
A Framework for Generating Domain-specific Rule for Process 
Model Customisation 

Neel Mani1, Markus Helfert1 and Claus Pahl2 
1ADAPT Centre for Digital Content Technology, Dublin City University, School of Computing, Dublin, Ireland 

2Free University of Bozen-Bolzano, Free University of Bozen-Bolzano, Bolzano, Italy 
 

Keywords: Domain Model, Domain-Specific Rule, Rule Language, Rule Generation, Business Process Model, 
Variability Model, Model Driven Architecture, Model Transformation, Domain-Specific Language. 

Abstract: The domain-specific model-driven development requires effective and flexible techniques for implementing 
domain-specific rule generators. In this paper, we present a framework for rule generation through model 
translation with feature model, a high-level of the domain model to translate into low-level of rule language 
based on the paradigm of software reuse in terms of customisation and configuration with domain-specific 
rule strategies benefit mode-to-text translations. This framework is domain-specific where non-technical 
domain user can customise and configure the business process models. These compositions support two 
dimensional of translation modularity by using software product line engineering. The domain engineering is 
achieved by designing the domain and process model as a requirement space, it is also called template model, 
connecting with feature model through weaving model. The feature model is a high-level input model to 
customise the template model to an implementation. The application engineering is achieved by supporting 
the rule definition and configuring the generated rules. We discuss the development approach of the 
framework in a domain-specific environment; we present a case study in a Digital Content Technology (DCT) 
domain. 

1 INTRODUCTION 

Nowadays the reuse of software is one of challenges 
to implement to customise the application based on 
the end-user requirements. The traditionally model-
driven engineering use for extracting the knowledge 
from a high-level design model to low-level langua-
ge. How to effectively fill the gap between the softw-
are product line engineering and the models to extract 
the knowledge from high-level models to low-level 
language. The primary requirement of the framework 
where end user can opt their requirement to adapt the 
desirable models. For achieving the desirable model, 
there are several steps to require the implementation 
of configuration-based systems where translate the 
high-level design to low level execution. Enterprises, 
usually have high level legacy models and they are 
domain and process based models. Automatic code 
generation (Edwards, Brun et al. 2012, Prout, Atlee et 
al. 2012, Ringert, Roth et al. 2015) is a well-known 
approach for getting the execution code of a system 
from a given abstract model. Rule is an extended 
version of code that requires compiling and building 

it in a configurable mode. Rule generation is an 
approach by which the higher-level design model as 
input and the lower level of execution code as output 
are shaped. It may be platform independent or 
platform specific (Bergmayr and Wimmer 2013) 
approach.  In Model-Driven Architecture (MDA), the 
techniques are expressed by design models as the 
primary artefact of development and use them as a 
basis for obtaining a configurable domain-specific 
rule for business process model customisation in 
different ways (Gonçalves 2015). But it does not talk 
about the variability of models (domain model and 
process model). 

The major motivations is to address the automated 
customise the models based on the end-user and  then  
generate the domain-specific rule(DSR) (Mani, 
Helfert et al. 2016) from high-level complex domain 
models at run time. The domain models are 
characterised by the complexity of their structures as 
specified in the metamodel or the non-trivial nature 
of constraints imposed on them or a combination of 
these two factors. It is a problem by which the 
existing fully-automated model generators fail. 

Mani N., Helfert M. and Pahl C.
A Framework for Generating Domain-specific Rule for Process Model Customisation.
DOI: 10.5220/0006512201630171
In Proceedings of the International Conference on Computer-Human Interaction Research and Applications (CHIRA 2017), pages 163-171
ISBN: 978-989-758-267-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

Our contribution is a framework for customising 
and configuring process model in digital content 
technology domain in dynamic environment. The 
production capability is based on reusable model as 
core assets that configure the constraints of the 
domain problems by non-technical domain user. At 
runtime, we propose the model-based rule generation 
for process models that use the variability models. 
They capture the user requirement to process 
automatically the rule generation and configuration of 
the process model’s composition. Mass customisation 
updates are possible through software Product Line 
Engineering (SPLE), which provides a platform to 
domain expert for designing and developing the 
domain template (domain model and process model). 

The paper is organised as follows. We compare 
the related work Section 2. Section 3 is the motivation 
of research paper. In Section 4, we discuss the overall 
proposed approach, in which we discuss DSLs, 
feature model, domain model and the rule. Section 5 
introduces and describe the design of the framework 
and its component and In Section 6, we evaluate the 
overall approach in terms of usability The Section 7 
concludes the paper reflecting the future work. 

2 RELATED WORKED 

In this section, we review the present concept, 
technologies and techniques that motivate us to 
present the relevant problem under domain constraint 
study. It includes a short description of automatic 
code generation, language and applications based on 
Model-driven principles.  

Our research work uses the SPLE life cycle for 
customising the feature based on the user requirement 
and MDA framework that uses in generating the do-
main-specific rule of the customised domain model. 

The domain expert performing on the  high level 
of abstraction, the machine works low level of 
language (Gupta 2015). The code generation 
technique accelerates the transformation process 
between designing the application and its implement-
tation in terms of executable code (Prout, Atlee et al. 
2012, Gurunule and Nashipudimath 2015). The code 
generation is an approach for converting the high 
level of design constructs into low level of executable 
code constructs. The automatic code generation is 
converting software design into executable code 
without little bit intervention of  programmer or 
developer (Gurunule and Nashipudimath 2015). The 
generation technique reduces the effort of the manual 
writing of programming code, avoiding the manual 
programming errors like syntactical (spelling  
 

mistake) and programmatically semantical errors. 
The web application development is description 

of processes, techniques and selecting appropriate 
models for web engineering.  The web engineering 
uses  automatic web application methodologies  such 
as UWE (Koch, Knapp et al. 2008), WebML (Ceri, 
Fraternali et al. 2000) and WebDSL (Groenewegen, 
Hemel et al. 2008) approaches. The design and 
development of Web applications and tools provide 
mainly conceptual models (Ceri, Fraternali et al. 
2002), focusing on content, navigation and presenta-
tion models (Linaje, Preciado et al. 2007, Moreno, 
Meliá et al. 2008). Now , the model driven approach 
for dynamic web application, based on MVC and 
server is described by Distante et al. (Distante, 
Pedone et al. 2007). However, these methods do not 
consider as the user requirement of the variability mo-
del. To simplify our description, we have considered 
the user requirement and according to the need of the 
user, the user selects the feature and customises the 
enterprise application in the dynamic environment.  

Currently, there is no such type of methodology 
or process of development for creating a rule-based 
system in a web application (semantic). Dioufet et al. 
(Diouf, Maabout et al. 2007, Musumbu, Diouf et al. 
2010) propose a process which merges UML models 
and OWL ontologies for business rule generation. 
The solution for semantic web is ontologies, UML 
and applying the MDA approach for generating or 
extraction rules from high level of models. Although, 
the proposed combination of UML and semantic 
ontologies are for extracting the set of rules in target 
rule engine, but they only generate the first level of  
the abstraction of the rules.  

We have proposed a classification of several 
quality and governance constraints elsewhere (Pahl 
and Mani 2014): authorisation, accountability, 
workflow governance and quality. The domain-
specific rule language (DSRL) (Mani and Pahl 2015) 
is a combination of rules and BPMN. Our approach 
provides a framework architecture for generating the 
domain-specific rule and configuring the generated 
rule for process model customisation using the 
variability model.  

3 MOTIVATIONS 

The enterprise needs to change and adapt 
progressively the dynamic behaviour at runtime in 
response to changing conditions, updating new 
features in support of enterprise and business 
applications and in the surrounding business process 
models. Nowadays, the requirements for developing  
 



 

Figure 1:  Framework for SPLE: domain and application engineering, problem and solution space (Mani, Helfert et al. 2017). 

and customisation process are increasing. However, 
the process model languages (Standard , Reichert and 
Dadam 1998, White 2004, Van der Aalst and Ter 
Hofstede 2005, List and Korherr 2006) restrict 
domain user and designer to describe explicitly the  
process execution plan as pre-defined task control 
flow, data flow and work/process allocation schema. 
The changes reflect at modelling stage or design 
phase which make the process model rigid 
(Boukhebouze, Amghar et al. 2011, Gromoff, 
Kazantsev et al. 2012, Rangiha and Karakostas 2013). 
Thus, adaptability is emerging as crucial and an 
underlying capability in highly dynamic 
environment. 

During business process customisation and 
adaptation in dynamic and domain-specific environ-
ments, the end users have only domain knowledge 
without technically customising and adapting the 
changes and configuration is done in process models 
at runtime. For example, process activities and sub 
process could be activated and deactivated (removed) 
(Mani, Helfert et al. 2016) based on user requirement 
at application engineering level. 

4 SOFTWARE PRODUCT LINE 
ENGINEERING 

The key contribution is the use of a feature model to 
bridge the gap between an assumed domain model 
(here in ontology form) and the domain-specific rule 
extension of a business process. The feature model 
streamlines the constraints customisation for business 
processes. It acts as a bridge between the domain 
model and the rule language. 

We propose to abstractly support the different 
SPLE aspects from MDA. The MDA aims at 
capturing all the relevant aspects of the framework 
through appropriate models. The stakeholders’ 
motives are more prominently captured by models 
than the implementation codes. Models capture the 
requirements or the intentions of the end users more 
effectively, help to avoiding accidental implementa-
tion details and also are more suited for analysis. 
Models, in MDA context, are much more than being 
supportive artifacts; rather, these are actually source 
artifacts which can be utilized for automated analysis 
and/or rule generation.  

In our approach, the aim is the solve the need for 
expressive and easy-to-understand adaptation. 
Therefore, the domain model is implemented as a 
variability model which describes the variants in 
which the domain expert designs the domain template 
composition. Since the domain model abstracts the 
rule generation, the definition of a bridge between the 
elements in the variability model and the elements in 
the domain model could be used to support the 
dynamic rule generation in the underlying domain-
specific environment.  

 To this end, we use a weaving model as an 
additional software asset input to project the changes 
in the features of the variability model, on abstract 
elements in a domain model. In other words, the 
weaving model works as a bridge between the 
elements in these models. 

The goal of Software Product Lines Engineering 
(SPLE) is developing a set of software components 
and systems with similar characteristics and catering 
to the requirements of a domain through management 
of certain features (Kang, Cohen et al. 1990). SPLE 
effectively tunes down the development cost and 
 



Table 1: Weaving model. 

 Variablity Model Feature Model Process Model Domain  Model 
1. V1 F1 Task1 Class1 
2. V2 F2 Task2 Class 2 
3. V3 F3 Task3 Class 3 

 

Figure 2: Models that support the SPL for autonomic rule generation. 

market time of the software, enhances the overhead 
quality and engineering by reusing assets strategically 
within the domain. SPLE uses adopted techniques to 
manage reusability with commonality and variability 
model that effectively categorizes the common assets 
and their variabilities. The software product line 
framework has two phases (see Figure 2): (i) the 
Problem Space for describing the problem 
description, the type of applications, or an individual 
application in the category; (ii) Solution Space for 
providing the software components to solve that 
problem; iii) Domain engineering phase may be 
defined as a formally represented platform in which 
development and implementation products take 
place. In SPLE, the variability modeling technique 
known as “Feature Models” are used for the purpose 
of portraying variability in hierarchical manner 
differentiation or simplification of features in 
hierarchy of products belonging to a software family. 

The DSRs are products, based on activate or 
deactivate features in the feature model to manage the 
requirement of domain user or stack holder during 
feature selection. Therefore DSRs depend upon the 
feature of the feature model. The rule generation in 
the variability model produces the adaptation space 
with 1) and all possible constraint configurations of 
the process model (in terms of active and inactive 
features in the feature model with parametric value) 
and 2), customising the process model in terms of the 

functional and operational use. In order to avoid the 
problem or an interruption (error, system halt, 
malfunctioning, wrong interpretation, etc.) during 
rule generation and or configuration in critical service 
application, we argue that the feature model and its 
possible configurations should be validated and 
verified at the runtime.  

The SPLE and MDA are not only complementary, 
but their integration may lead to significant gains in 
various applications. On one side MDA provides for 
abstractly representing various aspects of a product 
line, while on the other SPLE provides for a well-
defined application scope. This provides a sound 
basis for the development and selection of appropriate 
modeling languages. Further, the automated genera-
tion of system configurations is made possible by 
accurate models as a result of automated analysis and 
rule. MDA provides effective techniques for 
conveying the results of specifying variability as 
follows: 

 Metamodeling: It refers to type of systems that 
express, for specific domains, having the 
constraints that are associated with a product 
line, with key abstract syntax characteristics and 
static semantic constraints  
Domain-specific languages (DSLs): In order to 
formalize the specifics of structure of the 
product line, its behavior and requirements with 



 

respect to domain, the DSLs provide notations 
governed by extendable metamodels. 

 Model transformations and rule generators: It 
refers to ensuring the consistency of 
implementations of the product line along with 
the corresponding analysis. The analysis may be 
retrospect to functional and QoS requirements. 

Key advantages of using MDA in conjunction 
with variability of SPLs are (1) rigorously capturing 
the commonalities and variabilities in a family of 
systems and (2) helping automated repetitive tasks 
that must be accomplished for each product instance. 

Figure 2 shows how to combine modelling and 
model transformations to develop an SPLE-MDA for 
Digital Content Technology. First, the assets of the 
SPLE-MDA model elements are described with a 
family of Digital Content Technology. These model 
elements are conformed to the metamodel (of Domain 
Model), which is a DSL for Digital Content 
Technology. Second, the decision model is another 
model which specifies the aspects or characteristics 
(named features) of a particular Digital Content 
Technology. Third, a weaving model projects the 
features on the DSL for scoping the domain model. 
Finally, the output system is obtained through a 
model (scoped DSRL) to text (domain-specific rule) 
the translation. 

5 DESIGNS OF FRAMEWORK 

The dynamic process model adaptation is possible by 
customising and configuring the overall architecture 
of the framework at runtime through predefine 
domain template (domain model and process model) 
models. This approach works on principal of active-
tion and deactivation of models. However, the 
proposed framework follows strategy for the dynamic 
activation and deactivation of features in the domain 
template, based on the end-user requirement. After, 
the domain template is modeled and the weaving 
model has connected the feature model and the 
domain template (via a virtual relational table) at 
design time, the customisation and adaptation may 
take place at run time. The customisation of the 
process model and rule generation achieve at runtime. 
This approach works under the domain-specific 
environment. 

An overview of our approach, enabling 
customisation and configuration of the component 
connections for the rule is shown in Figure 3. As 
illustrated, the approach covers both dynamic process 
model adaptation and development compositions. 
The aim is to design appropriate architecture modes 
of the feature selection based on user requirements 
and generate the configurable rule for process model 
customisation. At run time, the users configure the 
 

 

Figure 3: Detailed Framework of Rule Generation and Process Model Customisation. 



 

 

Figure 4: Feature model of Machine translation. 

rule, thereby facilitating the framework to quality 
configuration in terms of effective, efficient and 
satisfactory usability. The feature model 
requirements are continually analysed and validated 
every feature by target feature validator with respect 
to the runtime feature section. It reflects in the 
template model environment as an activation and 
deactivation through weaving model. In the case of 
the feature selection violation, the target feature 
validator gets prompted and validated accordingly on 
basic criteria of the feature model. For example, the 
user can remove the mandatory feature from the 
system. In the following, we briefly discuss each 
phase and describe their actives. 

The framework offers a dynamic solution for rule 
generation and process model customisation. The 
framework consists of two sections: Development 
Composition and Dynamic Process Adaptation. Dev-
elopment composition consist of different elements 
such Weaving Model, Process model, metamodel, 
DSRL configuration generator. We have developed 
two building blocks to provide utilisation of the 
domain model variability and community at run time: 
(1) the domain model customiser uses a weaving 
model (table 1). The weaving models are  models 
which capture different kind of relationships between 
models (Del Fabro and Valduriez 2007). It is about  
finding a similar type of transformation patterns 
between model elements integrating transformations 
in the tabular form. 

The weaving helps to execute the customisation 
process base on validate feature. The validate feature 
is a set of analysed and verified features, which is 
captured by the requirements of a domain user or 
stakeholder. (2) In the Rule generator, the models and 

metamodel that created in the domain model 
customiser are used in the MDA at different level M1 
and M2 (Figure 3). The generated rule configuration 
has two different types: per-configured (at design 
time) and post-configurable (dynamic) metamodel 

In the Dynamic Process Adaptation, the proposed 
structure carries out the following steps to support 
dynamics adaptation. First, the model-based 
configurator collects the information from various 
models. If the requirement of target feature is 
violated, the feature selection or customisation 
activities such as: rename, move, update and delete 
feature, affect the activation and deactivation process. 
The execute customisation models pass the captured 
requirement to weaving model for further activities.  
The customised and generated sets of rules are output 
from the Development Composition. 

We propose an approach that offers a solution for 
the dynamic adaptation of rule generation and, BPM 
customisation and configuration composition. The 
variability model services are responsible for carrying 
mandatory or optional feature of the BPM and 
metamodel. The feature of a process can be activated 
or deactivated at any moment of time, i.e. design or 
run time. We introduce a mechanism where domain 
expert and user can perform their tasks in a simply 
way. A domain expert can design high-level of 
solution for domain, based on that solution, domain 
user can modify and customise model elements 
(activities) in any process over time.  

The model elements activation and deactivation 
depend on the variability model and what are the 
requirement of end user. In this research, there are 
two different groups of users, involving one expert in 
domain with modelling knowledge and other have a 



 

functional domain knowledge, but they are non-
technical. Therefore, we select software product line 
engineering (SPLE) platform where the user can 
perform the tasks.  The SPLE is a standard model to 
develop software applications using platform and 
mass customisation (Böckle, van der Linden et al. 
2005).  

5.1 Feature Model 

Figure 4 shows the feature model used in our case 
study. For instance, the Language Model, Transfer 
based MT, Interlingua MT, Direct MT and 
Translation Model features are variants that can be 
used during execution to accomplish the machine 
translation functionality in the Model point. 

5.2 Weaving Model 

A product line feature model represents variabilities 
and commonalities. The features in a feature model 
are simply symbols with their type. Mapping features 
to other models (feature model, domain model and 
process model,) expressed in Table 1. Next, we show 
how to perform the mapping by means of a weaving 
model (Geyer and Becker 2002). We use a static 
weaving model for managing the variability 
relationships among all models. The principle 
argument for using the static weaving model is with 
domain-specific environment, when the domain 
experts have significant domain knowledge. They 
design and develop the domain template at design 
(static) time. This weaving approach enables us for 
scoping and configuring the Domain Models from a 
set of given Features. 
 
 
 

6 EVALUATIONS 

We evaluate the DCT, analysing the time and 
efficiency of its configuration including satisfaction 
and operational compliance based on computing 
human interaction by the end user. The goal of the 
analysis is to get a comparative analysis of the time 
and efficiency of configured DCT and its sub-process 
systems. The emphasis is on analysing the relative 
benefit of the proposed framework and a manual or 
traditional or baseline approach regarding the 
efficiency, effectiveness, and satisfaction with 
function and operational compliance support. The 
feature selection and configuration scenarios involve 
to modifications resulting from improvement of the 
complex process activity that affected the function 
and operation of the process. 

The current example is a part of a digital content 
processing process model as a sample process for the 
rule composition of business processes and domain 
constraints that conduct this process. The source text 
is translated into target language by the machine 
translation activity. The translated text quality 
decides whether further post-editing activity is 
required. Usually, these constraints are domain-
specific, e.g., referring to domain objects, their 
properties and respective rules. 

The capability of the solution is effective, 
efficient and satisfactory by the user when used under 
specified conditions. We evaluate our contribution in 
usability and forcing it on the following aspects 
which is illustrated in Figure 5. 

There are different component in the ISO standard 
9241, applying the specification of usability into both 
hardware and software designs. We discuss the 
usability criteria and its goals. 
In this overall framework, the usability criteria define 
as effectiveness, efficiency and satisfaction. It 
specified that end-users achieve specified goals are in 
domain-specific environments. 

 

 
Figure 5: Usability evaluation criteria. 



 Efficiency. The comparison between the time 
taken of configuring domain constraints in 
manual and semi-automatic process, based on 
that find which process is more efficient. 

 Effectiveness. The generated rule configuration 
in terms of accuracy to prevent or protect errors 
to achieved the configuration of domain 
constraints goal.  

 Satisfaction. The measure of end-user’s 
comfort and acceptability of the overall 
framework. 

7 CONCLUSION AND FUTURE 
WORK 

In this paper, we have presented a model-based 
framework, generating the domain-specific rule for 
process model configuration and customisation in 
dynamic environment. A case study on digital content 
technology shows the applicability of this framework, 
a realisation development approach and a proof of 
concept prototype validating the feasibility of the 
proposed approach. The main benefit of the 
framework has: 1) Non-technical domain experts can 
customise and configure the business process without 
knowing any technical knowledge;2) The framework 
can configure the domain constraints in dynamic 
environment; and 3) A third is to evaluate the 
framework architecture mechanisms in terms of 
usability. It can be handled the completeness of 
configuration of rule in terms: effectiveness, 
efficiency and satisfaction base on computer human 
interface by end use. The completeness of rule 
configuration means performance, error free rule, 
syntactically and semantically correctness after 
configuring the rule.  

We plan to extend this approach in combination 
with our existing work on business process model 
customisation based on user requirement (feature 
model, domain model and process models), so that a 
complete development life cycle for the customisati-
on and configuration of business process models is 
supported. We also see the need for further research 
that focuses on how to define the DSRL in terms of 
abstract and concreate syntactical definition with 
grammar formation across different domains and how 
to convert conceptual models into generic domain-
specific rule language which are applicable to other 
domains. So far this is a model to text translation, but 
shall be improved with a system that learns from 
existing rules and domain models, driven by the 
feature model approach with automatic constraints 

configuration, and to result in an automated DSRL 
generation. 

ACKNOWLEDGEMENTS 

This research is supported by Science Foundation 
Ireland (SFI) as a part of the ADAPT Centre at Dublin 
City University (Grant No: 12/CE/I2267). 

REFERENCES 

Bergmayr, A. and M. Wimmer (2013). Generating 
Metamodels from Grammars by Chaining 
Translational and By-Example Techniques. MDEBE@ 
MoDELS. 

Böckle, G., F. J. van der Linden and K. Pohl (2005). 
Software product line engineering: foundations, 
principles and techniques, Springer Science & Business 
Media. 

Boukhebouze, M., Y. Amghar, A. c.-N. Benharkat and Z. 
Maamar (2011). A rule-based approach to model and 
verify flexible business processes. International Journal 
of Business Process Integration and Management 5(4): 
287-307. 

Ceri, S., P. Fraternali and A. Bongio (2000). Web Modeling 
Language (WebML): a modeling language for 
designing Web sites. Computer Networks 33(1): 137-
157. 

Ceri, S., P. Fraternali and M. Matera (2002). Conceptual 
modeling of data-intensive Web applications. IEEE 
Internet Computing 6(4): 20-30. 

Del Fabro, M. D. and P. Valduriez (2007). Semi-automatic 
model integration using matching transformations and 
weaving models. Proceedings of the 2007 ACM 
symposium on Applied computing, ACM. 

Diouf, M., S. Maabout and K. Musumbu (2007). Merging 
model driven architecture and Semantic Web for 
business rules generation. International Conference on 
Web Reasoning and Rule Systems, Springer. 

Distante, D., P. Pedone, G. Rossi and G. Canfora (2007). 
Model-driven development of web applications with 
UWA, MVC and JavaServer faces. International 
Conference on Web Engineering, Springer. 

Edwards, G., Y. Brun and N. Medvidovic (2012). 
Automated analysis and code generation for domain-
specific models. Software Architecture (WICSA) and 
European Conference on Software Architecture 
(ECSA), 2012 Joint Working IEEE/IFIP Conference 
on, IEEE. 

Geyer, L. and M. Becker (2002). On the influence of 
variabilities on the application-engineering process of a 
product family. Software Product Lines, Springer: 1-14. 

Gonçalves, R. C. A. (2015). Parallel programming by 
transformation. 

Groenewegen, D. M., Z. Hemel, L. C. Kats and E. Visser 
(2008). WebDSL: a domain-specific language for 



 

dynamic web applications. Companion to the 23rd 
ACM SIGPLAN conference on Object-oriented 
programming systems languages and applications, 
ACM. 

Gromoff, A., N. Kazantsev, K. Evina, M. Ponfilenok and 
D. Kozhevnikov (2012). Modern era in business 
architecture Design. Far East Journal of Psychology 
and Business 9(2): 15-34. 

Gupta, G. (2015). Language-based software engineering. 
Science of Computer Programming 97: 37-40. 

Gurunule, D. and M. Nashipudimath (2015). A Review: 
Analysis of Aspect Orientation and Model Driven 
Engineering for Code Generation. Procedia Computer 
Science 45(0): 852-861. 

Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak and A. 
S. Peterson (1990). Feature-oriented domain analysis 
(FODA) feasibility study, DTIC Document. 

Koch, N., A. Knapp, G. Zhang and H. Baumeister (2008). 
UML-based web engineering. Web Engineering: 
Modelling and Implementing Web Applications, 
Springer: 157-191. 

Linaje, M., J. C. Preciado and F. Sánchez-Figueroa (2007). 
Engineering rich internet application user interfaces 
over legacy web models. IEEE internet computing 
11(6): 53-59. 

List, B. and B. Korherr (2006). An evaluation of conceptual 
business process modelling languages. Proceedings of 
the 2006 ACM symposium on Applied computing, 
ACM. 

Mani, N., M. Helfert and C. Pahl (2016). Business Process 
Model Customisation using Domain-driven Controlled 
Variability Management and Rule Generation. 
International Journal on Advances in Software 
9(Numbers 3 & 4, 2016): 179 - 190. 

Mani, N., M. Helfert and C. Pahl (2017). A Domain-specific 
Rule Generation Using Model-Driven Architecture in 
Controlled Variability Model. Procedia Computer 
Science 112: 2354-2362. 

Mani, N. and C. Pahl (2015). Controlled variability 
management for business process model constraints. 
ICSEA 2015, The Tenth International Conference on 
Software Engineering Advances, IARIA XPS Press. 

Moreno, N., S. Meliá, N. Koch and A. Vallecillo (2008). 
Addressing new concerns in model-driven web 
engineering approaches. International Conference on 
Web Information Systems Engineering, Springer. 

Musumbu, K., M. Diouf and S. Maabout (2010). Business 
rules generation methods by merging model driven 
architecture and web semantics. 2010 IEEE 
International Conference on Software Engineering and 
Service Sciences, IEEE. 

Pahl, C. and N. Mani (2014). Managing quality constraints 
in technology-managed learning content processes. 

Prout, A., J. M. Atlee, N. A. Day and P. Shaker (2012). 
Code generation for a family of executable modelling 
notations. Software & Systems Modeling 11(2): 251-
272. 

Rangiha, M. E. and B. Karakostas (2013). Goal-driven 
social business process management. Science and 
Information Conference (SAI), 2013, IEEE. 

Reichert, M. and P. Dadam (1998). ADEPTflex—
Supporting dynamic changes of workflows without 
losing control. Journal of Intelligent Information 
Systems 10(2): 93-129. 

Ringert, J. O., A. Roth, B. Rumpe and A. Wortmann (2015). 
Code Generator Composition for Model-Driven 
Engineering of Robotics Component & Connector 
Systems. arXiv preprint arXiv:1505.00904. 

Standard, O. Web services business process execution 
language version 2.0. 

Van der Aalst, W. M. and A. H. Ter Hofstede (2005). 
YAWL: yet another workflow language. Information 
systems 30(4): 245-275. 

White, S. A. (2004). Business process modeling notation. 
Specification, BPMI. org. 


