
NewSQL Databases
MemSQL and VoltDB Experimental Evaluation

João Oliveira1 and Jorge Bernardino1,2
1ISEC, Polytechnic of Coimbra, Rua Pedro Nunes, Coimbra, Portugal

2CISUC – Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Keywords: NewSQL Databases, NewSQL, MemSQL, VoltDB, TPC-H.

Abstract: NewSQL databases are a set of new relational databases that provide better performance than the existing
systems, while maintaining the use of the SQL language. Due to the huge amounts of data stored by
organizations these types of databases are suitable to process efficiently this information. In this paper, we
describe and test two of the most popular NewSQL databases: MemSQL and VoltDB. We show the
advantages of the NewSQL databases engines using the TPC-H benchmark. The experimental evaluation
demonstrated the ability of MemSQL and VoltDB to execute effectively TPC-H benchmark queries.

1 INTRODUCTION

NewSQL is a set of new SQL databases engines with
high-performance and scalability. These engines seek
to promote the same performance and scalability
improvement of NoSQL systems, designed solutions
that have the advantages of the relational model, and
with the benefit of using SQL language (Stonebraker,
2012).

The term NewSQL was first used by analyst
Matthew Aslett in 2011 in this “NoSQL, NewSQL
and Beyond” (Aslett, 2011) business analysis report,
which discussed the emergence of new databases
systems.

NewSQL aims to provide the same performance
as NoSQL systems for OLTP loads and still maintain
the ACID (Atomicity, Consistency, Isolation,
Durability) guarantees of traditional databases.

Matthew Aslett says NewSQL databases are
designed to meet the scalability requirements of
distributed architectures or to improve performance
such that horizontal scalability is no longer a
necessity, including new storage mechanisms,
transparent shadowing technologies, and databases
completely new.

The relational databases technology was invented
in 1970 by Edgar Frank Codd, where he demonstrated
the functionalities of this technology. Simultaneously
was developed the SQL language that has become the
standard language for manipulation of relational

model. SQL is a complete language, used both to
create and to manage, update, retrieve, or share
information. Relational databases have been a
common choice for storing information since the
1980s. Despite all the advantages, SQL also has many
limitations both at the level of databases
management, such as scalability, performance and
size. SQL databases are losing processing power with
the increase in data volume. The main problem is the
existence of differences in language that allows
access to the databases, because not all vendors use
the standard in their entirety. The existence of
differences in the syntax rules in each product, makes
databases difficult to use. So, it can be said that
NewSQL aims to achieve high performance and have
great ability to resize, and intends to preserve SQL.
There are two characteristics that are common,
supporting the relational data model and the use of
SQL as the main interface (Pavlo and Aslett, 2016).

In this paper, we intend to study and test NewSQL
databases, for the experimental evaluation we
considered the MemSQL and VoltDB engines, using
the TPC-H benchmark.

The rest of this paper is structured as follows. The
next section presents related work. Section 3
describes MemSQL and VoltDB NewSQL databases.
Section 4 describes the TPC-H benchmark used.
Section 5 presents the configuration used for testing
followed by experimental evaluation and results.
Finally, section 6 presents the conclusions and future
work.

Oliveira J. and Bernardino J.
NewSQL Databases - MemSQL and VoltDB Experimental Evaluation.
DOI: 10.5220/0006518902760281
In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2017), pages 276-281
ISBN: 978-989-758-272-1
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

In this section we describe some approaches,
functionalities, comparisons of relational databases,
NoSQL and NewSQL related to our work.

Pavlo and Aslett (2016) discussed the emergence
of NewSQL databases, providing a detailed
explanation of the term NewSQL, and their
characteristics. More specifically, they studied the
new DBMS constructed from scratch. Instead of
focusing on an existing system, they started from a
database without any architectural approach,
representing a development of database technologies
that incorporates existing ideas into unique platforms
that form new engines, in a new era in which
computing resources are abundant and accessible.

In (Moniruzzaman, 2014), the authors discusses
the NewSQL data management system and compares
with NoSQL and with the traditional database system.
This article discusses the architecture, characteristics,
and classification of NewSQL databases for online
transaction processing (OLTP) for managing large
data.

In (Grolinger et al., 2013) the authors analyse
NoSQL and NewSQL solutions with the goal of
providing guidance to professionals. They also give a
survey to choose the appropriate storage of data, and
identity challenges and opportunities, scaling data
storage are investigated, partitioning, replication,
consistency, and concurrency control. In addition, the
use cases and scenarios in which the NoSQL an
NewSQL data stores were used are discussed and the
suitability of various solutions for different sets of
applications are examined.

In (Kumar et al., 2014) the authors include the
basic concept of large data and its benefits, as well as
the data types, and the introduction to Apache
Hadoop. In addition, this article contains the
introduction of NoSQL, NewSQL as well as its
features and analyses how to handle data through
Hadoop, NoSQL and NewSQL.

Binani, Gutti and Upadhyay (2016) describe an
approach of SQL databases also known as RDBMS
(Relational Database Management Systems) to meet
the needs of big data systems, which are mainly
unstructured in nature and expect quick response and
scalability. NoSQL databases are also analysed to
provide scalability and a structured platform for big
data applications. However, due to some
disadvantages, NewSQL comes up, it is a relational
database with scalability properties. This paper
discusses each of these database systems and tries to
solve problems of data requirements.

In (Lourenco et al., 2015a), the authors used a real
world enterprise system with real corporate data to
evaluate the performance characteristics of popular
NoSQL databases and compare them to SQL
counterparts. They tested Cassandra, MongoDB,
Couchbase Server and MS SQL Server databases and
compared their performance while handling
demanding and large recording write requests from a
real company data with an electrical measurement
enterprise system.

In (Lourenço et al., 2015b), the authors make a
concise and up-to-date comparison of NoSQL
engines. The most beneficial use case scenarios from
the software engineer´s point of view, their
advantages and drawbacks by surveying the currently
available literature were described.

In our work, the focus is to conduct an
experimental evaluation using two popular NewSQL
engines, more specifically testing the execution time
of TPC-H benchmark queries.

3 NEWSQL DATABASES

In this section we describe two of the most popular
NewSQL databases engines: MemSQL and VoltDB.

3.1 MemSQL

MemSQL is a distributed, in-memory, relational
database management system (RDBMS), which
comply with structured query language (SQL).

MemSQL uses a two-tiered architecture
consisting of aggregator nodes and leaf nodes.
Aggregator nodes are cluster-aware query routers that
act as a gateway into the distributed system. They
store only metadata and reference data. Aggregators
intelligently distribute queries across the leaf nodes
and aggregate results that are sent to the client.
Increasing the number of aggregators will improve
operations like data loading and will allow MemSQL
to process more client requests concurrently.

Leaf nodes function as storage and compute
nodes. Data is automatically distributed across leaf
nodes into partitions to enable parallelized query
execution. Increasing the number of leaf nodes will
increase the overall capacity of the cluster and speed
up query execution, especially queries that require
large table scans and aggregations. Additional leaf
nodes also allow the cluster to process more queries
in parallel. The number of aggregator and leaf nodes
deployed determines cluster capacity and
performance. Figure 1 shows MemSQL architecture.

Figure 1: MemSQL Architecture (MemSQL Documenta-
tion, 2017).

Allocation of data is through two types, replicate
tables, and distributed tables. Replicated tables are
copied to all nodes, and fragmented nodes are
distributed through fragmentation keys, which
facilitates the execution of join operations. To
fragment a table, MemSQL supports both primary
and derived fragmentation. Primary fragmentation
can be accomplished by any attribute of the tables that
is specified as a fragmentation key. Derived
fragmentation is a strategy to try to allocate fragments
that have the same key value in the same node.

For concurrency control, MemSQL uses the
MVCC protocol in conjunction with non-blocking
indexes to ensure better performance in scenarios
with concurrent operations compromising
consistency, so read operations do not block writes
(Chen et al., 2016).

MemSQL can dynamically add nodes to increase
storage capacity or processing power. Queries are
compiled and converting into C++ code, then stored
in a cache. The code is reusable, but the cache does
not store results of executions from previous queries.
In addition to redundancy, MemSQL ensures
durability with logging and full database snapshots. If
a node goes down, its state can be recreated by
replaying the most recent snapshot and log files.
(Pavlo and Aslett, 2016).

In Figure 2, the query is received, MemSQL
checks whether there is already hashed code, if the
parameters are passed to the already compiled code
the query is executed, otherwise the query will be
compiled and stored in the hash table. In Table 1 we
present MemSQL properties.

Figure 2: Query execution in MemSQL (MemSQL
Documentation, 2017).

Table 1: MemSQL features (DB Engines, 2017).

 MemSQL
Memory Storage Yes

Partitioning Yes
Concurrency Control MVCC

Replication Strong + Passive
Development language C++

3.2 VoltDB

VoltDB is an in-memory database, which depends on
the main memory for data storage. This system was
designed in 2010 by the well-known database
researchers, Michael Stonebraker, Sam Madden, and
Daniel Abadi (Stonebraker, 2012).

VoltDB is an ACID relational database that uses
a shared-nothing architecture, ensuring that the data
is always correct and available. The data is organized
into memory partitions, and transactions are sent by
clients connected to the database.

VoltDB uses horizontal scalability to increase the
capacity of the nodes of the existing database, or the
number of nodes in a shared-nothing cluster.

For high availability VoltDB uses partitions
which are transparently replicated across multiple
servers. If one fails all data remains available and
consistent for continuum operation. Memory
performance with durability on the disk is possible
with the VoltDB snapshot. The snapshot is a complete
copy of the database at a certain point in time that is
written on the disk.

VoltDB uses asynchronous replication on the
WAN (Wide Area Network) for loss recovery. The
remote copy is a read-only while it is not considered
to be the primary database.

In Figure 3 we present the architecture of VoltDB
and in Table 2 its main features (Stonebraker, 2012).

Figure 3: VoltDB Architecture (VoltDB Documentation,
2017).

Table 2: VoltDB features (DBEngines, 2017).

 VoltDB
Memory Storage Yes

Partitioning Yes
Concurrency Control Yes

Replication Strong + Passive
Development language Java, C++

4 TPC-H BENCHMARK

TPC-H is a decision-support benchmark consisting of
a set of business-oriented ad-hoc queries. This
benchmark evaluates the performance of various
decision support types by performing a set of
controlled queries on the databases under test. These
queries are much more complex than most OLTP
transaction and include a wide set of operators and
selectivity constraints. The purpose of this benchmark
is to reduce the diversity of operations found in an
information analysis application, while retaining the
application's essential performance characteristics,
namely: the level of system utilization and the
complexity of operations. As example, we show
below Q1 that is a pricing summary report query. This
query reports the amount of business that was billed,
shipped, and returned The pricing summary report
query provides a summary pricing report for all
lineitems shipped as of a given date:

select l_returnflag, l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as
sum_disc_price, sum(l_extendedprice * (1 -
l_discount) * (1 + l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc, count(*) as
count_order
from LINEITEM where l_shipdate <= '1998-12-
01' - interval '117' day
group by l_returnflag, l_linestatus
order by l_returnflag, l_linestatus;

The TPC-H is a data model having eight tables as
we can see in figure 4, which involves customers,
suppliers and purchases of items. Five continents are
represented, which contains twenty-five nations,
represented by the Region and Nation tables.
Customers and suppliers are stored in the tables,
Supplier and Customer, which are associated with the
nations. The Orders table places purchase orders.
There is the Partsupp table to record the relationship
between vendors and items. Finally, there is the more
bulky table, Lineitem that associates purchase items
with orders (Santos et al., 2011).

Figure 4: TPC-H benchmark schema.

Table 3 presents TPC-H eight tables as well as the
number of records that each table has for 1GB.

Table 3: Number of records for TPC-H with 1GB.

Tables #Records for 1GB
Nation 25
Region 5

Part 200 000
Supplier 10 000
Partsupp 800 000
Customer 150 000

Orders 1 500 000
Lineitem 6 001 215

TOTAL 8 661 245

5 EXPERIMENTAL
EVALUATION

In the next sections, we will give information about
the experimental setup. It is described the
characteristics of computers used, the load times of
the tables in the MemSQL and VoltDB engines, the
execution time of the queries. Finally, we will discuss
the results obtained in the experimental evaluation.

5.1 Experimental Setup

We evaluate MemSQL and VoltDB database with the
TPC-H benchmark queries using a scale factor of 1.

The tests were performed on a computer with the
following characteristics:

- Operating system Ubuntu 16.04 64-bit LTS

- Intel Xeon (R) CPU X5570 @ 2.93GHz x16,
40GB memory (RAM) and 250GB disk.

Figure 5: Average query execution time of TPC-H queries.

5.2 Loading Information

In this section, we present the results of the time in
the insertion of data obtained from each of the eight
tables in the TPC-H benchmark. The results are for
loading data using the two NewSQL engines,
MemSQL and VoltDB. The loading time was
obtained on the computer with the specifications
mentioned in the setup of the experimental setup
section.

Table 4 below shows the insertion time in
seconds.

Table 4: Loading times for 1GB of data.

Tables VoltDB MemSQL
Nation 0.32 sec 0.17 sec
Region 0.48 sec 0.18 sec

Part 9.64 sec 0.65 sec
Supplier 0.89 sec 0.35 sec
Partsupp 32.56 sec 0.86 sec
Customer 7.14 sec 0.49 sec

Orders 68.74 sec 2.90 sec
Lineitem 339.71 sec 33.58 sec

From the table above, it can be verified that the
Lineitem table is the one that took the most time to
load the data in the two systems due to having 6 001
215 rows and the 25 rows Nation table was the least
time consuming to insert the data.

Summing up all the loading times for each of
NewSQL databases it can be verified that the value
obtained to VoltDB is 459.48 seconds and only 39.18
seconds to MemSQL, meaning that it is 11.7 times
faster.

5.3 Results and Discussion

The experimental evaluation was performed with a
TPC-H scale factor of 1, which corresponds to a 1 GB

data size. The tests were performed through five
executions of the 20 queries sequentially, so we
intend to avoid the effects of caching, and the final
value shown in the results is the average value.

In this experimental evaluation, it was not
possible to execute all the 22 queries of TPC-H.
Query Q11 could not be executed in the NewSQL
engines because it did not support the Having
condition, and query Q15 because it is not possible to
create views. Query Q19 in VoltDB did not produce
any results, after several hours of execution, we
cancel it execution; this is because VoltDB uses a
large quantity of memory (RAM) to perform the
searches.

In Figure 5, we present the average query
execution time obtained for TPC-H queries. The time
presented is expressed in milliseconds, with
logarithmic scale of base 10.

When analyzing the results of the queries it is
verified that MemSQL execution time, are smaller
compared to those of the VoltDB.

The queries, Q1, Q8, Q17, Q19, Q21 are those that
have higher execution times in VoltDB, since they
search information in a larger number of tables and
need to do more computations to present the result.
The remaining ones’, search information in a smaller
number of tables and in a row limit, which leads to
the search for a smaller number of information,
therefore, a shorter execution time.

Queries, Q1, Q5, Q9, Q18 and Q20 have a longer
execution time in MemSQL, for the same reason
mentioned for the VoltDB, they search information in
a larger number of tables and the remaining queries
in a smaller number of tables with limitation of lines
that explain a shorter execution time.

When analyzing the execution times of the queries
used, it was verified that the queries take more time
in the VoltDB engine compared to the MemSQL.

Longer searches look for information in the TPC-H
tables with the largest number of information
(Lineitem, Orders, Customer, Supplier). It is
understandable that the search time is longer when it
is necessary to look up information in the tables with
largest number of rows. We also verify that queries
with aggregations have the slowest execution time.

Based on the experimental results, it is possible to
verify that MemSQL stands out, with a 92%
improvement over VoltDB. As mentioned in section
3.1 in MemSQL, when a new search is received on
the system, it checks if there is already a hash code,
then it reuses the previously compiled code, passing
the parameters to the already compiled code,
significantly reducing the processing time. Due to this
distinct feature, the query execution time of
MemSQL queries are smaller compared to VoltDB.

In this way it was verified that the two NewSQL
engines are fast to present the results of the searches
but the MemSQL was able to surpass the VoltDB in
all the searches as we can verify in Figure 5. The
VoltDB being a system based on the memory, uses
the memory on the computer considerably, and
consequently led to longer execution times.

6 CONCLUSIONS AND FUTURE
WORK

Today information is vital for organizations that have
multiple data sources and systems to store them.
However, there is a huge problem due to the massive
quantity of data inserted in the databases, that causes
poor query performance and worse data analysis.

These problems highlighted the advantage of
NewSQL databases by providing increased
throughput, and improved performance, solving also
storage problems. With this it is possible to solve the
current storage problems, but also fix some flaws that
exist in other database systems, that is why NewSQL
databases are designed to be scalable and support
large amounts of data and remain efficient.

During the evaluation of the tests, only Q19 was
not possible to execute. Therefore, it is possible to
verify that NewSQL systems use considerably the
primary memory to perform searches. To obtain good
performance it is necessary to have a computer with
good processing and storage capacity that contributes
to the better results of NewSQL databases.

We can conclude that MemSQL NewSQL engine
behaved better than the VoltDB for 1GB of data.
Moreover, MemSQL use standard SQL, without the
necessity of queries rewriting, while in VoltDB it is

necessary to rewrite the queries. For example,
VoltDB does not support the date type, but only the
timestamp date type.

As a future work, we intend to evaluate other
NewSQL database engines and comparing the
performance with traditional relational databases,
such as MySQL or PostgreSQL. We also intend to
increase the scale factor of TPC-H using a database
size of 10GB and more.

REFERENCES

Aslett, Matthew, 2011. NoSQL, NewSQL and Beyond,
https://blogs.the451group.com/information_managemen
t/2011/04/15/nosql-NewSQL-and-beyond/

Binani, S., Gutti, A. and Upadhyay, S. (2016) ‘SQL vs.
NoSQL vs. NewSQL-A Comparative Study’, Commu-
nications on Applied Electronics, 6(1), pp. 43–46.

Chen, J. et al. (2016) ‘The MemSQL Query Optimizer : A
modern optimizer for real-time analytics in a distributed
database’, 9(13), pp. 1401–1412. doi: 10.14778/
3007263.3007277.

DBEngines (2017). [online] Available at https://db-
engines.com/en/ranking [Accessed 7 Jun. 2017].

Grolinger, K. et al. (2013) ‘Data management in cloud
environments: NoSQL and NewSQL data stores’,
Journal of Cloud Computing: Advances, Systems and
Applications, 2, p. 22.

Kumar, R. et al. (2014) ‘Apache Hadoop, NoSQL and
NewSQL Solutions of Big Data’, International Journal
of Advance Foundation and Research in Science &
Engineering, 1(6), pp. 28–36.

Lourenço, J.R. et al. (2015a) ‘Choosing the right NoSQL
database for the job: a quality attribute evaluation’,
Journal of Big Data, 2 (1), art. no. 18.

Lourenço, J. R., et al. (2015b) ‘NOSQL databases: A
software engineering perspective’, Springer Advances in
Intelligent Systems and Computing, 353(6), pp. 741–750.

Moniruzzaman, A. B. M. (2014) ‘NewSQL : Towards Next-
Generation Scalable RDBMS for Online Transaction
Processing (OLTP) for Big Data Management’,
International Journal of Database Theory &
Application, 7(6), pp. 121–130.

Pavlo, A. and Aslett, M. (2016) ‘What’s Really New with
NewSQL?’, SIGMOD Record, 45(2), pp. 45–55. doi:
10.1145/3003665.3003674.

Santos, R. J., Bernardino, J. and Vieira, M. (2011) ‘Balancing
security and performance for enhancing data privacy in
data warehouses’, Proc. 10th IEEE Int. Conf. on Trust,
Security and Privacy in Computing and
Communications, TrustCom 2011, pp. 242-249.

Stonebraker, M. (2012) ‘New opportunities for New SQL’,
Communications of the ACM, 55(11), p. 10. doi:
10.1145/2366316.2366319.

TPC-H Documentation. (2017, July) Retrevied from
http://www.tpc.org/tpch/default.asp

VoltDB Documentation. (2017, July) Retrevied from
https://www.voltdb.com.

