
Encouraging Business Flexibility by Improved Context Descriptions

Johan Silvander, Magnus Wilson and Krzysztof Wnuk
Department of Software Engineering, Blekinge Institute of Technology, Karlskrona, Sweden

{Johan.Silvander, Magnus.Wilson, Krzysztof.Wnuk}@bth.se

Keywords: Context Description, Business Flexibility, Business Support System, Requirements Engineering, Business
Model.

Abstract: Business-driven software architectures are emerging and gaining importance for many industries. As software-
intensive solutions continue to be more complex and operate in rapidly changing environments, there is a pres-
sure for increased business flexibility realized by more efficient software architecture mechanisms to keep up
with the necessary speed of change. We investigate how improved context descriptions could be implemented
in software components, and support important software development practices like business modeling and
requirement engineering. This paper proposes context descriptions as an architectural support for improving
the connection between business flexibility and software components. We provide initial results regarding
software architectural mechanisms which can support context descriptions as well as the context descrip-
tion’s support for business-driven software architecture, and the business flexibility demanded by the business
ecosystems.

1 INTRODUCTION

Business requirements are shaped by collaboration
and continuous knowledge creation (Nonaka, 1994)
between stakeholders, who are driven by intents while
acting in business ecosystems. The business require-
ments and the speed of implementing them become
the dominant concern for Software Intensive Product
Development (SIPD) (Bharadwaj et al., 2013) compa-
nies and forces these companies to reach new levels of
agility and orchestration of digital resources.

For SIPD, this challenge translates into creating
efficient software architectures which support busi-
ness flexibility in order to adapt existing business
models or support new business models as a response
to changes in the business ecosystems. Software com-
ponents are often expensive to re-use and maintain
in new or multiple business models due to a lot of
business logic connecting various components while
functions are hard-wired to certain business environ-
ments. Components cannot be re-coded every time a
business model changes. Therefore, new software ar-
chitectures need to support the complete lifecycle of
connecting business models to software components
with an efficient support for changeability.

This paper focuses on supporting business flexi-
bility by using specific context descriptions. The aim
is to transform these context descriptions into exe-

cutable containers which could be used to support
the needed business flexibility. The remaining part of
the paper is structured as follows: Section 2 presents
background and related work, Section 3 and 4 pro-
vide information about how the ideas have been used
by practitioners, and Section 5 concludes the paper.

2 BACKGROUND AND RELATED
WORK

Business architecture flexibility focuses on business
trade-offs that need to be quickly resolved and how
they impact both function layers and realization lay-
ers. Depending on the estimated future value for rele-
vant stakeholders (Khurum et al., 2013), the business
architecture flexibility allows for agile changes to the
realization layer. Availability and flexibility are rec-
ognized as important aspects in high uncertain busi-
ness environments (Richter et al., 2010).

The transition to service driven economy has
given the birth to Industrial Product-Service Sys-
tems (Meier et al., 2010) with the focus on lifecycle-
integration of products and services. New possibil-
ities for capturing value as well as for “on-demand
lock/un-lock” of business value options are possible
with the digital delivery of software and value. This
requires the software components to support new lev-

225



els of flexibility for option-locking support, including
governance.

Several significant contributions have been made
in decomposing value for software products (Kang
et al., 1990) or describing industrial context in soft-
ware engineering (Petersen and Wohlin, 2009). Cas-
tro et al. focused on bridging the gap between the
software systems and their operational environment
using i* modeling framework (Castro et al., 2002)
leveraging on goal based modeling. Goal based mod-
eling of requirements and agent-based software en-
gineering are common approaches to capture the re-
quirements on software components, e.g. KAOS,
MAS, and TAO (Silva et al., 2003). However, in prac-
tice these frameworks still lacks usability (Dalpiaz
et al., 2016) in which industry can effectively and ef-
ficiently industrialize these practices and develop ef-
ficient software architecture.

Creating software components that can be orches-
trated and bring value to the relevant stakeholders in
business ecosystems and timely respond to frequent
changes remains the main challenge. This is partly
addressed by Software product lines (Bosch, 2009)
and industrial Product-Service systems (Meier et al.,
2010) which focused on changeability (Richter et al.,
2010), as ways to create flexible, adaptable and effi-
cient component-based software architectures.

Supporting business flexibility requires support
for agile business policies and business rules (Busi-
ness Rules Group, 2003) which are used to govern
how an enterprise does its business (OMG, 2014). It
is desired to have a common governance structure and
a standardized way of handling the business rules.
Rosca et al. have contributed valuable knowledge
in the area of common governance of business rules
(Rosca et al., 2002; Rosca et al., 1997). However,
we use to the more declarative nature of the business
rules (Business Rules Group, 2003).

To fully support business flexibility, we need
to better understand and define the business con-
text. Modeling context is also critical for developing
context-aware software systems (Brun et al., 2009).
Baldauf et al. (Baldauf et al., 2007) summarized
context-aware systems including methods to achieve
context-awareness, e.g. resource discovery, sensing,
context model, context processing, hierarchical con-
text data. Despite several similarities, context-aware
software systems focus on dynamically discoverable
services rather than dynamically changing business
opportunities. This paper builds upon the definition
provided by Baldauf et al. (Baldauf et al., 2007) and
introduces context description and context frame as
concepts for achieving context-aware business archi-
tectures.

By composition, context descriptions can be used
to create efficient re-usable descriptions that can be
used not only in business requirements but also in
business rules. The context description is what gives a
context frame a scope (boundary) and defines a mean-
ing (semantics). In this paper, we propose the con-
text frame as a fundamental building block in new
software business architectures to create self-adaptive
software components that can understand, negotiate
and adapt to a business context.

3 CASE CONTEXT

In today’s implementations of business support sys-
tems, business rules are configured in different places
of the system, and in different formats. This makes it
hard to have a common view of what is defined, and
to execute the same logic in different parts of systems,
without re-implementing the rules.

Since humans are defining the business rules,
these rules are usually ambiguous. Visual and log-
ical support to verify the correctness of the defined
business rules are desired. Parts of the business rules
could be made executable in order to make the op-
eration of the business more efficient and effective.
The process of translating business rules to executable
business rules is error-prone due to human interpreta-
tion. Sharma et al. (Sharma et al., 2014) have pro-
posed a method to find business rules in requirements
documents. This is a good start but most business
rules are not about the information system it selves
but rather about the business the information system
shall support.

It is desired to use a software algorithm to translate
business rules into executable business rules. A way
to execute business rules is to use a common rule en-
gine for all the components in a business support sys-
tem. This approach might not be desired or possible.
Instead, the possibility to express executable business
rules in a different software language, which could be
distributed to the different components in a business
support system, might be an option. Contrary to many
proposed solutions, we believe that a business rule
could be triggered by several different events. This
makes the use of a simple event-condition-action ar-
chitecture not suitable for the problem at hand.

Together with Ericsson we have performed a
proof-of-concept to investigate if it is possible to sup-
port visual and logical verification of business rules,
and to generate executable business rules. We have
chosen to investigate a limited part of an enterprise’s
business rules. The business rules we have chosen
to study are targeting support for value propositions,

Seventh International Symposium on Business Modeling and Software Design

226



based on different business models. The business
rules are based on following five parts of the Oster-
walder canvas (Osterwalder and Pigneur, 2010): cus-
tomer type, customer relationship, channels, revenue
streams, and a specific area of the value propositions.

4 PROOF OF CONCEPT

Since a business model is supported by a set of legal
contracts ,we started to derive the business rules from
these type of contracts. Some of the information in
a legal contract is not meaningful to translate into a
business rule which should be executed in software,
e.g. which country laws should be used to solve a dis-
pute. Many times the nature of the language used in
legal contracts requires human interpretation. How-
ever, the majority of the terms and conditions in a le-
gal contract can be translated into meaningful busi-
ness rules which could be implemented in software.

We have implemented machine learning pipe-
lines which make it possible to conduct visual and
logical verification of business rules, and generate ex-
ecutable business rules. This process can be regarded
as the creation of a context frame. We have added
different types of functionality which is regarded as
needed when handling business rules. Missing data is
handled as a wild card, i.e. all values are true. Con-
tinuous values have a defined boundary and there are
no value gaps in the data. Since a human is defining
the business rules, entering all possible combinations
by hand is not an option. A meta-data file is used to
describe the nature of the features.

In order for the solution to exist in an event-
driven environment, the extracted business rule was
extended with the events it is intended for. We
have added the possibility to use two classification
columns. These classification columns respectively
represents eligible objects and the allowed actions on
the business rules. The idea is borrowed from the
gaming industry where a specific context gives the
character the possibilities to, for example find spe-
cific treasures and stipulates how these treasures can
be handled. The combination of event, eligibility and
action makes it possible to mimic a business process.

There is a strong demand on the possibility to sep-
arate the design from the execution and the need for
governance of the business rules throughout their life-
cycle. This demand is in-line with TMForum’s eTOM
(TMForum, 2015). The design is supported by the
possibility to, visually and logically, validate the cor-
rectness of the business rules before they are put in
execution. The execution is supported by the possibil-
ity to logically validate the correctness of the business

rules before they are put in operation, and to deploy
and operate the executable business rules as a context
frame. The governance views are supported by the
fact that the executable business rules can be handle
as immutable artifacts.

The pipe-lines are considered as a proof of con-
cept, and as such is regarded as successful by the four
practitioners involved in its evaluation. Three of them
are system architects and one is a business support
system expert. The pipe-lines make it possible to,
visually and logically, validate the correctness of the
business rules before they are put in production. Gen-
erating executable code representing the model of the
business rules, makes it possible to execute the same
model in different components without the need of re-
implementation. This might improve the coherence of
the business rules in a business support system. It was
concluded that this way of supporting business pro-
cesses can support the business models of the business
support system it selves, as well as the business mod-
els of the enterprises which are running their business
with the help of the business support system.

There are several improvements to the pipe-lines
which should be considered. The precision of fea-
ture value has to be configurable feature by feature,
and with different values for the maximum limit and
minimum limit. The executable code representing the
model of the business rules should support additional
languages, for example JavaTM. The ability to ex-
tract information from the legal contracts must be im-
proved. We will investigate how we can leverage on
the research made in the area of common governance
of business rules (Rosca et al., 2002; Rosca et al.,
1997). During the proof-of-concept we elaborated
with the logical visualization of the deployed business
rules. We plan to investigate if a graph database can
support the needed deployment capabilities regarding
visualization and semantics.

There are no real-time requirements on the trans-
formation from business rules to executable business
rules. Since the data set will vary in the number of
used feature columns and since each feature has its
own characteristic, the use of a typed-language is not
ideal. Based on this, Python fulfills the requirements
as a suitable implementation language for the problem
at hand.

5 CONCLUSIONS AND FURTHER
WORK

This vision paper illustrates the potential benefits with
introducing context descriptions and context frames
to support business flexibility. The implementation

Encouraging Business Flexibility by Improved Context Descriptions

227



makes it possible to, visually and logically, validate
the correctness of the business rules before they are
put in production. The possibility to generate ex-
ecutable code representing the model of the busi-
ness rules, makes it possible to execute the same
model in different components without the need of re-
implementation. However, the PoC does not include
support for business requirements and the software ar-
chitecture mechanisms supporting the context frame
are very basic.

Together with Ericsson we plan to improve the so-
lution in order to make it useful in a business support
system offering. This includes the improvements dis-
cussed in this section and in Section 4.

ACKNOWLEDGEMENTS

This work was partially supported by Ericsson AB.
We thank the members in our former units for their
support and the time they spent with us during this
work.

REFERENCES

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A sur-
vey on context-aware systems. International Journal
of Ad Hoc and Ubiquitous Computing, 2(4):263.

Bharadwaj, A., El Sawey, O. A., Pavlou, P. A., Venkatra-
man, N., El Sawy, O. a., Pavlou, P. A., and Venka-
traman, N. (2013). Digital Business Strategy: To-
ward a Next Generation of Insights. MIS Quarterly,
37(2):471–482.

Bosch, J. (2009). From Software Product Lines to Soft-
ware Ecosystems. 13th International Software Prod-
uct Line Conference Proceefings, (Splc):111–119.

Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H.,
Kienle, H., Litoiu, M., Müller, H., Pezzè, M., and
Shaw, M. (2009). Engineering Self-Adaptive Sys-
tems through Feedback Loops, pages 48–70. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Business Rules Group (2003). The
Business Rules Manifesto.
http://businessrulesgroup.org/brmanifesto/BRManifesto.pdf
Last checked 2017-02-01.

Castro, J., Kolp, M., and Mylopoulos, J. (2002). To-
wards requirements-driven information systems engi-
neering: the Tropos project. Information systems,
27(6):365–389.

Dalpiaz, F., Franch, X., and Horkoff, J. (2016). iStar 2.0
Language Guide. CoRR, abs/1605.0.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and
Peterson, A. S. (1990). Feature-oriented domain anal-
ysis (FODA) feasibility study. Technical report, DTIC
Document.

Khurum, M., Gorschek, T., and Wilson, M. (2013). The
software value mapan exhaustive collection of value
aspects for the development of software intensive
products. Journal of Software: Evolution and Pro-
cess, 25(7):711–741.

Meier, H., Roy, R., and Seliger, G. (2010). Industrial
Product-Service systems-IPS2. CIRP Annals - Manu-
facturing Technology, 59(2):607–627.

Nonaka, I. (1994). A Dynamic Theory of Organizational
Knowledge Creation. Organization Science, 5(1):14–
37.

OMG (2014). Business Motivation Model.
http://www.omg.org/spec/BMM/1.2/ Last checked
2015-12-01.

Osterwalder, A. and Pigneur, Y. (2010). Business Model
Generation. Wiley, 1st edition.

Petersen, K. and Wohlin, C. (2009). Context in Industrial
Software Engineering Research. In Proceedings of
the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM ’09,
pages 401–404, Washington, DC, USA. IEEE Com-
puter Society.

Richter, A., Sadek, T., and Steven, M. (2010). Flexibility
in industrial product-service systems and use-oriented
business models. CIRP Journal of Manufacturing Sci-
ence and Technology, 3(2):128–134.

Rosca, D., Greenspan, S., Feblowitz, M., and Wild, C.
(1997). A decision making methodology in support
of the business rules lifecycle. Proceedings of ISRE
’97: 3rd IEEE International Symposium on Require-
ments Engineering, (October):236–246.

Rosca, D., Greenspan, S., and Wild, C. (2002). Enter-
prise modeling and decision-support for automating
the business rules lifecycle. Automated Software En-
gineering, 9(4):361–404.

Sharma, R., Bhatia, J., and Biswas, K. K. (2014). Auto-
mated identification of business rules in requirements
documents. Souvenir of the 2014 IEEE International
Advance Computing Conference, IACC 2014, pages
1442–1447.

Silva, V., Garcia, A., Brandão, A., Chavez, C., Lucena,
C., and Alencar, P. (2003). Software Engineering
for Large-scale Multi-agent Systems. chapter Taming
Age, pages 1–26. Springer-Verlag, Berlin, Heidelberg.

TMForum (2015). eTOM.
https://www.tmforum.org/business-process-
framework/ Last checked 2015-12-01.

Seventh International Symposium on Business Modeling and Software Design

228


