE (Enhanced RAKE) to de-
note the methods of ranking sentences using, respec-
tively, Rank(s) and Ranksp(s) over RAKE keyword
rankings.

The softplus function is helpful because when x
is a small positive number, sp(x) increases the value
of x significantly (see Figure 1) and when x is large,
sp(x) ≈ x. In particular, given two sentences s1 and

Figure 1: Softplus function ln(1+ ex).

s2, suppose that s1 has a few keywords with high
rankings and the rest of the keywords with low rank-
ings, while s2 has medium rankings for almost all the
keywords. In this case, we would consider s1 more
important than s2. However, we may end up with
Rank(s1) < Rank(s2). To illustrate this using a nu-
merical example, assume that s1 and s2 each consists
of 5 keywords, with original scores (sc) and softplus
scores (sp) given in the following table 2.

Table 2: Numerical examples with given sc and sp scores.

s1 w11 w12 w13 w14 w15 Rank
sc 2.6 2.2 2.1 0.3 0.2 7.4
sp 2.67 2.31 2.22 0.85 0.80 8.84
s2 w21 w22 w23 w24 w25
sc 1.6 1.5 1.5 1.5 1.4 7.5
sp 1.78 1.70 1.70 1.70 1.62 8.51

Sentence s1 is more important than s2 because
it contains three keywords of much higher ranking
scores than those of s2. However, s2 will be selected
without using softplus. After using softplus, s1 is se-
lected as it should be.

For a real-life example, consider the following two
sentences from an article in DUC-02:

s1: Hurricane Gilbert swept toward Jamaica yesterday with
100-mile-an-hour winds, and officials issued warnings
to residents on the southern coasts of the Dominican
Republic, Haiti and Cuba.

s2: Forecasters said the hurricane was gaining strength as
it passed over the ocean and would dump heavy rain
on the Dominican Republic and Haiti as it moved south
of Hispaniola, the Caribbean island they share, and
headed west.

We consider s1 more important as it specifies the
name, strength, and direction of the hurricane, the
places affected, and the official warnings. Us-
ing TextRank to compute keyword scores, we have
Rank(s1) = 1.538 < Rank(s2) = 1.603, which returns
a less important sentence s2. After computing soft-
plus, we have Ranksp(s1) = 8.430 > Ranksp(s2) =
7.773; the more important sentence s1 is selected.

Note that not any exponential function would do
the trick. What we want is a function to return roughly
the same value as the input when the input is large,
and a significantly larger value than the input when
the input is much less than 1. The softplus function
meets this requirement.

3.2 Topic Clustering Schemes

We consider four topic clustering schemes: TCS,
TCP, TCTT, and TCLDA.

1. TCS selects sentences without checking topics.

2. TCP treats each paragraph as a separate topic.

3. TCTT partitions a document into a set of multi-
paragraph segments using TextTiling.

4. TCLDA computes a topic distribution for each
word using LDA. We set the number of topics
from 5 to 8 depending on the length of the docu-
ment. Assume that a document contains K topics
(5 ≤ K ≤ 8) and the topic j consists of k j words
w1 j, · · · ,wk j , j, where 1 ≤ j ≤ K and wi j has a
probability pi j > 0. For a document with n sen-
tences s1, · · · ,sn, we use the following maximiza-
tion to determine which topic tz the sentence sz
belongs to (1≤ t ≤ K):

tz = argmax
1≤ j≤k

(
∏

i:wi j∈sz

pi j

)
(4)

3.3 Summarization Algorithms

The length of a summary may be specified by users,
either as a number of words or as a percentage of the
number of characters of the original document. By a
“30% summary” we mean that the number of charac-
ters of the summary does not exceed 30% of that of
the original document.

Let L be the summary length (the total number of
characters) specified by the user and S a summary. If
S consist of m sentences s1, · · · ,sm, and the number



of characters of si is `i, then the following inequality
must hold: ∑m

i=1 `i ≤ L.
Depending on which sentence-ranking algorithm

and which topic-clustering scheme to use, we have
eight combinations using ETRank and ERAKE, and
eight combinations using DTRank and DRAKE,
shown in Table 3. For example, ET3Rank (Enhanced
TextTiling TRank) means to use Ranksp(s) to rank
sentences and TextTiling to compute topic cluster-
ings, and T2RAKE (TextTiling RAKE) means to use
Rank(s) rank sentences over RAKE keywords and
TextTiling to compute topic clusterings.

Table 3: Description of all the Algorithms with different
sentence-ranking (S-R) and topic-clustering (T-C) schemes.

Methods S-R T-C
ESTRank ETRank TCS
EPTRank ETRank TCP
ET3Rank ETRank TCTT
ELDATRank ETRank TCLDA
ESRAKE ERAKE TCS
EPRAKE ERAKE TCP
ET2RAKE ERAKE TCTT
ELDARAKE ERAKE TCLDA
STRank DTRank TCS
PTRank DTRank TCP
T3Rank DTRank TCTT
LDATRank DTRank TCLDA
SRAKE DRAKE TCS
PRAKE DRAKE TCP
T2RAKE DRAKE TCTT
LDARAKE DRAKE TCLDA

All algorithms follow the following procedure for
selecting sentences:
1. Preprocessing phase

(a) Identify keywords and compute the ranking of
each keyword.

(b) Compute the ranking of each sentence.
2. Sentence selection phase

(a) Sort the sentences in descending order of their
ranking scores.

(b) Select sentences one at a time with a higher
score to a lower score. Check if the se-
lected sentence s belongs to the known-topic set
(KTS) according to the underlying topic clus-
tering scheme, where KTS is a set of topics
from sentences placed in the summary so far.
If s is in KTS, then discard it; otherwise, place
s into the summary and its topic into KTS.

(c) Continue this procedure until the summary
reaches its length constraint.

(d) If the number of topics contained in the KTS is
equal to the number of topics in the document,

empty KTS and repeat the procedure from Step
1.

Figure 2 shows an example of 30% summary gen-
erated by ET3Rank on an article in NewsIR-16.

4 A WORD-EMBEDDING
MEASUREMENT OF QUALITY

Word2vec (Mikolov et al., 2013a; Mikolov et al.,
2013b) is an NN model that learns a vector represen-
tation for each word contained in a corpus of docu-
ments. The model consists of an input layer, a projec-
tion layer, and an output layer to predict nearby words
in the context. In particular, a sequence of T words
w1, · · · ,wT are used to train a Word2Vec model for
maximizing the probability of neighboring words:

1
T

T

∑
t=1

∑
j∈b(t)

log p(w j|wt) (5)

where b(t) = [t−c, t+c] is the set of center word wt ’s
neighboring words, c is the size of the training con-
text, and p(w j|wt) is defined by the softmax function.
Word2Vec can learn complex word relationships if it
trains on a very large data set.

4.1 Word Mover’s Distance

Word Mover’s Distance (WMD) (Kusner et al., 2015)
uses Word2Vec as a word embedding representation
method. It measures the dissimilarity between two
documents and calculates the minimum cumulative
distance to “travel” from the embedded words of one
document to the other. Although two documents may
not share any words in common, WMD can still mea-
sure the semantical similarity by considering their
word embeddings, while other bag-of-words or TF-
IDF methods only measure the similarity by the ap-
pearance of words. A smaller value of WMD indi-
cates that the two sentences are more similar.

4.2 A Word-embedding Similarity
Measure

Based on WMD’s ability of measuring the semantic
similarity of documents, we propose a summarization
evaluation measure WESM (Word-Embedding Sim-
ilarity Measure). Given two documents D1 and D2,
let WMD(D1,D2) denote the distance of D1 and D2.
Given a document D, assume that it consists of ` para-
graphs P1, · · · , P̀ . Let S be a summary of D. We com-
pare the word-embedding similarity of a summary S



Figure 2: An example of 30% summary of an article in NewsIR-16 by ET3Rank, where the original document is on the left
and the summary is on the right.

with D using WESM(S,D) as follows:

WESM(S,D) =
1
`

`

∑
i=1

1
1+WMD(S,Pi)

(6)

The value of WESM(S,D) is between 0 and 1. Under
this measure, the higher the WESM(S,D) value, the
more similar S is to D.

5 NUMERICAL ANALYSIS

We evaluate the qualities of summarizations using
the DUC-02 dataset (DUC, 2002) and the NewsIR-16
dataset (Corney et al., 2016). DUC-02 consists of 60
reference sets, each of which consists of a number of
documents, single-document summary benchmarks,
and multi-document abstracts/extracts. The common
ROUGE recall measures of ROUGE-1, ROUGE-2,
and ROUGE-SU4 are used to compare the quality of
summarization algorithms over DUC data. NewsIR-
16 consists of 1 million articles from English news
media sites and blogs.

We use various software packages to implement
TextRank (with window size = 2) (MIT, 2014), RAKE

(MIT, 2015), TexTiling (Boutsioukis, 2016), LDA
and Word2Vec (Rehurek, 2017).

We use the existing Word2Vec model trained on
English Wikipedia (Foundation, 2017), which con-
sists of 3.75 million articles formatted in XML. The
reason to choose this dataset is for its large size and
the diverse topics it covers.

5.1 ROUGE Evaluations over DUC-02

As mentioned before, we use CP3 to cover all previ-
ously known algorithms for the purpose of comparing
qualities of summaries, as CP3 produces the best re-
sults among them.

Among all the algorithms we devise, we only
present those with at least one ROUGE recall score
better than or equal to the corresponding score of CP3,
identified in bold (see Table 4). Also shown in the
table is the average of the three ROUGE scores (R-
AVG). We can see that ET3Rank is the winner, fol-
lowed by T2RAKE; both are superior to CP3. More-
over, ET2RAKE offers the highest ROUGE-1 score
of 49.3.



Table 4: ROUGE scores (%) on DUC-02 data.

Methods R-1 R-2 R-SU4 R-AVG
CP3 49.0 24.7 25.8 33.17
ET3Rank 49.2 25.6 27.5 34.10
ESRAKE 49.0 23.6 26.1 32.90
ET2RAKE 49.3 21.4 24.5 31.73
PRAKE 49.0 24.5 25.3 32.93
T2RAKE 49.1 25.4 25.8 33.43

5.2 WESM Evaluations over DUC-02
and NewsIR-16

Table 5 shows the evaluation results on DUC-02 and
NewsIR-16 using WESM based on the Word2Vec
model trained on English Wikipedia. The first number
in the third row is the average score on all benchmark
summaries in DUC-02. For the rest of the rows, each
number is the average score of summaries produced
by the corresponding algorithm for all documents in
DUC-02 and NewsIR-16. The size constraint of a
summary on DUC-02 for each document is the same
as that of the corresponding DUC-02 summary bench-
mark.

For NewsIR-16, we select at random 1,000 doc-
uments from NewsIR-16 and remove the title, refer-
ences, and other unrelated content from each article.
Based on an observation that a 30% summary allows
for a good summary, we compute 30% summaries of
these articles using each algorithm.

Table 5: Scores (%) over DUC-02 and NewsIR-16 under
WESM trained on English-Wikipedia.

Datasets DUC-02 NewsIR-16
Benchmarks 3.021
ET3Rank 3.382 2.002
ESRAKE 3.175 1.956
ET2RAKE 3.148 1.923
PRAKE 3.150 1.970
T2RAKE 3.247 1.990

It is expected that scores of our algorithms are bet-
ter than the score for benchmarks under each measure,
for the benchmarks often use different words not in
the original documents, and hence would have smaller
similarities.

5.3 Normalized L1-norm

We would like to determine if WESM is a viable
measure. From our experiments, we know that
the all-around best algorithm ET3Rank, the second
best algorithm T2RAKE, and ET2RAKE remain the
same positions under R-AVG over DUC-02 and under
WESM over both DUC-02 and NewsIR-16 (see Table

6), ESRAKE and PRAKE remain the same positions
under R-AVG over DUC-02 and under WESM over
NewsIR-16, while ESRAKE and PRAKE only differ
by one place under R-AVG and WESM over DUC-02.

Table 6: Orderings of R-AVG scores over DUC-02 and
WESM scores over DUC-02 and NewsIR-16.

Methods R-AVG WESM
DUC-02 DUC-02 NewsIR-16

ET3Rank 1 1 1
ESRAKE 4 3 4
ET2RAKE 5 5 5
PRAKE 3 4 3
T2RAKE 2 2 2

O1 O2 O3

Next, we compare the ordering of the R-AVG
scores and the WESM scores over DUC-02. For this
purpose, we use the normalized L1-norm to compare
the distance of two orderings. Let X =(x1,x2, · · · ,xk)
be a sequence of k objects, where each xi has two val-
ues ai and bi such that a1,a2, . . . ,ak and b1,b2, . . . ,bk
are, respectively, permutations of 1,2, . . . ,k. Let

Dk =
k

∑
i=1
|(k− i+1)− i|,

which is the maximum distance two permutations can
possibly have. Then the normalized L1-norm of A =
(a1,a2, · · · ,bk) and B = (b1,b2, · · · ,bk) is defined by

||A,B||1 =
1

Dk

k

∑
i=1
|ai−bi|.

Table 6 shows the orderings of the R-AVG scores
over DUC-02 and WESM scores over DUC-02 and
NewsIR-16 (from Tables 4 and 5).

It is straightforward to see that D5 = 12,
||O1,O2||1 = ||O2,O3||1 = 2/12 = 1/6 and
||O1,O3||1 = 0. This indicates that WESM and
ROUGE are highly comparable over DUC-02 and
NewsIR-16, and the orderings of WESM on different
datasets, while with larger spread, are still similar.

5.4 Runtime Analysis

We carried out runtime analysis through experiments
on a computer with a 3.5 GHz Intel Xeon CPU E5-
1620 v3. We used a Python implementation of our
summarization algorithms. Since DUC-02 are short,
all but LDA-based algorithms run in about the same
time. To obtain a finer distinction, we ran our ex-
periments on NewsIR-16. Since the average size
of NewsIR-16 articles is 405 words, we selected at
random a number of articles from NewsIR-16 and



merged them to generate a new article. For each size
from around 500 to around 10,000 words, with incre-
ments of 500 words, we selected at random 100 ar-
ticles and computed the average runtime of different
algorithms to produce 30% summary (see Figure 3).
We note that the time complexity of each of our algo-
rithms incurs mainly in the preprocessing phase; the
size of summaries in the sentence selection phase only
incur minor fluctuations of computation time, and so
it suffice to compare the runtime for producing 30%
summaries.

Figure 3: Runtime analysis, where the unit on the x-axis is
100 words and the unit of the y-axis is seconds.

We can see from Figure 3 that ESRAKE and
PRAKE incur about the same linear time and they
are extremely fast. Also, ET3RANK, ET2RAKE, and
T2RAKE incur about the same time. While the time
is higher because of the use of TextTiling and is closed
to being linear, it meets the realtime requirements.
For example, for a document of up to 3,000 words,
over 3,000 but less than 5,500 words, and 10,000
words, respectively, the runtime of ET3Rank is under
0.5, 1, and 2.75 seconds.

The runtime of SubmodularF is acceptable for
documents of moderate sizes (not shown in the pa-
per); but for a document of about 10,000 words,
the runtime is close to 4 seconds. LDA-based algo-
rithms is much higher. For example, LDARAKE in-
curs about 16 seconds for a document of about 2,000
words, about 41 seconds for a document of about
5,000 words, and about 79 seconds for a document
of about 10,000 words.

6 CONCLUSIONS

We presented a number of unsupervised single-
document summarization algorithms for generating
effective summaries in realtime and a new measure

based on word-embedding similarities to evaluate the
quality of a summary. We showed that ET3Rank is the
best all-around algorithm. A web-based summariza-
tion tool using ET3Rank and T2RAKE will be made
available to the public.

To further obtain better topic clusterings effi-
ciently, we plan to extend TextTiling over non-
consecutive paragraphs. To obtain a better under-
standing of word-embedding similarity measures, we
plan to compare WESM with human evaluation and
other unsupervised methods including those devised
by Louis and Nenkova (Louis and Nenkova, 2009).
We also plan to explore new ways to measure sum-
mary qualities without human-generated benchmarks.
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