
Towards Context-Aware and Privacy-Sensitive Systems

Boris Shishkov1,3, Marijn Janssen2 and Yi Yin2
1Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2TBM - Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands
3IICREST, 53 Iv. Susanin Str., 1618 Sofia, Bulgaria

b.b.shishkov@iicrest.org, {M.F.W.H.A.Janssen, Y.Yin}@tudelft.nl

Keywords: Enterprise Modeling, Software Specification, Context-Awareness, Privacy, Land Border Security.

Abstract: Current global trends push enterprises to be increasingly efficient and flexible, and at the same time compliant
with legislation regarding privacy, security, and transparency. The latest IoT (Internet-of-Things)
developments offer opportunities for enterprises but at the same time those developments lead to an increased
complexity with regard to the underlying software, this in turn leading to new risks. Hence, more advanced
modeling methods and techniques may be necessary, especially in the area of enterprise information systems
(often featured currently by enterprise-aligned IoT-enabled software systems), such that both the enterprise
needs are captured (and understood) and software features are specified accordingly. We need a common
modeling ground for this, allowing us to properly align enterprise modeling and software specification. Such
a common ground can be co-created by enterprise engineers and software engineers, featuring: (a) technology-
independent enterprise models rooted in social theories; (b) technology-specific software models rooted in
computing paradigms. An approach is needed on top of that because such an integrated enterprise-software
modeling requires to be greased by modeling guidelines and notations, such that adequate modeling
generations and transformations are possible. This means that taking as input unstructured business
information, we should be able to usefully apply a modeling and design process, such that we come through
enterprise models and reach as far as the specification and implementation of software. We argue that an
existing approach has those capabilities, namely the approach SDBC (Software Derived from Business
Components). Hence, we adopt SDBC in the current research. Further, we have opted for an explicit
consideration of context-awareness and privacy, claiming their relevance with regard to some current IoT-
related demands (mentioned above). Nevertheless, it has not yet been extensively studied how SDBC can be
used for modeling software systems with requirements on those properties. For this reason, we aim at
enriching the SDBC-rooted enterprise-modeling-driven software specification, by weaving in context-
awareness and privacy enforcement. We partially demonstrate our proposed way of modeling, by means of a
case example featuring land border security.

1 INTRODUCTION

Current global trends push enterprises to be
increasingly efficient and flexible, and at the same
time compliant with legislation regarding privacy,
security, and transparency. The latest IoT (Internet-
of-Things) developments offer opportunities for
enterprises but at the same time those developments
lead to an increased complexity with regard to the
underlying software, this in turn leading to new risks
(IoTDI, 2017). Hence, more advanced modeling
methods and techniques may be necessary, especially
in the area of EIS - Enterprise Information Systems
(often featured currently by enterprise-aligned IoT-
enabled software systems), such that both the

enterprise needs are captured (and understood) and
software features are specified accordingly; it is
important to bring together enterprise modeling and
software specification since an enterprise engineer
alone is insufficiently capable of grasping the
technical complexity of an EIS (and its reach outside
through software services), while a software engineer
would have only superficial enterprise-specific
domain knowledge (Shishkov, 2005). We need a
common modeling ground for this, allowing us to
properly align enterprise modeling and software
specification. Such a common ground can be co-
created by enterprise engineers and software
engineers, featuring: (a) technology-independent
enterprise models rooted in social theories; (b)

46

technology-specific software models rooted in
computing paradigms. An approach is needed on top
of that because such an integrated enterprise-software
modeling requires to be greased by modeling
guidelines and notations, such that adequate
modeling generations and transformations are
possible. This means that taking as input unstructured
business information, we should be able to usefully
apply a modeling and design process, such that we
come through enterprise models and reach as far as
the specification and implementation of software. We
argue that an existing approach has those capabilities,
namely the approach SDBC - Software Derived from
Business Components (Shishkov, 2017). Hence, we
adopt SDBC in the current research. SDBC is
consistent with the Model-Driven Architecture –
MDA (MDA, 2017) that features a life cycle starting
with computation-independent modeling and ending
up with code. Further, we have opted for an explicit
consideration of context-awareness (Shishkov and
Van Sinderen, 2008) and privacy (Hustinx, 2010),
claiming their relevance with regard to some current
IoT-related demands (mentioned at the beginning of
this section). Nevertheless, it has not yet been
extensively studied how SDBC can be used for
modeling software systems with requirements on
those properties. For this reason, we aim at enriching
the SDBC-rooted enterprise-modeling-driven
software specification, by weaving in context-
awareness and privacy enforcement. We partially
demonstrate our proposed way of modeling, by
means of a case example featuring land border
security (Shishkov and Mitrakos, 2016).

In this paper, for the sake of brevity, we are
limiting our focus to the CIM generation
(Computation-Independent Models (CIM) point to
the highest level of abstraction in MDA), noting that:
• SDBC is capable of adequately reflecting a CIM

input into lower-level software specifications;
• It is at this highest level of abstraction where

context-awareness and privacy are to be weaved
in, bringing together both an enterprise
perspective and a software perspective.

The remaining of the current paper is organized as
follows: In Section 2, we consider the SDBC-rooted
enterprise-modeling-driven specification of software,
by: (a) motivating the choice of SDBC over other
approaches, inspired by relevant features and
strengths of the SDBC approach; (b) coming through
several important SDBC modeling constructs,
limiting ourselves to those ones that are actually used
in the case example; (c) addressing the SDBC design
method. In Section 3, we address context-awareness
and privacy, and also the challenge of weaving them

in the software specification, and we address related
work as well. In Section 4, we present a motivating
application scenario in the public security domain
(and particularly, in the area of land-border security),
in which different situations are specified, such as the
monitoring of the border, the detection of illegal
crossings, and so on. In Section 5, we put forward our
case-driven modeling where we further elaborate our
ideas concerning the specification of context-aware
and privacy-sensitive software systems. Finally, in
Section 6, we present the conclusions.

2 BACKGROUND

In this section: we will firstly motivate the choice of
SDBC; secondly, we will consider several important
modeling constructs; thirdly, we will focus on the
design process.

2.1 SDBC Modeling

SDBC is a software specification approach (consistent
with MDA) that covers the early phases of the
software development life cycle and is particularly
focused on the derivation of software specification
models on the basis of corresponding (re-usable)
enterprise models. SDBC is based on three key ideas:
(i) The software system under development is
considered in its enterprise context, which not only
means that the software specification models are to
stem from corresponding enterprise models but
means also that a deep understanding is needed on
real-life (enterprise-level) processes, corresponding
roles, behavior patterns, and so on. (ii) By bringing
together two disciplines, namely enterprise
engineering and software engineering, SDBC pushes
for applying social theories in addressing enterprise-
engineering-related tasks and for applying computing
paradigms in addressing software-engineering-
related tasks, and also for bringing the two together,
by means of sound methodological guidelines. (iii)
Acknowledging the essential value of re-use in
current software development, SDBC pushes for the
identification of re-usable (generic) enterprise
engineering building blocks whose models could be
reflected accordingly in corresponding software
specification models. We refer to (Shishkov, 2017)
for information on SDBC and we are reflecting the
SDBC outline in Figure 1.

As the figure suggests, there are two SDBC
modeling milestones, namely enterprise modeling
(first milestone) and software specification (second
milestone). The first milestone has as input a case

Towards Context-Aware and Privacy-Sensitive Systems

47

briefing (the initial (textual) information based on
which the software development is to start) and the so
called domain-imposed requirements (those are the
domain regulations to which the software system-to-
be should conform).

Figure 1: SDBC – outline.

Based on such an input, an analysis should follow,
aiming at structuring the information, identifying
missing information, and so on. This is to be followed
by the identification (supported by corresponding
social theories) of enterprise modeling entities and
their inter-relations. Then, the causality concerning
those inter-relations needs to be modeled, such that
we know what is required in order for something else
to happen (Shishkov et al., 2006). On that basis, the
dynamics (the entities’ behavior) is to be considered,
featured by transactions (to be addressed in the
following sub-section). This all leads to the creation
of enterprise models that are elaborated in terms of
composition, structure, and dynamics (all this
pointing also to corresponding data aspects) – they
could either feed further software specifications
and/or be ‘stored’ for further use by enterprise
engineers. Such enterprise models could possibly be
reflected in corresponding business coMponents (see
Sub-section 2.2). Next to that, re-visiting such models
could possibly inspire enterprise re-engineering
activities, as shown in Figure 1.

Furthermore, the second milestone uses as input
the enterprise model (see above) and the so called
user-defined requirements (those requirements reflect

the demands of the (future) users of the software
system-to-be towards its functioning).

That input feeds the derivation of a use case model
featuring the software system-to-be. Such a software
specification starting point is not only consistent with
the Rational Unified Process - RUP (Kruchten, 2003)
and the Unified Modeling Language – UML (UML,
2017) but is also considered to be broadly accepted
beyond RUP-UML (Cockburn, 2000; Dietz, 2003;
Shishkov, 2017). The use cases are then elaborated,
inspired by studies of Cockburn (2000) and Shishkov
(2005), such that software behavior models and
classification can be derived accordingly. The output
is a software specification model adequately
elaborated in terms of statics and dynamics. Applying
de-composition, such a model can be reflected in
corresponding software components, as shown in the
figure. Such an output could inspire software
engineers to propose in a future moment software re-
designs, possibly addressing new requirements.

As studied by Shishkov (2017), there are many
other modeling approaches, some widespread and
widely used. What justifies our considering
particularly SDBC is the following:
• SDBC is neither addressing only enterprise

modeling nor is it addressing only software
specification; instead, the approach brings both
together which is important if one needs to reflect
sophisticated (legislative) requirements in
complex software architectures.

• SDBC is not only limited to general guidelines and
proposed modeling notations but it is also a
method in the sense that different modeling
activities are carried out in a specific order – this
is to ensure that the software system being
modeled is well-aligned with the business needs.

• SDBC is empowering re-usability and traceability
which are considered essential with regard to
software development in general.

• SDBC is aligned with the UML notations
representing a de facto standard notation for
specifying software (UML, 2017) and is
consistent with MDA.

• In previous work, SDBC has been considered
particularly in the border security application
domain (Shishkov and Mitrakos, 2016).

For this reason, we have opted for adopting SDBC in
the current work.

2.2 Concepts and Modeling Constructs

There are numerous concepts and modeling
constructs underlying SDBC. For the sake of brevity

Seventh International Symposium on Business Modeling and Software Design

48

however, we will only address some of them in the
current sub-section, especially those ones that are
considered relevant to the challenge of weaving
context-awareness and privacy-enforcement in land-
border-security-related software specifications. For
more related information on SDBC, interested readers
are referred to (Shishkov, 2017).

Taking this into account, we firstly present the
system definition inspired by Bunge (1979) and
having fundamental importance with regard to both
SDBC milestones:

DEFINITION 1 Let T be a nonempty set. Then the
ordered triple σ = <C, E, S> is system over T if and
only if C (standing for Composition) and E (standing
for Environment) are mutually disjoint subsets of T
(i.e. C ∩ E = ∅), and S (standing for Structure) is a
nonempty set of active relations on the union of C and
E. The system is conceptual if T is a set of conceptual
items, and concrete (or material) if T ⊆ Θ is a set of
concrete entities, i.e. things.

Inspired by the system definition, we focus
particularly on enterprise systems since a
(border-security) software system would inevitably
operate in an enterprise surrounding (comprising
(organizational) entities, business processes,
regulations, and so on) and we consider an enterprise
system as being composed of human entities
collaborating among each other through actions,
driven by the goal of delivering products/services to
entities belonging to the environment of the system.
As for an EIS, it is also composed of human entities
(they are often backed by ICT (Information and
Communication Technology) applications as well as
by technical and technological facilities) but the EIS
goal is to support informationally a corresponding
enterprise system. This is functionally reflected in the
collection, storage, processing, and exchange (or
distribution) of data among users within or between
enterprises, or among people within wider society
(Shishkov, 2017).

Further, it is important to present the SDBC units
of modeling and in this regard, it is to be noted that
essentially, SDBC is focusing on the ENTITIES to be
considered and their INTER-RELATIONS. It is
desired to be able to model entities and relations
abstractly (no matter if enterprise entities or software
entities are concerned), and also to be able to
specialize such models accordingly, in an enterprise
direction or in a software direction. For this:
• We consider actors (combination of the actor-role

and the entity fulfilling the role) since often one
entity type can fulfil many role types and one role

type can be fulfilled by many entity types
(Shishkov, 2017).

• We consider a generic interaction pattern
(featuring the transaction concept – see
Definition 2) that is claimed to be helpful in
modeling any real-life interaction in an
enterprise/software context:

DEFINITION 2 A transaction is a finite
sequence of coordination acts between two actors,
concerning the same production fact. The actor who
starts the transaction is called the initiator. The
general objective of the initiator of a transaction is to
have something done by the other actor, who
therefore is called the executor (Dietz, 2006).

Hence, enterprise modeling and software
specification are both being approached by those two
essential concepts: ACTOR and TRANSACTION.
Thence, a business process is viewed as a
structure of (connected) transactions that are
executed in order to fulfil a starting transaction and a
business component is viewed as an enterprise
sub-system that comprises exactly one business
process. Further, a complete (by this we mean
elaborated in terms of structure, dynamics, and data)
model of a business component is called a
business coMponent. That is why Figure 1 is
featuring the identification of business coMponents as
an essential enterprise modeling task within SDBC.
Said otherwise, THE FIRST SDBC MILESTONE
is about the identification of business coMponents
featured in terms of actors and transactions.

Further, in bringing together the first milestone of
SDBC and the second one, we need to be aware of
possible granularity mismatches. The enterprise
modeling is featuring business processes and
corresponding business coMponents but this is not
necessarily the level of granularity concerning the
software components of the system-to-be. With this
in mind, AN ICT APPLICATION is considered as
matching the granularity level of a business
component – an ICT application is an
implemented software product realizing a particular
functionality for the benefit of entities that are part of
the composition of an enterprise system and/or a
(corresponding) EIS. Thus, the label ‘software
specification model’ as presented in Figure 1,
corresponds to a particular ICT application being
specified. Hence, software components are
viewed as implemented pieces of software, which
represent parts of an ICT application, and which
collaborate among each other driven by the goal of
realizing the functionality of the application
(functionally, a software component is a part

Towards Context-Aware and Privacy-Sensitive Systems

49

of an ICT application, which is self-contained,
customizable, and composable, possessing a clearly
defined function and interfaces to the other parts of
the application, and which can also be deployed
independently). Hence, a software coMponent
is a conceptual specification model of a software
component. Said otherwise, THE SECOND SDBC
MILESTONE is about the identification of software
coMponents and corresponding software
components.

In this paper, we will only address the business-
coMponent identification and its reflection in a use
case model featuring the specification of the ICT
application-to-be, weaving in context-awareness and
privacy-enforcement accordingly.

2.3 Design Method

SDBC assumes four modeling perspectives, namely:
Structural perspective that reflects entities and their
relationships; Dynamic perspective that reflects the
overall business process and corresponding to this –
the states of each entity, evolving accordingly; Data
perspective that reflects the information flows across
entities and within the business process; Language-
action perspective (Dietz, 2006) that reflects real-life
human communication and the expression of
promises, commitments, etc. as also relevant to the
challenge of soundly building an exhaustive
enterprise model. In this, SDBC is grounded in line
with: (a) Enterprise engineering and in particular,
enterprise ontology and organizational semiotics
(Dietz, 2006; Liu, 2000); (b) Software engineering
and in particular, model-driven engineering and
component-based development (Shishkov et al.,
2007; Shishkov, 2017). Next to that, software
specification models derived by applying SDBC, can
be further updated to accommodate service-
orientation (Shishkov et al., 2006).

Further, SDBC comes through several key
modeling outputs (Shishkov, 2017):

1. Building a business entity model is the first
major challenge requiring the fulfilment of many
inter-related analysis/modeling tasks including:
information structuring, gathering of additional
information, reflection of the domain-imposed
requirements, decision about the system boundary
(determining the modeling focus), identification
of actor-roles, capturing of their inter-relations,
and so on, in concert with Definition 1 and
Definition 2. Hence, the resulting model shows
the system boundary, the entities (actor-roles) that
are inside the system and the relevant entities that
remain outside the system boundary, the relations

among those entities (featuring potential
transactions), the related data aspects, and the
initiator-executor positioning as according to
Definition 2 and Dietz (2006).

2. Deriving a corresponding causality model
(Shishkov et al., 2006) abstracting from entities
and only featuring the dependencies among
corresponding transactions, such that it becomes
clear how the realization of one transaction would
possibly depend on the completion of another
one(s).

3. Making an elaboration in terms of
transactions and underlying
communicative acts (Dietz, 2006; Shishkov,
2017), such that it becomes clear how the
causalities (see above) are dynamically realized.

4. This all represents an adequate basis for
deriving use cases, as studied by Shishkov
and Dietz (2003).

For the sake of brevity, we limit ourselves to this
partial outline of the SDBC design method and its
underlying modeling / specification process – we only
cover issues that are relevant to the current case-
driven research and for the rest, interested readers are
referred to (Shishkov, 2017).

In the following section, we will address context-
awareness and privacy, and study the potentials for
their incorporation in the SDBC driven specification
of software.

3 CONTEXT-AWARENESS AND
PRIVACY

In this section, we will firstly address context
awareness and secondly, we will address privacy.

3.1 Context-awareness

Referring to Definition 1, context-awareness is
about the system environment. The system user (using
what the system is delivering) may comprise one or
more entities belonging to the environment – each of
them (or they all) could consume different services
(or they could consume together one service).
Further, not all entities belonging to the environment
should necessarily be parts of the user since it might
be that the system needs to collaborate with other
entities from the environment (different from the
user), such that the system is capable of delivering the
requested products and/or services to the user.

Hence, a user perspective is needed in order to
capture such a delivery of a product and/or a service

Seventh International Symposium on Business Modeling and Software Design

50

(we call this service, for short). Further, it is often that
the service delivered to the user is to be adapted to the
situation of the user. For example, a person wearing
a body-area network (AWARENESS, 2008) through
which body vital signs are captured, may appear to be
in ‘normal state’ and then, for example, vital signs are
captured and recorded as archival information, or the
person may appear to be in ‘emergency state’ and
then help would need to be urgently arranged. Thus,
one kind of service would be needed at normal state
and another kind of service would be needed at
emergency state. For this reason, the system (or a
corresponding system-internal EIS or ICT
application) should be able to: (i) identify the
situation of the user; (ii) deliver a service to the user,
which is suited for the particular situation. This is
illustrated in Figure 2:

Figure 2: Schematic representation of a context-aware
application (Shishkov and Van Sinderen, 2008).

As it is seen from the figure, a service is delivered
to the user and the user is considered within his or her
context, such that the service is adapted on the
basis of the context state (or situation) the user finds
himself/herself in. That state is to be somehow sensed
and often technical devices, such as sensors, are used
for this purpose. In the current paper, we do not go
into discussing sensor technology in detail and for
this reason, by sensor we broadly mean the
technical or other facility that helps establishing the
user situation. As mentioned before, it might be an
EIS delivering the service to the user or it might be
that just one ICT application (for example) as part of
the EIS is delivering the service – no matter whether
the former or the latter, we call it context-aware
application in the current paper. Hence, a
context-aware application adapts its behavior, in
delivering service(s) to the user, based on the actual
context state of the user, which context state is
captured by sensors and corresponding information is
sent to the context-aware application accordingly.

Nevertheless, the raw sensor data is of limited
value unless it is reflected in higher-level context
information that can be reasoned about.

It is also to be known how the application would
‘move’ from one behavior to another, when the user
situation (context state) changes.

Summarizing the above, a context-aware system
can be seen as concerning a sequence of actions that
achieve: S (sensing and capturing), I (interpretation
and state derivation), w (switching), and P
(provisioning), as shown in Figure 3:

S Legend:
S: Sensing
I: Interpretation
w: Switching
P: Provisioning
 = action
 = dependency

I

w

P

Figure 3: Simplified view on a context-aware system
(Shishkov, 2017).

With regard to S: The system should be able to
sense context and capture this context as context
information. With regard to I: the system should be
able to interpret the captured context information and
derive higher-level context information that would be
used to identify context state changes (those changes
are to trigger in turn changes in the system behavior).
With regard to w: the system should be able to handle
the switching between its alternative behaviors. With
regard to P: the system should be able to provide
services covering different possible context states.

This is obviously a simplified model, since each
of the actions represents a potentially complex
process, and the dependencies between those
normally involve multiple instances of information
exchange and triggering.

Based on the above background, we propose the
following way of weaving context-awareness in the
SDBC-rooted enterprise-modeling-driven software
specification: (i) particular user context state types are
foreseen at design time and ‘stored’ in a reference
bank; (ii) corresponding system behavior types are
specified at design time; (iii) the current user context
state is captured (see above) and matched to the bank
of state types; (iv) if there is a match, then a
corresponding behavior type is instantiated
accordingly, otherwise, the system switches to ‘auto-
pilot’ in order to deliver a behavior in an exceptional
situation. This is illustrated in Figure 4, using the
notations of UML Activity Diagram (UML, 2017):

Towards Context-Aware and Privacy-Sensitive Systems

51

capture state

trigger ‘auto-pilot’ behavior

 use corresp. behavior type

instantiate behavior

yes

no state type foreseen
at design time?

Figure 4: Weaving context-awareness in the software
specification.

As it is seen from the figure, firstly the situation
of the user (the user context state) is to be captured
(as discussed already, this is usually done, facilitated
by sensors). Secondly, it is important to establish
whether or not the captured situation (state) is an
instance of one of the situation (state) types foreseen
at design time – if not, the system should switch to
‘auto-pilot’ behavior mode (by this we mean run-time
rules-based behavior adaptation to the environment).
If there is a match between the captured situation and
a corresponding situation type foreseen at design
time, then a corresponding behavior type (specified at
design time) should be instantiated accordingly.

This way of weaving in context-awareness has
been proposed inspired by the observation that: (i)
there are high-occurrence-probability context state
types suitable for consideration at design time; (ii)
there are low-occurrence-probability context state
types that are unpredictable and for this reason better
addressable at run time.

In studying RELATED WORK, we have
considered context-aware application practices. Due
to the complexity and importance of handling
context-awareness, many studies have tried to
investigate different ways of developing context-
aware applications. Many context modeling
techniques have been created to enumerate and
represent context information (Vieira et al., 2011).
Many methodologies for architectural design were
also proposed by researchers, such as: Context Toolkit
(Dey, 2001) which aggregates context information,
Context Modeling Language (Henricksen and
Indulska, 2006) and Model Driven Development
(MDD) and UML- based approaches (Ayed et al.,
2007; Simons and Wirtz, 2007) which mainly

describe the key steps and activities for modeling
context-aware applications, the Contextual Elements
Modeling and Management through Incremental
Knowledge Acquisition (CEManTIKA) that supports
the building of context-aware applications. Further,
Jan vom Brocke, Sarah Zelt and Theresa Schimiedel
have proposed a framework which consists of 4-
dimensional factors to be considered in the design of
context-aware applications, including 1) application
goals, 2) characteristics of the process, 3) internal
organizational specifications where context-aware
applications are implemented, 4) the broader or
external environment in which context-aware
applications are built (Vom Brocke et al., 2016).
Those factors can be used as guidelines when
designing a context-aware application. In general,
many current research projects are focusing on the
development of context-aware applications, touching
upon concept, networking aspects, middleware
aspects, user-interface-related concerns, services, and
so on. Still, this increasing attention has not been
enough to inspire a widely accepted agreement on the
development of context-aware applications. Hence, it
is still a question how to weave context-awareness in
the specification of software, and the current paper
offers some contribution in this direction.

3.2 Privacy

As mentioned already, with regard to the (software)
system-to-be, we are not only aiming at context-
awareness but we are also willing to weave in values,
such as privacy and transparency, for example.
Particularly in this paper, we are focusing on
privacy not only because it is one of the key
values, as according to Hustinx (2010) but also
because it is highly relevant with regard to the land-
border security application domain addressed in the
paper. Hence, in the remaining of the current sub-
section, we will firstly discuss privacy in general (still
assuming a border security focus), then we will
present our view on how to weave in privacy
enforcement in the specification of software, and
finally we will particularly focus on privacy
enforcement practices (related work) that are to be
taken into account with regard to our case-driven
modeling approach.

3.2.1 The Privacy Concept

Although the boundaries and specific contents of
privacy vary significantly in different countries, the
main definition of information privacy includes ‘the
right to be left alone’ and ‘control of

Seventh International Symposium on Business Modeling and Software Design

52

information about ourselves’ (Pearson,
2009). Data can have various needs of privacy,
whereas some information should always be opened
to create transparency, other information should not
be shared without proper authorization.

Although there is much information claimed to be
privacy-sensitive, we consider the following
information in border control as privacy sensitive
information by using Pearson’s privacy information
classification (Pearson, 2009):
- Personally identifiable information: information

that can be used to identify an individual:
= Data from records: name, date of birth, bio-

metrics, address, social security number, and
so on;

= Surveillance data: images, video, voice, and
so on;

= Secondary data: bank account number,
credit card number, phone number, social
media network ID, and so on;

- Demographical information: sex, age group, race,
health status, religion, education, and so on;

- Usage data:
= Networking-related data: mobile phone

history data, Internet access point data,
computer log files, and so on;

= Recorded online activities: messenger
records, contribution to social websites, and
so on;

= Travel data: ticketing / boarding pass data,
reservations, cancellations, and so on;

- Unique device identities: any information that
might be uniquely traceable to a device, e.g. IP
address, device fabric number, Radio Frequency
Identity (RFID) tags, and so on.

3.2.2 Weaving in Privacy Enforcement

Taking into account the privacy concept and the
privacy-sensitivity issue, we propose the following
way of weaving privacy enforcement in the SDBC-
rooted enterprise-modeling-driven software specifi-
cation: (i) when specified, a behavior instance is to be
matched against a bank of pre-defined behavior types,
such that it is clear what kind of behavior is that and
what corresponding (pre-defined) privacy-related
restrictions are to be weaved in; (ii) based on this, the
behavior instance is to be refined accordingly. This is
illustrated in Figure 5, using the notations of UML
Activity Diagram:

specify behavior

match behavior to a behavior type

refine behavior

Figure 5: Weaving privacy enforcement in the software
specification.

Hence, once specified, a behavior instance is to be
refined in terms of privacy-driven restrictions.

3.2.3 Privacy Enforcement Practices –
Privacy-by-Design and Related Work

Enforcement of privacy is often difficult. ICT enables
the creation of systems that ensure the privacy of data,
which is called privacy-by-design (Hustinx,
2010). Privacy-by-design has received attention
within organizations as a way to always ensure that
privacy is protected. Privacy-by-design suggests
integrating privacy requirements into the design
specifications of systems, business practices, and
physical infrastructures. In the ideal situation, data is
collected in such a way that privacy cannot be
violated. This requires that both governance aspects
(data updating processes and procedures, access
rights, decision-making responsibilities, and so on)
and technical aspects (encryption, access control,
anonymization, and so on) are covered.

Since privacy enforcement solutions differ in
different contexts, some general principles to guide
the privacy-by-design can be used or sometimes must
be compiled. For instance, the principles stated in
Article 5 of the EU General Data Protection
Regulation, need to be carefully considered,
including: lawfulness, fairness and
transparency, purpose limitation, data
minimization, accuracy, storage limita-
tion, integrity and confidentiality, and
accountability. However, some principles would
often be in conflict with the characteristics of
implemented information systems for border control.
For instance, the continuous collection of surveillance
image data is against the principle of purpose
limitation. Therefore, technical solutions should be a
trade-off between privacy and (border-control-
related) benefits (Könings et al., 2016).

Technical solutions regarding privacy
enforcement would in general refer to PET –
Privacy-Enforcement Technologies.

Towards Context-Aware and Privacy-Sensitive Systems

53

Those technologies assume secure communication
and data storage by encryption, access control and
auditing, anonymization of on-line activity, detection
of privacy violators, and so on (Seničar et al., 2003;
Zhu et al., 2015). Since PET can only partially
address privacy-related problems, they need to be
combined with information governance
features in order to create comprehensive
privacy-enforcement mechanisms.

Besides PETs, PITs (Privacy-Invasive
Technologies) and privacy threats are also
frequently examined in various domains (Burghardt
et al., 2008; Huberman et al., 1999; Johnston and
Wilson, 2012; Seigneur and Jensen, 2004; Weber,
2015).

Nevertheless, there is still limited insight on how
enterprises can reduce privacy violation risks for
open data in particular, and there is no uniform
approach for privacy protection (Janssen and Van den
Hoven, 2015).

4 APPLICATION SCENARIO

Border control is one of Europe’s biggest recent
challenges, in the light of severe sea border problems
in Greece and Italy in 2015-2016 (FRONTEX, 2017)
and land border problems in Bulgaria and Croatia, for
example. This leads not only to deadly incidents for
numerous migrants who realize illegal sea/land
border crossings in severe (weather) conditions but
also to allowing terrorists mixed with regular
migrants land on Europe’s territory. According to
many reports of the European Union - EU
(www.europa.eu), this uncontrolled migration to
Europe is causing societal tension and is stimulating
extreme political views. Further, even though illegal
migration to Europe is mainly fueled by smuggling
channels, it is partially ‘facilitated’ by technical /
organizational weaknesses at the EU external borders.
In this paper, we abstract from the former and focus
on the latter. Such a focus has been justified by
numerous (current) efforts within the EU, aiming at
improving security at its external borders – for
example, new border facilities are constructed along
those borders, police officers from some Western EU
countries are sent to the Eastern EU borders to
physically help, new organizational approaches and
technical solutions are discussed, and so on (Ref.:
www.europa.eu); all those efforts are directed
towards stopping the illegal migration to the EU and
it is widely agreed that any migrant should legally
approach an EU border point where (s)he would be
treated according to the laws and values of the EU.

In that sense, we consider an application scenario
which concerns the EU land border control (our
focus is particularly on the external EU borders) and
this is about monitoring and reaction to
violations. Fulfilling this assumes human
actions because security-related decisions are always
human-centric (LBS, 2012). Still, in what they are
doing, border police officers receive useful technical
support, assuming various channels: infrared images,
visible images, proximity sensors, and so on,
followed by some kind of intelligent data fusion
algorithms (Shishkov and Mitrakos, 2016). We
acknowledge this ‘duality’ – human entities
and technical entities, and acknowledge as
well the need to orchestrate this ‘whole’ in a sound
way, allowing for objectivity and capability with
regard to any situation that is possible to occur.
Hence, we are approaching typical situations in this
regard, and also the corresponding desirable reactions
to those situations. Hence context-awareness is
relevant with respect to land border security. Further,
realizing that, the above-mentioned technology
requires, among other things, IT-based services to
recognize people (i.e. biometrics), we acknowledge
the need for a special treatment of those issues as far
as privacy is concerned because it is justified to
distribute personal details of a terrorist but it is not
justified to distribute personal details of anybody. We
thus identify and approach some privacy-sensitive
situations accordingly. In realizing all this, we take as
example the situation at the Bulgarian-Turkish land
border (Shishkov and Mitrakos, 2016); nevertheless,
we abstract from many location-specific details in
order to reach findings that are generic and widely
applicable.

Monitoring the land border is a continuous
process where: (i) There is a (wired) border fence that
is supposed to obstacle illegal migrants to get in; still,
this facility can be overcome using a ladder or by just
destroying the wire. (ii) There are border police
officers who are patrolling (possibly using vehicles);
still, no matter how many border police officers are
sent to the border, it would be physically impossible
to guarantee police presence at any time anywhere
along the border, over hundreds of kilometres. (iii)
There are sensors and other (smart) devices, as
mentioned above; they are realizing surveillance; we
assume the possibility that a device would perform
local processing + artificial reasoning – based on this,
it may generate contentful messages to be transmitted
to corresponding human agents.

There are two main situation types at any point
along the border, namely: (a) Normal Situation (NS);
(b) Alarm Situation. We realize that both context-

Seventh International Symposium on Business Modeling and Software Design

54

awareness and privacy enforcement are ‘under
control’ in (a) because:
• Within NS, all is just progressing according to

pre-defined rules – hence, there is no need to adapt
the system behavior with regard to surrounding
context.

• Following pre-defined rules would also assume
adequate treatment of privacy-sensitive data (for
example: the border police officers are also
monitored but it is not allowed to distribute their
facial information).

What is more interesting thus is what is done in the
case of (b) where context-awareness and related
privacy enforcement are crucial.

Approaching (b) and taking into account the case
information, we define three situation types
concerning migrants possibly attempting to illegally
cross the land border outside an official border
crossing point: 1. Human-Triggered Alarm
Situation (HTAS): when a border police officer
faces an attempt of one or more persons to illegally
cross the border. Then the officer can do ONE of
three things, namely: 1.1. Try to physically stop the
migrants from crossing, following the corresponding
EU regulations; 1.2. Connect to colleagues and ask
help; 1.3. Activate particular devices for taking
pictures and video of the violators. It is important to
note that in this situation, the person in charge has full
decision-making capacity. 2. Device-
Triggered Alarm Situation (DTAS):
when a device is ‘alarmed’ by anything and there is
no border police officer on the spot. Then, there are
two possibilities: 2.1. The detecting device is
‘passive’ in a sense that the (video) information it is
transmitting, is received in real-time and
straightforwardly ‘used’ by a distant officer who
intervenes, generating a decision and corresponding
actions; 2.2. The detecting device is ‘active’ in a sense
that based on information coming from at least
several sensing units, the information is filtered and
automated reasoning is performed, based on which a
‘hypothesis’ on what is happening is generated by the
device and sent to corresponding human agents. 3.
Outage Situation (OS): when any unexpected
(power, performance, or other) outage occurs, not
necessarily assuming illegal border crossing at the
same time. This calls for urgent system recovery both
in human and technical respect.

5 MODELING THE BORDER
SECURITY SYSTEM

A logical starting point in our case-driven modeling
is the ‘translation’ of the case briefing (see Section 4)
into better structured information that would be
featuring the original business reality and
corresponding domain-imposed requirements. As it is
well-known, this often assumes (partial) enterprise re-
engineering such that the enterprise system being
approached is adequately supportable by ICT /
software applications (Dietz, 2006).

For the sake of brevity, we are not going in detail
on how we analyze the case briefing and how we
conduct such (partial) enterprise re-engineering.
Moreover, this is not directly related to the main
challenges addressed in the current paper, namely: the
enterprise-IT alignment, with incorporation of
context-awareness and privacy enforcement. Hence,
we move directly to the textual reflection of the case
briefing, holding in itself re-engineering-driven and
requirements-driven updates:

 Different situations may occur at the land
border. Law requires that each situation type is
addressed conforming to corresponding normative
acts. This points to an exhaustive list of situation
types that have to be pre-defined and stored in a
corresponding 'bank' - we consider them as
subclasses with regard to a Class 'Situation':
Subclass 'NS', Subclass 'HTAS', Subclass 'DTAS',
Subclass 'OS', and so on (see the previous section).
Hence, we should have pre-defined accordingly
legislation-driven behavior types - we consider
them as subclasses with regard to a Class
'Behavior': Subclass 'Behavior 1', Subclass
'Behavior 2', and so on. Said otherwise, we should
have behavior subclasses corresponding to
respective situation subclasses. This means that
any particular situation occurring at the land
border is to be positioned as an instance of one of
the situation subclasses, such that a system
behavior is prescribed accordingly, by
instantiating a corresponding behavior subclass. In
order to achieve this, it is necessary that:
FIRSTLY, the situation instance is captured;
SECONDLY, the captured situation instance is
positioned as relevant to a particular situation
subclass; THIRDLY, a corresponding behavior
subclass is identified and instantiated accordingly.
This represents CONTEXT-AWARENESS: the
system behavior depends on the situation at hand
(in this, we abstract from the 'auto-pilot' option -
see Figure 4). Further, it is necessary that privacy-
driven restrictions are identified, corresponding to

Towards Context-Aware and Privacy-Sensitive Systems

55

the behavior subclass, leading to a refinement of
the instantiated behavior. This represents
PRIVACY-ENFORCEMENT: the system
behavior is refined to accommodate relevant
privacy requirements.

Hence, this refined case briefing appropriately
reflecting the business needs, is our starting point.
SDBC has particular strengths on further structuring
such information: actor-roles are methodologically
identified as well as corresponding transactions, and
so on. Because of the limited scope of this paper, we
do not go in further detail here; still, for more
information on those issues, interested readers are
referred to (Shishkov, 2017).

The entities (featuring actor-roles) are:
• S (Sensor); S is capturing the occurring situations

(situation instances), for example: “all looks
normal during night time”, “two persons are
hanging over the border fence”, “one person is
running next to the patrolling vehicle”, and so on,
to give just several examples; in this, S is
supported by sensing devices, sensor networks,
cameras, data fusion engines, and so on.

• PE (Pattern Engine); PE is linked to two pattern
banks, namely: ‘sp’ and ‘pp’ – they hold the
subclass specifications (‘sp’ featuring situations
and ‘pp’ featuring privacy-driven restrictions).
Hence, PE is capable of providing such
information as reference.

• MM (Match-Maker); MM is matching an instance
to a subclass, for example: matching a situation
instance captured by S to a subclass from Bank
‘sp’.

• TE (Task Engine); TE is generating a desired
system behavior description (a task), by
instantiating accordingly a behavior subclass (the
bank that holds the subclass specifications
featuring behaviors is ‘bp’) corresponding to a
respective situation subclass.

• <comment> For the sake of enforcing privacy, it
is necessary to match each prescribed desired
system behavior to corresponding privacy-driven
restrictions stored in Bank ‘pp’; Thus, MM should
do a match, based on a prescribed behavior
instance (delivered by TE) and privacy patterns
(delivered by PE). </comment>

• PrE (Privacy Engine); PrE delivers a refined
behavior recommendation accordingly.

• C (Customer); C is hence fulfilled by the
corresponding border police officer(s) and/or
other team member(s) using such a task
specification (as RECOMMENDA-TION) in
order to establish their actions accordingly.

Thus, next to identifying entities (featuring
actor roles (Dietz, 2006; Shishkov, 2017)), we are to
also identify corresponding transactions (see
Definition 2): this we present as the Border Security
Business Entity Model, expressed using notations
inspired by DEMO (Dietz, 2006) – see Figure 6.

t6

t4

t1

t2

t5

t3

TE
t7

PE

S

MM

sp

C

PrE

pp

bp

Figure 6: Business entity model for the border security case.

On the figure, the identified entities are presented
in named boxes, while the small grey boxes, one at
the end of each connection indicate the executor
entity (Shishkov, 2017). The connections indicate the
need for interactions between entities in order to
achieve the business objective of recommendation
generation – in our case, those interactions reflect
transactions. Hence, with each connection, we
associate a single transaction (t): C- PrE (t1), PrE-
MM (t2), and so on. As for the delimitation, C is
positioned in the environment of the recommendation
generation system, and PrE, MM, TE, PE, and S
together form the system, where we have included as
well the three data banks mentioned above, namely:
‘bp’, ‘pp’, and ‘sp’.

privacy-
enforcem

ent
t

sp

pp

t6

t7

t5

t3 t4

t2

t1

context-
aw

areness

Figure 7: Modeling the causal relationships among
transactions.

Seventh International Symposium on Business Modeling and Software Design

56

Further, we have to be explicit about the causal
relationships among the transactions, and
considering the business entity model, we establish
that in order for PrE to deliver a refined task
specification as a recommendation to C, it needs input
from MM that in turn needs input from TE and PE.
Further, in order for TE to deliver a desired system
behavior description, it needs input from MM that in
turn needs input from S and PE. Those causal
relationships are presented in Figure 7, using the
notations of UML Activity Diagram (UML, 2007).

As it is seen from the figure: (a) capturing a
situation instance and considering corresponding
situation patterns (viewed as subclasses) go in parallel
firstly; (b) secondly goes a match between the two
that establishes the relevant subclass (featuring
situations) corresponding to a respective behavior
pattern; (c) the behavior specification and
consideration of relevant privacy-driven restrictions
go in parallel thirdly; (d) fourthly goes a match
between the two, that establishes the relevant privacy-
driven restrictions with regard to the considered
behavior; (e) finally, the refined behavior
specification is delivered to C in the form of
recommendation.

Hence, context-awareness and privacy are
incorporated through corresponding modeling
‘building blocks’ featuring transactions 6+7 and 3+4,
respectively, as suggested by Figure 7. Further, with
regard to the SDBC modeling process, we have
identified the entity model and the causality relations.
What goes next are transactions (see Figure 1) and
with regard to this, we use the SDBC interpretation of
the transaction concept – see Figure 8:

P-act input output

r(I) p(E)

d(E)

compromise
found?

s(E) a(I)

d(I)

compromise
found?

P-fact

Legend
 r: request I: Initiator
 p: promise E: executor
 s: state
 a: accept

cancel

Yes Yes

Figure 8: The SDBC interpretation of the transaction
concept (Shishkov, 2017).

SDBC interprets the transaction concept as
centered around a particular production fact (see
Definition 2). The reason is that the actual output of
any enterprise system represents a set of production
facts related to each other. They actually bring about
the useful value of the business operations to the

outside world and the issues connected with their
creation are to be properly modeled in terms of
structure, dynamics, and data.

However, considering also the corresponding
communicative aspects is important. Although they
are indirectly related to the production facts, they are
to be positioned around them. SDBC realizes this
through its interpretation of the transaction concept.
As seen from Figure 8, the transaction concept has
been adopted, with a particular stress on the
transaction’s output – the production fact. The order
phase (left side of the figure) is looked upon as input
for the production act, while the result phase (right
side of the figure) is considered to be the production
act’s output. The dashed line shows that a transaction
could be successful (which means that a production
fact has been successfully created) only if the initiator
(the one who is initiating the transaction) has
accepted the production act of the other party (called
executor). As for the (coordination) communicative
act types, grasped by an SDBC transaction, they are
also depicted in the figure. The initiator expresses a
request attitude towards a proposition (any
transaction should concern a proposition – for
example, a shoe to be repaired by a particular date and
at a particular price, and so on). Such a request might
trigger either promise or decline - the executor might
either promise to produce the requested product (or
service) or express a decline attitude towards the
proposition. This expressed decline attitude actually
triggers a discussion (negotiation), for example: ‘I
cannot repair the shoe today, is tomorrow fine?... and
so on’. The discussion might lead to a compromise
(this means that the executor is going to express a
promise attitude towards an updated version of the
proposition) or might lead to the transaction’s
cancellation (this means that no production fact will
be created). If the executor has expressed a promise
attitude regarding a proposition, then (s)he must bring
about the realization of the production act. Then the
result phase follows, which starts with a statement
expression by the executor about the requested
proposition that in his/her opinion has been
successfully realized. The initiator could either
accept this (expressing an accept attitude) or reject it
(expressing a decline attitude). Expressing a decline
attitude leads to a discussion which might lead to a
compromise (this means that finally the initiator is
going to express an accept towards the realized
production act, resulting from negotiations that have
taken place and compromise reached) or might lead
to the transaction’s cancellation (this means that no
production fact will be created). Once the realized
production act is accepted the corresponding

Towards Context-Aware and Privacy-Sensitive Systems

57

production fact is considered to have appeared in the
(business) reality.

Hence, one could ‘zoom in’ with regard to any of
the transactions depicted in Figure 7 and elaborate
each transaction, using the transaction pattern
presented in Figure 8. This actually means modeling
transactions at two different abstraction
levels. At the highest abstraction level, the
transaction is represented as a single action which
models the production fact that is enabled. At a lower
abstraction level, the transaction’s communicative
aspects are modeled conforming to the transaction
pattern. The transaction’s request (r), promise (p),
state (s), accept (a), decline, and the production act
are modeled as separate actions. This is illustrated in
Figure 9 (abstracting from declines and
cancellations), featuring only part of the model
depicted in Figure 7, namely, focusing only on
transactions 5, 6, and 7:

t7

…

t6

r6

s6

t5 …

p6

a6

r7

p7

s7

a7

r5

p5

s5

a5

Figure 9: Detailed behavior aspect model featuring
transactions.

As it is seen from the figure, in order for t5 to be
realized, both the realization of t6 and the realization
of t7 are to be fulfilled. Hence, upon requesting t5
and before the promise, it is necessary that t6 and t7
are initiated. If realized successfully, both
transactions’ output is necessary for the delivery of
the production act of t5 (the production acts are
depicted as black boxes in the figure).

This is how transactions are elaborated.
In summary, such an enterprise modeling

featuring entities (and data aspects) and
corresponding causal relationships as well as the
behavior elaboration of respective transactions,
represents an adequate basis for specifying software
on top of it.

We now move to the specification of software -
the derivation of use cases is the first challenge – see
Figure 1. For detailed information concerning the
derivation of use cases from transactions, interested
readers are referred to (Shishkov, 2017) – for the sake
of brevity, we go directly to a partial use case model,
derived on the basis of the 7 transactions (see Figure
6 and Figure 7). The model is depicted in Figure 10:

generate privacy
restrictions

generate
behavior

specification

Customer

deliver
recommendation

perform match-making

deliver situation
patterns

capture
situation

check data
accuracy

<<include>> <<include>>

<<include>> <<include>>

<<include>>

<<include>> <<include>>

<<include>>

<<include>>

apply search

Figure 10: Partial use case model for the border security
case.

As it is seen from the figure, all use cases, except
for the ones backgrounded in black and grey,
correspond to respective transactions: the SYSTEM’s
DELIVERY OF RECOMMENDATION (assuming
behavior refinement) to CUSTOMER includes
MATCHING between: (i) BEHAVIOR
SPECIFICATION and (ii) PRIVACY
RESTRICTIONS. In turn, (i) includes MATCHING
between (iii) CAPTURED SITUATION and (iv) A
SITUATION PATTERN (this matching allowing to
identify the right behavior pattern to consider).

Those are the so called essential use
cases – the ones straightforwardly reflecting
transactions (Shishkov, 2017). Those use cases
usefully drive the alignment between enterprise
modeling and software specification, guaranteeing
that the software system-to-be is stemming from
enterprise models. Then all enterprise models would
be helpful accordingly with regard to the further
software specification and elaboration, based on the
use case model.

Nevertheless, next to the essential use cases, we
have also: (a) informational use cases,
reflecting informational issues (not essential); (b)
use cases reflecting user-defined
requirements with regard to the software system-
to-be (Shishkov, 2017). An example for (a) is the use
case APPLY SEARCH - delivering situation patterns
and generating privacy restrictions are essential
business tasks requiring in turn informational
activity, namely: searching through the corresponding
data banks. An example for (b) is the use case
CHECK DATA ACCURACY - it may be required by
the user that upon match-making, the accuracy of
corresponding data is checked. Those two use cases
are only to illustrate (a) and (b). Because of the
limited scope of this paper, we have only considered

Seventh International Symposium on Business Modeling and Software Design

58

a partial use case model, aiming at being explicit on
the enterprise-software alignment that in turn builds
upon the weaving of context-awareness and privacy
at the enterprise modeling level.

For this reason, we are not going to address in the
current paper the elaboration of use cases as well as
the further software specification reflected in
behavior+states modeling and classification.
Interested readers are referred to (Shishkov, 2005)
where this is considered and justified by means of a
case study.

6 CONCLUSIONS

In this paper, we have considered in general the
alignment between enterprise modeling and software
specification, fueled by the SDBC Approach. In
particular, we have addressed the challenge of
weaving context-awareness and privacy in the
enterprise models, such that context-awareness and
privacy are then reflected accordingly in the
specification of software. We have partially
demonstrated our way of modeling by means of a case
example featuring land border security. Hence, the
contribution of the paper is two-fold: (i) We have
contributed to the research concerning enterprise-
software alignment, by studying how particular
desired values (such as context-awareness and
privacy) can be methodologically reflected in the
specification of software. (ii) We have directed the
current research to the border security application
domain where context-awareness and privacy are of
great importance, especially if they could be reflected
in the functionalities of the (technical) systems
facilitating the border control. As future research, we
plan to consider a large-scale border security case
study assuming software development activities.

REFERENCES

AWARENESS, 2008. Freeband AWARENESS Project.
http://www.freeband.nl.

Ayed, D., Delanote, D., Berbers, Y., 2007. MDD Approach
for the Development of Context-Aware Applications.
In International and Interdisciplinary Conference on
Modeling and Using Context.

Bunge, M.A., 1979. Treatise on Basic Philosophy, vol. 4, A
World of Systems, D. Reidel Publishing Company.
Dordrecht.

Burghardt, T., Buchmann, E., Böhm, K., 2008. Why do
Privacy-Enhancement Mechanisms Fail, After All? A
Survey of Both, the User and the Provider Perspective.
In Workshop W2Trust, in conjunction with IFIPTM.

Cockburn, A., 2000. Writing Effective Use Cases, Addison-
Wesley.

Dey, A. K., 2001. Understanding and Using Context.
Personal and Ubiquitous Computing, 5(1), 4-7.

Dietz, J.L.G., 2006. Enterprise Ontology, Theory and
Methodology, Springer. Heidelberg, 1st edition.

Dietz, J.L.G., 2003. Generic Recurrent Patterns in Business
Processes. In BPM’03, International Conference on
Business Process Management, LNCS. Springer.

FRONTEX, 2017, the website on the European Agency,
FRONTEX: http://frontex.europa.eu.

Henricksen, K., Indulska, J., 2006. Developing Context-
Aware Pervasive Computing Applications: Models and
Approach. Pervasive and Mobile Computing.

Huberman, B. A., Franklin, M., Hogg, T., 1999. Enhancing
Privacy and Trust in Electronic Communities. In EC
'99, 1st Int. ACM Conf. on Electronic Commerce. ACM.

Hustinx, P., 2010. Privacy by Design: Delivering the
Promises. In Identity in the Information Society 3(2).
Springer.

IoTDI, 2017. 2nd International Conference on Internet-of-
Things Design and Implementation. ACM/IEEE.

Janssen, M., Van den Hoven, J., 2015. Big and Open Linked
Data (BOLD) in Government: A Challenge to
Transparency and Privacy? Government Information
Quarterly, 32(4).

Johnston, A., Wilson, S., 2012. Privacy Compliance Risks
for Facebook. IEEE Technology and Society Magazine,
31(2).

Könings, B., Schaub, F., Weber, M., 2016. Privacy and
Trust in Ambient Intelligent Environments. In Next
Generation Intelligent Environments: Ambient
Adaptive Systems. Springer.

Kruchten, P., 2003. The Rational Unified Process, An
Introduction, Addison-Wesley.

LBS, 2012. LandBorderSurveillance, the EBF,
LandBorderSurveillance Project: http://ec.europa.eu.

Liu, K., 2000. Semiotics in Information Systems
Engineering, Cambridge University Press. Cambridge.

MDA, 2017. The OMG Model Driven Architecture.
http://www.omg.org/mda.

Pearson, S., 2009. Taking Account of Privacy when
Designing Cloud Computing Services. In ICSE’09,
International Workshop on Software Engineering
Challenges of Cloud Computing.

Seničar, V., Jerman-Blažič, B., Klobučar, T., 2003.
Privacy-Enhancing Technologies - Approaches and
Development. Computer Standards & Interfaces,
25(2).

Shishkov, B., 2017. Enterprise Information Systems, A
Modeling Approach, IICREST. Sofia, 1st edition.

Shishkov, B., 2005. Software Specification Based on Re-
usable Business Components (PhD Thesis), TU Delft.
Delft, 1st edition.

Shishkov, B., Mitrakos, D., 2016. Towards Context-Aware
Border Security Control. In BMSD’16, 6th International
Symposium on Business Modeling and Software
Design. SCITEPRESS.

Towards Context-Aware and Privacy-Sensitive Systems

59

Shishkov, B., Van Sinderen, M.J., 2008. From User Context
States to Context-Aware Applications. In ICEIS’07 –
Revised Selected Papers, LNBIP 12. Springer.

Shishkov, B., Van Sinderen, M.J., Tekinderdogan, B.,
2007. Model-Driven Specification of Software
Services. In ICEBE’07, IEEE International Conference
on e-Business Engineering. IEEE.

Shishkov, B., Van Sinderen, M.J., Quartel, D., 2006. SOA-
Driven Business-Software Alignment. In ICEBE’06,
IEEE International Conference on e-Business
Engineering. IEEE.

Shishkov, B., Dietz, J.L.G., 2003. Deriving Use Cases from
Business Processes, The Advantages of DEMO. In
ICEIS’03, 5th International Conference on Enterprise
Information Systems. SCITEPRESS.

Seigneur, J. M., Jensen, C. D., 2004. Trading Privacy for
Trust. LNCS, Vol. 2995, incl. subseries Lecture Notes
in Artificial Intelligence. Springer.

Simons, C., Wirtz, G., 2007. Modeling Context in Mobile
Distributed Systems with the UML. Visual Languages
& Computing, 18(4).

UML, 2017. The Unified Modeling Language.
http://www.uml.org.

Vieira, V., Tedesco, P., Salgado, A. C., 2011. Designing
Context-Sensitive Systems: An Integrated Approach.
Expert Systems with Applications, 38(2).

Vom Brocke, J., Zelt, S., Schmiedel, T., 2016. On the Role
of Context in Business Process Management.
Information Management, 36(3).

Weber, R. H., 2015. The Digital Future – A Challenge for
Privacy? Computer Law & Security Review, 31(2).

Zhu, N., Zhang, M., Feng, D., He, J., 2015. Access Control
for Privacy Protection for Dynamic and Correlated
Databases. In SmartCity’15, International IEEE
SmartCity Conference. IEEE.

Seventh International Symposium on Business Modeling and Software Design

60

