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Abstract: In this information era, it is difficult to exploit and compute high-amount data efficiently. Today, it is 
inadequate to use MapReduce to handle more data in less time let alone real time. Hence, In-memory 
Computing (IMC) was introduced to solve the problem of Hadoop MapReduce. IMC, as its literal meaning, 
exploits computing in memory to tackle the cost problem which Hadoop undue access data to disk caused and 
can be distributed to perform iterative operations. However, IMC distributed computing still cannot get rid of 
a bottleneck, that is, network bandwidth. It restricts the speed of receiving the information from the source 
and dispersing information to each node. According to observation, some data from sensor devices might be 
duplicate due to time or space dependence. Therefore, deduplication technology would be a good solution. 
The technique for eliminating duplicated data is capable of improving data utilization. This study presents a 
distributed real-time IMC platform -- “Spark Streaming” optimization. It uses deduplication technology to 
eliminate the possible duplicate blocks from source. It is expected to reduce redundant data transmission and 
improve the throughput of Spark Streaming. 

1 INTRODUCTION 

In recent years, with the development of Internet and 
prevalence of mobile devices, a very huge amount of 
data was generated daily. To be able to carry out some 
operations on larger and more complex data now, 
techniques for Big Data were presented. In 2004, 
Google released a programming model MapReduce 
(Dean, 2008) for processing and generating large data 
sets with a parallel, distributed algorithm. Packages 
have been developed and widely used nowadays. 
They can make big-data analysis more efficient. For 
instance, one of the mostly used packages is Hadoop 
(Shvachko, 2010). It provides an interface to 
implement MapReduce that allows people use it more 
easily.  

Hadoop MapReduce adapts coarse-grained tasks 
to do its work. These tasks are very heavyweight for 
iterative algorithms. Another problem is that 
MapReduce has no awareness of the total pipeline of 
Map plus Reduce steps. Therefore, it cannot cache 
intermediate data in memory for faster performance. 
This is because it uses a small circular buffer (default 
100MB) to cache intermediate data, and it flushes 
intermediate data to disk between each step and when 
80% of the circular buffer space is occupied. 

Combined these overhead costs, it make some 
algorithms that require fast steps unacceptably slow. 
For example, many machine-learning algorithms 
were required to work iteratively. Algorithms like 
training a recommendation engine or neural networks 
and finding natural clusters in data are typically 
iterative algorithms. In addition, if you want to get a 
real-time result from the trained model or wish to 
monitor program logs to detect failures in seconds, 
you will need for computation streaming models that 
simplify MapReduce offline processing. Obviously, 
you want the steps in these kinds of algorithms to be 
as fast and lightweight as possible.  

To implement iterative, interactive and streaming 
computing, a parallel in-memory computing platform, 
Spark (Zaharia, 2010), was presented. Spark is built 
on a powerful core of fine-grained, lightweight, and 
abstract operations by which the developers 
previously had to write themselves. Spark is 
lightweight and easy to build iterative algorithms with 
good performance as scale. The flexibility and 
support for iterations also allow Spark to handle event 
stream processing in a clever way. Originally, Spark 
was designed to become a batch mode tool, like 
MapReduce. However, its fine-grained nature makes 
possible that it can process very small batches of data. 
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Therefore, Spark developed a streaming model to 
handle data in short time windows and compute each 
of them as “mini-batch”. 

Network bandwidth is another bottleneck that we 
wish to resolve. Bandwidth shortage is not from its 
architecture but from the gateway between sensors 
and computing platform (Akyildiz, 2002). The bridge 
that collects data from sensors and transmits data to 
server is performed by one or more gateways. Their 
bandwidth is often low because of the wireless 
network environment. Our proposal is to utilize these 
transmitted data fully for low-latency processing 
applications. In order to maintain or even improve the 
throughput of computing platform, we adopt the real-
time parallel computing platform based on data 
deduplication technology. It allows the efficient 
utilization of network resources to improve 
throughput. 

Data deduplication is a specialized data 
compression technique for eliminating duplicated 
data. This technique is used to improve storage 
utilization and can also be applied to network data 
transmission to reduce the amount of bytes that must 
be sent. One of the most common forms of data 
deduplication implementation works by comparing 
chunks of data to detect duplicates. Block 
deduplication looks within a file and saves distant 
blocks. Each chunk of data is processed using a hash 
algorithm such as MD5 (Rivest, 1992) or SHA-1 
(Eastlake, 2001). This process generates a unique 
number for each piece which is then stored in an index. 
If a file is updated, only the changed data is saved. 
For instance, Dropbox and Google Drive are also 
cloud file synchronization software. Both of them use 
data deduplication technique to reduce the cost of 
storage and transmission between client and 
server. However, unlike those cloud storages, there is 
no similar file between gateway and computing server. 
Hence, we propose a data structure to keep those 
duplicated part of data and reuse them. This is the part 
where our work is different from those cloud storages. 
In our work, the data stream from sensors can be 
regarded as an extension of a file. In other words, the 
data stream is also divided into blocks to identify 
which blocks are redundant. So data deduplication 
has quite potentials to resolve the problem of 
bandwidth inadequate. 

In this study, we propose that the deduplication 
scheme reduces the requirement of bandwidth and 
improves throughput on real-time parallel computing 
platform. Interestingly, the data from sensors has 
quite duplicated part that can be eliminated. This is 
the tradeoff between processing speed and network 
bandwidth. We sacrifice some CPU efficacy of 

gateways and computing platform to exchange more 
efficient utilization of network bandwidth. In brief, 
we applied data deduplication technique completely 
to improve the data re-use rate on distributed 
computing system like Spark.  

2 DATA DEDUPLICATION 
TRANSMISSION SCHEME 

In this section, we elaborate on the details of our 
system design. We first clarify our problem in Section 
2.1 and then the implementations and the parameter 
definition are listed in the following sections. In 
Section 2.2, we outline our system overview and 
provide a series steps explanation then formulate our 
bandwidth saving model. In Section 2.3, we describe 
how to choose block fingerprint and give a 
benchmark for hash functions to compare to select the 
option. In Section 2.4, we give some concept to guide 
users how to implement the data chunk preprocess 
model. 

2.1 Problem Description 

The main problem we want to resolve is to reduce the 
duplicated data delivery so that it can send more data 
in limited time. This problem can be divided into 
several sub-problems. The first one is that how to 
chunk data so that we can make the set of data blocks 
smaller. In other words, when the repetition rate of 
data blocks is higher, the bandwidth saving becomes 
more. However, if remote does not have similar data, 
these chunking methods would not effective. 

The second problem is that how sender decides 
whether this data block has received or not. With 
Rsync algorithm (Tridgell, 1998), it uses a pair of 
weak and strong checksums for a data block to enable 
sender to check whether the blocks have not been 
modified or not. This gives a good inspiration to solve 
it. In order to find the same data block, Rsync uses 
strong checksum to achieve it. So, hash function is the 
solution that is able to digest block into a fingerprint. 
Block fingerprint can represent the contents of the 
block and utilize less space, this is we want. However, 
MD5 used in Rsync is not the best choice for our work.  
This will be analyzed in Section 2.3. 

2.2 Scheme Overview 

Before describing solutions of these sub-problems, 
we assemble these notions into a data block 
deduplication scheme. We believe this scheme helps 
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us to reduce bandwidth utilization between gateway 
and computing platform. Figure 1 shows the scheme 
overview that illustrates how we implement it. 

Here we explain the meaning of control flow and 
data flow. In Figure 1, the two biggest dotted boxes 
represent a remote data source (i.e. Gateway) and a 
real-time parallel computing platform (i.e. Spark) 
respectively. The rectangles represent data handlers 
that compute these data blocks like Data Block 
Preprocessor and Block Fingerprint Generator and 
communication interfaces that deliver and receive 
control information and raw data. The cylinder 
represents a limited memory data structure to store 
data. In addition, all arrows are data flows that 
illustrate how these data or blocks flow in our 
scheme. The arrows around dotted box are related 
with metadata that is used to control data 
transmission. All steps in this scheme will be 
described as follow. 

 

 
Figure 1: Scheme overview. 

Step 1: Once the receiver triggers Request 
Listener, the listener accepts the connection and 
notifies Data Block Preprocessor to handle raw data 
stream. 

Step 2: In Data Block Preprocessor, no matter if 
the source of raw data stream is from a reliable disk 
or sensor, it is spitted into data blocks. This 
preprocess for raw data is so important that it 
influences the whole data block deduplication 
scheme. The detailed explanation and 
implementation are presented in Section 2.4. 

Step 3: These data blocks are pushed into Block 
Fingerprint Generator and Data Block Buffer. In this 
phase sender prepares the block fingerprints and data 
blocks that are ready to send. The Data Block Buffer 
has a memory space to cache these data blocks from 
preprocessor and records the sequences of blocks that 
will be used in data block transmitter. Its data 
structure is a first in, first out(FIFO) Queue. Besides, 

this process needs Block Fingerprint Generator to 
generate hash value for each block, the detail 
implementation is showed in Section 2.3. 

Step 4: The Matches Decision Maker will 
exchange metadata with Fingerprint Matcher in arrow 
(4a). First, the Decision Maker sends the fingerprints 
that belong to blocks stored in buffer to Fingerprint 
Matcher. The matches that contain the information 
whether or not blocks have been sent are returned to 
Matches Decision Maker by Fingerprint Matcher. In 
arrow (4b), Fingerprint Matcher uses these 
fingerprints as key to ask the LRU cache map to find 
out if this block has received or not. It uses a Boolean 
array as matches, and the Boolean array retains the 
order information which Data Block Transmitter 
needs. Before returning matches, we need to do an 
additional checking for fingerprints. Because some 
duplicated data blocks are too close to each other, the 
results of matches from LRU Cache Map do not 
identify these duplicated data blocks. Before the data 
blocks are stored into LRU Cache Map in Step 6, 
these blocks are not in LRU Cache Map. This 
situation makes some blocks identified as unique. 
Hence, the additional checking is required. 

Step 5: In Step 4, the metadata has been 
exchanged between sender and receiver, and this said 
that sender knows which data blocks do not need to 
retransmit while the receiver knows how to 
reconstruct these blocks as well. For arrow (5a), the 
sequence of fingerprints and match information 
notifies Data Block Reconstructor about how to 
receive next data block. For example, the sequence is 
like [(f , F), (f , T) , (f , T), …] where f presents 
fingerprint, F is false, and T is true. At that time, 
arrow (5b) also indicates the result of matches as a 
sequence like [F, T, T, …] to Data Block Transmitter. 
After the metadata notifies the data communication 
interfaces, it begins to pass blocks of raw data 
sequentially. This is the reason why data block buffer 
is a first-in, first out (FIFO) queue. It is used to 
correspond matches sequence. Figure 2 illustrates the 
data flow of arrows (5a) and (5b) across network. 
This data flow completely shows how this scheme 
saves bandwidth. We can observe that some blocks 
are ignored to transmit on network, and this is reason 
why our scheme works well. In addition, we can also 
use some compression algorithm like gzip (Levine, 
2012) to compress data and further reduce bandwidth 
utilization. Moreover, to prevent blocks from waiting 
for metadata, it is suggested to set a timer. When the 
timer expires, send must transmit data without 
control. This mechanism is to prevent receiver from 
waiting data too long. 
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Step 6: This is the last step for this scheme. The 
Data Block Reconstructor arranges received data 
blocks and matches and puts these received blocks to 
LRU cache map, which stores the pairs of fingerprint 
and block data with a limit size. This is the point that 
makes reduplicated data utilization more efficient. 
Because Spark requires much memory, the amount of 
memory for this scheme to utilize is limited. Hence, 
the LRU cache map is implemented with a least 
recently used least recently used (LRU) Java hash 
map data structure to reduce the influence of data 
reusing. To prevent from occupying excessive 
memory in receiver, we present the analysis about the 
parameter for the data structure in the next section. 
Finally, the duplicated data blocks could be ignored 
and not required to store again. After storing these 
blocks which are not received in LRU cache map, 
receiver uses store API to notify Spark how many 
blocks have received and need to compute with the 
sequence of pairs of a fingerprint and a match 
Boolean from matcher. 

Suppose that sender sends a set of ℎ-byte hashes 
as fingerprints to receiver, and that receiver uses these 
hashes to check for match of each data block. 
Suppose that the k-th block size is  bytes and the 
size of a match is 1 bit (equal to 1/8  byte) as a 
constant symbol	α. In addition, we also suppose the 
match of the k-th block is	 . Finally, if there is  
blocks handled in a time interval , it will give a 
bandwidth-saving model, thus the bandwidth this 
scheme saves in terms of bytes is ∑ ℎ 	.          (1)

Note that 	 is 	 1, 	is		1, 	is	 . The 

symbol 	 	 means that if the block has been 
transmitted, this scheme will save bandwidth, or it 
will increase additional costs. Equation (1) shows that 
the reduction of network utilization by using this 
scheme is probably low because of the low repetitive 
rate, and the worse thing is probably a negative value. 
The repetition rate is a pivotal factor and it is 
expressed as ∑ .   (2)

Note that	 	is 	 1, 	is			0, 	is	 . The repetition rate 

affects reduction of network utilization a lot, and it is 
a positive correlation between both of them. So, in 
order to gain the highest benefit for our work how to 
chunk raw data into most of identical blocks becomes 
the most crucial issue. In addition, size of data 
fingerprint and size of a data block are also factors. 
Thus, further analysis is required. We based these two 

formulas to experiment with various parameters in 
Section 3. 
 

 
Figure 2: Data flow of Step 5. 

2.3 Block Fingerprint 

After chunking data blocks, it needs to further process 
these blocks. To identify the identical blocks, the 
fingerprints of their content are required. In Rsync, it 
uses two different types of checksum, weak 
checksum and strong checksum. The weak checksum 
used in Rsync is a modified blocks checker because 
of its fast process speed, and Rsync uses the rolling 
checksum based on Mark Alder’s adler-32 checksum 
(Deutsch, 1996) as implementation. However, the 
weak checksum has no ability of determining which 
blocks are the same owing to its high hash collision 
probability, and therefore weak checksum is not our 
option. The another strong checksum used in Rsync 
is MD5. MD5 is a cryptographic hash function 
producing a 128-bit hash value equal to 16 bytes. 
Unlike rolling checksum, MD5 is able to identify the 
blocks of the same content, it might be a choice. 

We can observe the factor that fingerprint 
influence is parameter 	ℎ . This makes sense that 
once	ℎ is smaller, the benefit for this scheme is better. 
In other words, it can use less information to represent 
the data blocks. Hence, 128-bit hash value is not so 
ideal for our work. It needs to find a smaller size of 
hash function to substitute it with a premise, and the 
hash function can determine the same blocks as well. 

The next property considered in Block Fingerprint 
Generator is fast process speed. Although the concept 
of this scheme is to utilize the compute resource of 
remote node and achieve a benefit for bandwidth 
saving, it could not lead to another bottleneck. So, the 
throughput of the hash function used in Fingerprint 
Generator must be as fast as possible. Obviously, 
MD5 has been ruled out in our implementation on 
account of its slow speed. It means it requires a more 
suitable hash function. 
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In summary, the implementation of Fingerprint 
Generator must have three properties, ability of 
identification, smaller size and fast process speed. 
The solution which we choose is xxHash (Collet, 
2016). xxHash is an extremely fast non-cryptographic 
hash algorithm, working at speeds close to RAM 
limits. It is widely used by many software like 
ArangoDB, LZ4, TeamViewer, etc. Moreover, it 
successfully completes the SMHasher (Appleby, 
2012) test suite which evaluates collision, dispersion 
and randomness qualities of hash functions.  

Although xxHash is powerful and successfully 
completes the SMHasher test suite, its 32-bit version 
still has collision. Here we provide a simple test to 
verify 32-bit xxHash collision rate with a real-world 
data. The data is from a GPS trajectory dataset (Yuan, 
2011) that contains one-week trajectories of 10357 
taxis. The sum of points in this dataset is about 15 
million and the total distance of the trajectories 
reaches 9 million kilometers. We use some data 
reprocessing to filter the raw data and gather them 
into a handled dataset. The file size of the handled 
dataset is about 410 MB. Figure 3 illustrates the 
repetition rates of the handled dataset with two hash 
functions SHA-1 and xxHash. 

We can see from Figure 3 that the repetition rate 
of the first row is undoubted by using 160-bit SHA-1 
function. We find that the repetition rate of xxHash32 
is higher than SHA-1 about 0.1% in field Hash Map 
which does not have any restriction. This 0.1% 
difference means that the 32-bit xxHash occurs 
collision in this simple test. In contrast, xxHash64 has 
the same repetition rate with SHA-1. The collision 
rate of xxHash64 is lower than xxHash32, but 
xxHash64 also has higher cost because its longer hash 
value size for our scheme. Even the xxHash32 has the 
risk of collision, we still prone for it. There are two 
reasons that mitigate the influence of collision. The 
first one is about its probability; hence, we consider 
that 0.1% deviation could not affect the result a lot. 
On the other hand, this error can be handled in 
computing phase by some operations. Another one is 
the implementation of hash map is LRU hash map, so 
the limitation not only prevents to occupy excessive 
memory but also reduces the occurrence of collision 
with an extra cost of having the repetition rate a little 
lower. Because after discarding the least recently 
used data blocks, the occurrences of collision have 
high possibility to eliminate. In summary, we said the 
defect of xxHash32 used in this scheme is ignorable. 

The memory size of LRU Cache Map is based on 
two factors, one is the size of hash value, and another 
one is its parameter. In Table 1, it shows that the 
standard hash map can store all fingerprints and data 

block, but it leads to out of memory. That is why we 
pick LRU hash map. The average size of records in 
the dataset is about 25 bytes. It shows xxHash32 has 
the smallest memory size for the LRU hash map. 

 

 
Figure 3: Repetition rate and LRU Cache Map analysis. 

Table 1: Memory size of each data structure.  

 Hash 
Map 

LRU- 
10^3 

LRU- 
10^4 

LRU-
10^5 

LRU-
10^6 

SHA-1 OOM 50KB 500KB 5MB 50MB 
xxHash64 OOM 35KB 350KB 3.5MB 35MB 
xxHash32 OOM 30KB 300KB 3MB 30MB 

2.4 Data Chunk Preprocess 

In file synchronization systems, most of the time, the 
content difference between local node and remote 
node is slightly small. So, the methods of file 
synchronization are focus on how to find out the 
different parts between two files.  Note that the data 
generated by sensors in a time interval comes in 
record by record. For instance, consider the GPS 
dataset. The average size of the record in the GPS 
dataset is about 25 bytes. On the contrary, the 
parameter s in Rsync is at least 300 bytes, let alone 
the average block size in LBFS is 8KB. Therefore, a 
fine-grained chunking method is essential for our 
work.  

The data block in our scheme is like a record that 
sensor generates in a time interval. Spatial 
dependence leads to a neighbour cluster of sensors to 
detect similar values; time dependence leads to each 
record from the same sensor to measure smooth data. 
Therefore, we split raw data and obtain duplicated 
records as possible as it can be. 
In sensors network, a cluster head collects the real-
time data from many sensors. There is so much noise 
that causes low probability to distinguish the 
duplicated part. To identify the difference, we require 

LRU-
10^3

LRU-
10^4

LRU-
10^5

LRU-
10^6

Hash
Map

SHA-1 28,12% 28,57% 28,88% 28,88% 29,10%
xxHash64 28,32% 28,77% 28,88% 28,88% 29,10%
xxHash32 28,32% 28,78% 28,89% 28,89% 29,20%
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some measure to filter out noise. Take the GPS 
dataset as an example. Figure 4 shows the mapping 
from original trajectory dataset to the handled dataset. 
We observe that the original dataset has four fields 
which are separated by commas. These fields are taxi 
id, data time, longitude, and latitude. For the field of 
data time we call it the dynamic field, because it 
always changes so that it causes our scheme gain 
benefit with difficulty. After eliminating the dynamic 
field, the handled dataset exhibits several duplicated 
records set. 

 

 
Figure 4: Filter out the dynamic field. 

According to this case, the average size of records 
is obviously smaller than original. According to the 
parameter  in Equation (1), this causes some loss of 
bandwidth savings. So, how to keep original 
information of raw data with data preprocess is 
considered as a challenging problem. The balance 
between data integrity and data repetition rate 
depends on how users identify the dynamic fields.  

Dynamic fields are often commonly found for 
data from sensors. The occurrences of dynamic fields 
are because the sensors are too sensitive or a lot of 
other factors. To face these situations, some methods 
from data mining can be used to preprocess data. One 
of methods is data generalization, for instance, there 
are three sensors in a room, and these sensors are able 
to sense someone entering this room with a distance 
by infrared ray. Suppose an application only cares 
when the person enters and leaves, the distance data 
is applied by concept hierarchy to map a value which 
shows if the person is in the room or not. It replaces 
the relatively dynamic distance value with a Boolean. 
Hence, the handled data from infrared ray sensors has 
higher probability to have duplicated part. Other 
methods also have similar idea that makes data 
general. Fuzzy sets (Zadeh, 1965) and fuzzy logic can 
also be used to process raw data. If we use fuzzy logic 
to classify continuous value, the data will be more 
general and generate duplicated part. Our another 
concern is complexity of the method. Because the 
gateway has limit processing resource, the 

complexity of the method must be low. In summary, 
we present a data deduplication scheme which 
eliminates the duplicated data that does not need to be 
retransmitted to improve the effectivity of data 
utilization in low bandwidth network environment.  

3 IMPLEMENTATION 

In this paper, we take Spark as the platform and 
introduce the implementation of the data 
deduplication scheme on the sender and the receiver 
sides. We also conduct several experiments with 
various parameters to show the significance of our 
scheme. 

3.1 Experiment Environment and 
Setting 

We use a peer-servicing cloud computing platform 
that contains eight homogeneous virtual machines. 
The software and hardware specifications of the 
receiver are detailed in Tables 2 and 3 respectively.  

Table 2: Receiver environment.  

Item Content 
OS Ubuntu 15.10 Desktop 64bit 

Spark 2.0.0 
Java 1.7.0_101 
Scala 2.11.8 

Maven 3.3.9 

Table 3: Hardware specification of receiver.  

Item Content 

CPU Intel(R) Xeon(R) E5620 
@2.40GHz x 2 

RAM 8 GB 
Hard Drive 80GB 

Network Bandwidth 1Gbps 
Maven 3.3.9 

Besides, to simulate the gateway used in the real 
world, we use raspberry pi 2 as the sender. The 
hardware and software specification for the raspberry 
pi is detailed in Tables 4 and 5 respectively. 

Table 4: Sender environment.  

Item Content 
OS Raspbian-32bit
Java 1.8.0_65 
Scala 2.9.2 

Linux Kernel 4.1.19 
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Table 5: Hardware specification of sender.  

Item Content 

CPU 
Broadcom BCM2836 

ARMv7 Quad Core Processor 
@900 MHz

RAM 1 GB 
Hard Drive(SD card) 32GB
Network Bandwidth 1Gbps

3.2 Implementations 

Both of the sender and receiver use Scala (Odersky, 
2007) as the programing language. First we introduce 
the implementation of the sender. Sender accepts a 
TCP connection as Request Listener. Then it begins 
to read experimental data from SD card in raspberry 
pi, and pushes these data into Matches Decision 
Maker and Data Block Buffer. The Matches Decision 
Maker computes each fingerprint for each data block 
as Block Fingerprint Generator with xxHash32. 
These fingerprints are sent to receiver and then sender 
waits for the matches. The Data Block Buffer is 
implemented by a Java API, ArrayBlockingQueue 
class, which is thread safe and provides synchronous 
data access. Data Block Transmitter receives the 
responses of matches and decides which block needs 
to be transmitted to receiver.  

On the receiver side, the implementation of 
receiver is based on the Spark platform. Nevertheless, 
our scheme can work well on other parallel 
computing platforms too. The original Spark only 
receives data from a reliable data storage such as 
storage, database, and HDFS. In order to receive data 
as stream, Spark Streaming lets user choose the 
interface of data source. Spark Streaming provides 
these interfaces like fileStream, socketStream, 
kafkaStream (Kreps, 2011), twitterStream, etc. Most 
importantly, Spark Streaming also provides an API to 
customize the data receiving interface. An API call 
Receiver is the place that allows us to implement our 
approach into Spark platform. Its native Receiver API 
implements simple operations. These operations 
include opening a socket, receiving each line from the 
socket, putting them into Spark to compute with Store 
API. Therefore, we augment the Spark with the data 
deduplication scheme to accept streaming data. Table 
7 presents the parameters of the first experiment. 

Before receiving data blocks, the scheme needs to 
exchange metadata between sender and receiver. 
Then, the data blocks that are required to receive must 
be determined. A TCP connection is used as a trigger 
to notify sender to start the whole process. The 
customized receiver gets fingerprints from the sender. 
Fingerprint Matcher uses these fingerprints to query 
LRU Cache Map whether the data block is received 

or not. The LRU Cache Map is implemented by LRU 
hash map described in Section 2.3. Another TCP 
connection returns the result of matches to sender. 
After metadata exchanging, the native line reading 
process is revised to Data Block Reconstructor. With 
metadata, Data Block Reconstructor rebuilds data 
from two sources: sender and LRU hash map. If the 
block was received before, it retrieves the data block 
from LRU hash map with the fingerprint of the data 
block; otherwise, it requests the sender a new data 
block by the third TCP connection and also puts the 
new data block into LRU hash map. Finally, Data 
Block Reconstructor reorganizes raw data as 
sequence and uses Store API to feed these data blocks 
to Spark Streaming to compute in parallel and batch.  

4 EXPERIMENTAL RESULTS 

The application of Word Count was tested to evaluate 
the performance of the scheme on Spark Streaming. 
It performs a sliding window count over 5 seconds. 
Table 6 presents the experimental configurations in 
Spark Streaming. 

4.1 Empirical Result 

In order to evaluate our proposed scheme, several 
evaluation scenarios are defined and conducted in this 
section. First, we explain the evaluation scenarios and 
assumptions. Equations (1) and (2) indicate the three 
parameters that have impact on the performance of 
our work. These parameters are the data block length, 
the length of fingerprint, and the repetition rate. 
Moreover, another environment parameter that is also 
an important factor for our scheme is bandwidth. So, 
the following experiments will be conducted to adjust 
one single parameter and fix the other three 
parameters. Consider a streaming application that 
computes data continuously. It generates a result in a 
specified time interval (5 seconds). We sample the 
result with 120 time intervals (600 seconds). We use 
a probability value to simulate the repetition rate of 
test data. 

Table 6: Configuration in Spark Streaming.  

The memory size of the driver 4GB 
The memory size of each executor 1GB 

The number of executors 8 

4.1.1 Length of Data Block 

The first experiment we study is the impact of the 
length of data block, namely  in Equation (1), on 
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the system throughput. The length of data block in 
this experiment is an average value in terms of bytes. 
Other parameters are shown in Table 7. The 
experimental results are given in Figure 5. 

Table 7: Parameters of the first experiment.  

Bandwidth 1Mbps 
Repetition Rate 25% 

Length of Fingerprint 32 bits 
Limitation of LRU Cache Map 1,000,000 

We see from Figure 5 that the throughput for the 
original scheme in Spark is almost the same for all 
lengths of data block. However, with our 
deduplication scheme, the throughput increases as the 
length of data block becomes bigger. These results 
conform to Equation (1). It means that if a fingerprint 
can present data blocks with a bigger size, it saves 
more bandwidth when a data block is repeated. The 
throughput improvement reaches the top when the 
length of data block is 30. When a data block with 
more than 30 bytes is used, the system throughput 
does not get higher.  

4.1.2 Repetition Rate 

The most crucial factor in our scheme is the repetition 
rate. In Section 2.2, the repetition rate is expressed in 
Equation (2). In this experiment, we focus on how the 
throughput goes with the changing of repetition rate. 
Parameters for this experiment are shown in Table 8. 
The experimental results are given in Figure 6. 

We see from Figure 6 that the throughput for the 
original scheme in Spark is almost the same for all 
lengths of data block. With our deduplication scheme, 
the throughput increases as the repetition rate 
becomes bigger. Furthermore, we can see that the 
throughput only improves about 10% when repetition 
rate is 5%. Nevertheless, the improvement 
approaches dramatically to 60% when the repetition 
rate is 40%. We conclude that the proposed scheme 
can transmit more data in a limited bandwidth. 

Table 8: Parameters of the second experiment.  

Bandwidth 1Mbps 
Avg. Length of Data Block 25 bytes 

Length of Fingerprint 32 bits 
Limitation of LRU Cache Map 1,000,000 

4.1.3 Length of Fingerprint 

The factor studied in the third experiment is the length 
of fingerprint. In our work, a 32-bit version of xxHash 
is chosen as the implementation. In this experiment, 

we compare the performance of 32-bit version with 
the version of 64-bit xxHash. Parameters of this 
experiment are shown in Table 9. The experimental 
results are given in Figure 7. 

Figure 7 shows that, for both 64-bit version and 
32-bit version, the throughput improves when the 
repetition rate increases. However, it is noted that 
when the length of fingerprint becomes longer, the 
cost of metadata will be increased. Hence, the 
throughput for 64-bit version gets less improvement 
(compared with the 32-bit version) with longer length 
of fingerprint. We observe from the results that the 
performance of 64-bit version has only about half 
improvement over that of 32-bit version. It conforms 
that parameter ℎ influences the saving of bandwidth 
in Equation (1). In other words, if the speed of hash 
functions is about the same, a shorter hash value will 
be a better choice for our scheme. 

Table 9: Parameters of the third experiment. 

Bandwidth 1Mbps 
Repetition Rate 25% 

Avg. Length of Data Block 25 bytes 
Limitation of LRU Cache Map 1,000,000 

4.1.4 Bandwidth 

Bandwidth usage can be reduced by our proposed 
scheme. In this experiment, we investigate how the 
availability of network bandwidth impacts on the 
system throughput. Parameters of this experiment are 
shown in Table 10. The experimental results are given 
in Figure 8. 

When the bandwidth gets higher, both the original 
scheme and the proposed scheme have bigger 
throughput. We also see that the throughput gap 
between these two schemes grows exponentially. The 
improvement ratio runs around 25% to 35%. It means 
that our scheme works better than the original scheme 
by at least one quarter of the system throughput.  

Table 10: Parameters of the fourth experiment.  

Repetition Rate 25% 
Avg. Length of Data Block 25 bytes 

Length of Fingerprint 32 bits 
Limitation of LRU Cache Map 1,000,000 

4.1.5 Physical World Taxi GPS Trajectory 
Dataset 

In the last experiment we use the real-world taxi GPS 
trajectory dataset to evaluate the performance of our 
scheme. Table 11 presents the parameters setting in 
this experiment.  
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Table 11: Taxi GPS trajectory dataset.  

Bandwidth 1Mbps 
Avg. Length of Data Block 25 bytes 

Length of Fingerprint 32 bits 
Limitation of LRU Cache Map 1,000,000 

 
Figure 9 illustrates the performance of our data 

deduplication scheme and that of the original scheme 
in Spark. Since the data in the dataset has different 
repetition rates over various time intervals, we 
present the repetition rate as time goes by in the low 
part of the figure. The axis for the repetition rate is 
shown at the right hand side of the y axis, while the 
throughput of the original scheme and our proposed 
scheme are indicated by diamond dots and circle dots 
respectively. 

We can observe that the repetition rates of the 
real-world GPS trajectory data are not evenly 
distributed. Obviously, under different repetition 
rates, the improvement of throughput varies. Overall 
speaking, the maximum of improvement is about 57 
%, while the minimum of improvement is only about 
2.6%. The least improvement happens when the 
repetition rate is very low (about 9 %). Nevertheless, 
our proposed scheme performs better in all cases of 
the real dataset.  

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we propose a fast deduplication data 
transmission scheme for parallel real-time computing 
platform like Spark Streaming. The proposed scheme 
does not need for the specialized data compression 
technique. Therefore, CPU resource will not be 
wasted to eliminate redundant chunk by compression 
and decompression.  

According to these experiments, we draw a 
conclusion that our scheme works most effectively in 
the following situations:  
 The average length of data block is long enough. 
 The length of fingerprint is shorter. 
 The repetition rate is higher. 
 The bandwidth is required to be high. 

 
In the last experiment, we use real-world taxi GPS 
trajectory dataset to prove that our method also works 
well on real-world data.  

In the future work, we wish to further optimize 
our scheme. One of the possible directions is parallel 
transmission. In fact, Spark can execute several 
receivers to receive raw data. As we know, distributed 

messaging system like Apache Kafka exploits 
parallel transmission to send data in parallel to 
improve performance. It will be an interesting issue 
to follow. Additionally, the data preprocess can be 
improved further. 

 

 

Figure 5: Length of data block versus throughput. 

 

Figure 6: Throughput versus repetition rate. 

 
Figure 7: Fingerprint versus throughput (32-bit and 64-bit 
versions). 

 
Figure 8: Bandwidth experiment. 
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Figure 9: Throughput for taxi GPS trajectory dataset. 
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