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Unsupervised learning of distributed representations (word embeddings) obviates the need for task-specific
feature engineering for various NLP applications. However, such representations learned from massive text
datasets do not faithfully represent finer semantic information in the feature space required by specific appli-
cations. This is owing to the fact that (a) models learning such representations ignore the linguistic structure
of the sentences, (b) they fail to capture polysemous usages of the words, and (c) they ignore pre-existing
semantic information from manually-created ontologies. In this paper, we propose three semantics-based
distributed representations of words and phrases as features for message polarity classification: Sentiment-
Specific Multi-Word Expressions Embeddings(SSMWE) are sentiment encoded distributed representations
of multi-word expressions (MWEs); Sense-Disambiguated Word Embeddings(SDWE) are sense-specific dis-
tributed representations of words; and WordNet embeddings(WNE) are distributed representations of hyper-
nym and hyponym of the correct sense of a given word. We examine the effects of these features incorporated
in a convolutional neural network(CNN) model for evaluation on the SemEval benchmarked dataset. Our ap-
proach of using these novel features yields 14.24% improvement in the macro-averaged F1 score on SemEval
datasets over existing methods. While we have shown promising results in twitter sentiment classification,
we believe that the method is general enough to be applied to many NLP applications where finer semantic

analysis is required.

1 INTRODUCTION

The use of microblogging and social network web-
sites such as Facebook', Twitter?, Tumblr? is preva-
lent in sharing diverse kinds of information which
does not just include news and facts, but also express-
ing opinions and feelings. These platforms allow peo-
ple to post real-time messages discussing a variety of
topics. Twitter is certainly a leader among microblog-
ging platforms: with over 1.3 billion users and about
500 million tweets posted per day and over 15 billion
API calls per day, it provides a massive source for in-
formation analytics. One of the axes of such analytics
is to gauge public opinion about a product, an event,
a person, or an idea.

Message polarity classification is the task of de-
termining whether the given textual message (e.g.,
a tweet) expresses a positive, a negative, or a neu-
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tral/objective sentiment with respect to a given con-
textual information. Applications of sentiment clas-
sification include but not limited to: understanding
consumer perceptions (Smith et al., 2012), political
opinion mining (Martinez-Camara et al., 2014), fi-
nancial performance prediction (Bollen et al., 2011),
and analyzing election outcomes (Skoric et al., 2012).
(Mejova et al., 2015) discuss many socio-economic
applications of Twitter sentiment analysis including
public health, disaster management (Goodchild and
Glennon, 2010), etc.

However, sentiment classification of tweets is dif-
ficult owing to the non-standard usage of language in
tweets which are of a maximum length of 140 charac-
ters. In addition to having a poor grammatical struc-
ture, tweets contain slang words, misspellings, abbre-
viations, and hashtags which are not part of a standard
vocabulary and thus pose a challenge to the automated
analysis of tweets. Table 1 shows some examples to
illustrate this.
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Table 1: Examples of tweets and their polarity from Se-
mEval datasets.

@naterOdriguez Lmfao alright u got
me there. Good job Parker and the
spurs, see y’all jan 9th. If I get an extra
ticket to that game ur goin

Realized that I’ve just spent
Halloween, super bowl Sunday, and
my last two birthdays either in the
library, or in a computer lab..
@NeilHarmanTimes Just noticed you
using the Spanish abbreviation "NO
sure”, no? Think you’re missing Rafa,
mon brave

positive

negative

negative

1.1 Contributions

Various machine learning approaches have been de-
veloped over the past decade for twitter sentiment
classification. Especially, since the introduction of
twitter sentiment analysis (TSA) as a shared task
in SemEval(Rosenthal et al., 2014; Rosenthal et al.,
2015; Nakov et al., 2016), many new manually-
labeled resources have become available and the com-
petitive setup of such tasks have given rise to a num-
ber of new approaches. Lately, after the re-birth
of deep learning based approaches (Bengio et al.,
2003), many researchers have applied them to the
twitter sentiment analysis with varying degrees of
success(Le and Mikolov, 2014; Severyn and Mos-
chitti, 2015a; Kalchbrenner et al., 2014; Severyn and
Moschitti, 2015b; Johnson and Zhang, 2015; Socher
et al., 2013; Poria et al., 2015; Tang et al., 2015).
A top-performing system for SemEval2016, Swiss-
Cheese(Deriu et al., 2016), is based on convolutional
neural networks (CNN). Our approach also proposes
use of CNN for twitter sentiment classification. How-
ever, our work differs from others in using three novel
semantics-based distributed representation features.
Our contributions summarized into the following:

1. A new method to learn sentiment-specific
multi-word expressions (SSMWE) embeddings
whose pre-trained vectors were used for senti-
ment classification, is put forward.

Strictly speaking, unsupervised learning of dis-
tributed representations (word embeddings) obvi-
ates the need for careful feature engineering; how-
ever, task-agnostic learning is unsuitable for spe-
cific NLP applications. E.g., distance between
word embeddings of happy and sad will be small
since they share similar contexts even though
these words connote opposite sentiment polarity
and thereby affecting the performance of senti-
ment classification adversely. (Tang et al., 2014b)

proposed learning sentiment-specific word em-
bedding (SSWE) for twitter sentiment classifi-
cation. However, ignoring the structures of bi-
grams and trigrams undermines the linguistic as-
pects of data. Noticing that multi-word ex-
pressions(MWEs)(Sag et al., 2002)(e.g., kick the
bucket,shoot the breeze) are independent seman-
tic units whose interpretations cross word bound-
aries and their copious usage in tweets, our pro-
posal learns distributed representations of MWEs
jointly encoding their sentiment polarity into
them.

. Accommodate (Bartunov et al., 2016)’s ap-

proach to learn multi-prototype word embed-
dings and use sense-disambiguated word em-
beddings (SDWE).

Indeed, existing approaches to learn unsuper-
vised distributed representations use massive text
datasets to capture syntactic/semantic contexts of
words. While such representations achieve alge-
braic semantic compositionality, they are unsuit-
able for the NLP applications that require finer
semantic processing. An obvious short-coming
of such methods is in failing to distinguish rep-
resentations for different senses of the same word
(polysemy). For example, the word bank may re-
fer to a financial organization or to a river bank
depending on the context; but since these methods
learn a unique representation for each word, either
the most frequent meaning of the word dominates
the other senses or the meanings are mixed in the
vector representations.

. Augment the feature space by including

paradigmatic similarity information from
WordNet through distributed representations

Indeed, distributed representations of words
trained from massive text datasets are acknowl-
edged to capture well the syntagmatic relations
between the words and therefore serve as a
faithful representation of similarity in the fea-
ture space. However, methods that learn such
representations ignore manually curated ontolo-
gies which can provide additional semantic in-
formation between words (e.g., paradigmatic re-
lations). We propose to “augment” distributed
word representations by hypernym and hyponym
word embeddings and thereby making such rep-
resentations more informative. Finding hyper-
nyms and hyponyms of a word entails finding
the correct sense of that word and therefore re-
quires word-sense disambiguation(WSD). Using
the approach by (Bartunov et al., 2016), we learn
multi-prototype distributed word representations
and perform WSD using Dirichlet-process based



model.

The rest of the paper is organized as follows: In
Section 2, we discuss the work closely related to ours;
Section 3 depicts our overall approach to twitter sen-
timent classification; Section 4 discusses our features
— especially, our model of learning SSMWE embed-
dings. In Section 5, we present the details of our CNN
model for twitter sentiment classification. Section 6
explains our experimental setup and results compared
with other competing approaches followed by error
analysis. Finally, in Section 7, we present our conclu-
sions.

2 RELATED WORK

With a view to the increasing applications of twitter
sentiment analysis, recent years have seen a very rapid
growth of research in this area. Below we describe
the previous work that is closely related to our work:
(a) applying deep learning models for twitter senti-
ment analysis, and (b) using novel word embedding
features in sentiment classification.

2.1 Twitter Sentiment Classification
using Deep Learning Models

Previous approaches of task-specific feature engineer-
ing are replaced with deep neural networks that show
promise at capturing salient features automatically in
a supervised or unsupervised setup (Collobert et al.,
2011). Following (Kim, 2014)’s architecture that uses
multiple filters with varying window sizes that are
applied on each given sentence, (Le and Mikolov,
2014; Severyn and Moschitti, 2015a; Kalchbrenner
et al.,, 2014; Severyn and Moschitti, 2015b; John-
son and Zhang, 2015) all show success of Convolu-
tional Neural Networks (CNN) for sentiment analysis
task. While (Severyn and Moschitti, 2015a) propose
a 1-layer architecture, (Deriu et al., 2016) uses 2 hid-
den layers to boost better feature learning. (Kalch-
brenner et al., 2014) proposed Dynamic Convolu-
tional Neural Network which they show outperforms
other unigram and bigram based methods on classi-
fication of movie reviews and tweets. Other neural
network architectures have also demonstrated good
performance for sentiment analysis task; particularly,
(Socher et al., 2013)’s recursive neural tensor network
(RNTN), (Tang et al., 2015)’s long short term mem-
ory (LSTM) network. (Poria et al., 2015) use CNN
to learn a 306 dimensional vector consisting of word
embedding and part of speech values and use it with
their multiple-kernel approach for multimodal senti-
ment analysis.

2.2 Novel Word Embedding Features
used for Twitter Sentiment
Classification

(Mohammad et al., 2013) achieve best results at
SemEval2013 twitter sentiment classification using
hand-crafted features. They also use several lexicons
to determine the sentiment score for each token in
the tweet, part-of-speech tag and hashtag. Follow-
ing (Harris, 1954)’s distributional hypothesis (“lin-
guistic items with similar distributions have similar
meanings”), ever since (Bengio et al., 2003) proposed
learning unsupervised pre-trained distributional word
representations, several complex NLP tasks use such
word embeddings as features. The central idea is to
jointly learn an embedding of words into a low di-
mensional dense vector space. The word vectors in-
side the embedding matrix capture distributional syn-
tactic and semantic information via the words co-
occurrence statistics. Realizing the limitations of bag-
of-word one-hot vector representation in classifica-
tion such as sparse high-dimensional vector space
and lack of capturing semantic relatedness of words,
several researchers (Mikolov et al., 2013a; Penning-
ton et al., 2014; Collobert et al., 2011), proposed
learning word embeddings in unsupervised setup.
Word2Vec(Mikolov et al., 2013b) uses two frame-
works: Skip-Gram and Continuous Bag-of-Words
(CBOW). CBOW uses a words context words in a
surrounding window to predict the word, while Skip-
Gram uses a word to predict its surrounding words.

Several researchers have attempted to improve
learning word embeddings for sentiment analysis.
(Tang et al., 2014b) modify (Collobert et al., 2011)’s
method to learn sentiment- specific word embeddings
(SSWE) from massive distant-supervised tweets. (Liu
et al., 2015) extends Skip-Gram by treating topical in-
formation as important a priori knowledge for train-
ing word embedding and proposes the topical word
embeddings (TWE) model, where words and their af-
filiated topic derived from Latent Dirichlet Allocation
(LDA) are combined to obtain the embedding.(Ren
et al., 2016) also follows similar approach. (dos San-
tos and Zadrozny, 2014) proposed a neural network
architecture that exploits character-level, word-level
and sentence-level representations. Character-level
features proved to be useful for sentiment analysis on
tweets, because they capture morphological and shape
information. (Labutov and Lipson, 2013) re-embed
the words from existing word embeddings for super-
vised sentiment classification.

Unlike traditional methods to learn a unique rep-
resentation for each word, (Huang et al.,, 2012;
Reisinger and Mooney, 2010) propose various neural



network-based methods for learning multi-prototype
representations. Recently, various modifications of
Skip-gram(Mikolov et al., 2013b) are proposed to
learn multi-prototype representations. (Qiu et al.,
2014) propose proximity-ambiguity sensitive Skip-
gram for each Part-of-speech of a given word. How-
ever, a word can still have multiple meanings even
with the same part-of-speech tag (e.g., crane) which
is not addressed by them. (Tian et al., 2014) pro-
vides improvement over original Skip-gram but it is
not clear how to set the number of prototypes. (Chen
et al., 2014) proposes to learn single-prototype repre-
sentations with Skip-gram and later uses WordNet to
learn multi-prototype representations for ambiguous
words. (Bartunov et al., 2016)’s Adaptive Skip-gram
(AdaGram) model does not consider any form of su-
pervision and learns the sense inventory automatically
from the raw text. (Neelakantan et al., 2015) proposed
Multi-sense Skip-gram (MSSG) and non-parametric
(NP MSSG) which fixes the number of prototypes a
priori similar to (Tian et al., 2014) and uses greedy
procedure that allocates new representation for a word
if existing ones explain its context below some thresh-
old.

Overall, we find that the approach proposed by
(Bartunov et al., 2016) is the most generic and fast
compared to others. Not only it allows to efficiently
learn required number of prototypes for ambiguous
words, but is able also to gradually increase the num-
ber of meanings when more data becomes available
thus distinguishing between shades of same meaning.

3 APPROACH

Figure 1 depicts the architecture for our twitter sen-
timent classification model. Two independent of-
fline components SSMWE and SDWE take as input
a massive tweet database and generates feature vec-
tors to be used in the classification model. SSMWE
uses distant-supervised tweet database and finds oc-
currences of MWE in tweets through lookup in
WikiMWE dictionary and learns sentiment-encoded
distributed representations. SDWE learns multi-
prototype word representations in unsupervised fash-
ion and also outputs a model for the subsequent word-
sense disambiguation. Corresponding to the cor-
rect sense of the word, we use word2vec embed-
dings for the hypernym and hyponym words as ad-
ditional features (we call this WNE). In addition to
these SSMWE, SDWE, and WNE features, we also
use hand-crafted features to train our CNN model for
twitter sentiment classification.

The details of our novel semantics-based dis-
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Figure 1: Our approach to twitter sentiment classification.

tributed representation features are presented in Sec-
tion 4.

4 FEATURES

4.1 SSMWE Embeddings

Traditional methods of learning word embed-
ding(Collobert et al., 2011; Pennington et al., 2014)
employ an unsupervised setup, by modeling syn-
tactic contexts of words but ignoring sentiment in-
formation. However, such methods cannot distin-
guish words with similar context but opposite sen-
timent polarity. E.g., distance between vector em-
beddings of the words happy and sad will be small
since they share similar contexts even though these
words connote opposite sentiment polarity; thereby,
affecting the performance of sentiment classification
adversely. (Tang et al., 2014b) propose learning
sentiment-specific word embedding (SSWE) under
a supervised learning framework by integrating sen-
timent information into the loss functions that the



model tries to minimize. However, they empirically
show that vector embeddings for bigrams and tri-
grams do not improve the performance of twitter-
sentiment classification. We believe this is due to
learning all bigrams and trigrams instead of specific
ones which carry specific semantics such as Multi-
word expressions (MWE). Usage of MWEs in lan-
guage is quite prevalent; yet, only a few NLP appli-
cations take cognizance of it. We propose to learn
sentiment-specific MWE embeddings (SSMWE) by
finding syntactic context around MWE occurrence us-
ing a model similar to (Tang et al., 2014b).

Learning SSMWE Embeddings

To find sentiment-specific embeddings, (Tang et al.,
2014b) propose to integrate the sentiment information
by predicting the sentiment distribution of text based
on input ngram simultaneously while finding word
embeddings. Given an original (or corrupted) ngram
and the sentiment polarity of a sentence as the input,
their model predicts two scores for each input ngram.
The two scalars fs and fss stand for language model
score and sentiment score of the input ngram, respec-
tively. Language model score measures the strength
of correct learning of word embedding based on the
syntactic contexts of words, and sentiment score eval-
uates the correct sentiment polarity prediction. Our
model for learning SSMWE embeddings is based on
(Tang et al., 2014b; Collobert et al., 2011). However,
instead of learning single word embeddings, we pro-
pose to learn the sentiment-polarity encoded embed-
dings of multi-word expressions. To identify occur-
rences of MWEs, we use WikiMWE(Hartmann et al.,
2012) which contains over 350,000 multi-word ex-
pressions mined from Wikipedia. For example, in our
architecture as shown in figure 2, the phrase shoot-
ing the breeze in the input sentence is identified as an
MWE.
The model comprises of the following layers:

1. Lookup layer: this layer maps the word/MWE
identifiers to the embedding vectors.

2. Hidden layer: this is fully connected (represented
by matrix M) with the Lookup layer and outputs
hardtanh values.

3. Linear layer: this generates the two different
scores — language model score, and sentiment
classification score by two different linear models
represented by M%M and Mgs matrices.

The overall equation of the model is:
Fum(t) = MEM - htanh(My x t+by) +b65" (1)

fSS(t) = MgS.htanh(Ml X t+b1) +b§s ?)

We spent the entire afternoon just shooting the breeze.

[\ | /

hardtanh activation

+M_2.SS

loss_LM(t,t_c)

loss_SS(t,t_c)

1-alpha)

loss_total

Figure 2: Neural network to learn SSMWE embeddings.

where the two scalars f7(t) and fss(t) are language
model score and sentiment score of the input ngram
t, respectively; t is input n-gram which is concatena-
tion of m word/MWE embeddings x € R*!; M, €
R (@xm) and by € R"™! are parameters of the hidden
layer; MM, Mgs € R and b", bS* € R are parame-
ters of the output layer.

Traditional word embedding methods work by in-
troducing a loss function which computes a loss be-
tween an original input n-gram and “corrupted” n-
gram which is produced by replacing a word from the
input n-gram randomly. The training objectives are:
(1) the original n-gram should obtain a higher lan-
guage model score f7u(t) than the corrupted ngram
Jm(t°), and (2) the sentiment score of original ngram
fss(t) should be more consistent with the gold po-
larity annotation of sentence than corrupted ngram
s ().

The loss function is the linear combination of two
hinge losses,

108810 (,1°) = 0L+ losspp (,6) + (1 — o) - lossss (2,2°)
(3)
where lossyy and lossgg are the loss functions for
language model and sentiment polarity score respec-
tively.
The lossyy is defined as under:

losspy (t,1€) = max(0,1 — fip () + fim (1)) (4)

where t is the original ngram, ¢¢ is the corrupted
ngram, f1u(-) is the language model score of the in-
put n-gram.

The lossgs is defined as under:



lossss(t,6) = max(0, 1 — 8(t) fss(t) + 8(¢) fss(£))
&)

where fss(¢) is the predicted sentiment score of
the input n-gram and J,(¢) is defined as under:

1,if f8(t) =[1,0
0= { 060 ©

We train sentiment-specific MWE embedding
from Setiment140 corpus(Go et al., 2009) which con-
tains massive distant-supervised tweets collected with
positive and negative emoticons. The corpus has
about 1.6 million tweets, half of which are with pos-
itive sentiment polarity and the remaining half with
negative polarity. Unlike (Tang et al., 2014b), who
use AdaGrad(Duchi et al., 2011) to update the pa-
rameters, we use Adam optimization(Kingma and Ba,
2014). We empirically set the window size as 3, the
size of embedding as 100 and number of hidden layer
neurons as 30. Learning rate was set as 0.1.

4.2 Sense-disambiguated Word
Embeddings (SDWE)

Most prior work on learning word representations do
not take into account word ambiguity and maintain
only a single representation per word. The word ap-
ple may refer to a fruit or to the Apple Inc. depending
on the context. Popular approaches to learn word em-
beddings such as Socher’s Continuous Bag of Words
(CBOW) and SkipGram and Collobert’s model also
fail to address this polysemous nature of word us-
age and find a unique representation for each word.
NLP applications needing finer semantic processing
(such as sentiment analysis) entail finding the embed-
ding for the correct sense of the word in the con-
text. Among a few approaches proposed in the past
[sec. 2.2], we choose the method proposed by (Bar-
tunov et al., 2016). Their model is a nonparamet-
ric Bayesian extension of Skip-gram. We use their
approach and use their toolkit available on github to
train the Adaptive SkipGram model on Sentiment140
dataset to learn multiple representations of words,
one per sense. After the model is trained, we pre-
dict/induce the correct sense of each word using their
model based on Bayesian non-parametrics — Dirich-
let process infinite mixture model. We use the word
embedding corresponding to this correct sense of the
word rather than using generic C&W vector embed-
dings.

Table 2: Additional features used for twitter sentiment clas-
sification. B=boolean, N=integer, R=real number.

Feature Value

Relative position of the word from the first
word

Relative position of the word from the nearest
word denoting negation

Whether the word starts with a capitalized
letter

Whether the word contains repeated vowels
(e.g. goooood, coooool)

Presence of positive emoticon

Presence of negative emoticon

Sentiment score of the word in sentiment
lexicons

Whether the word denotes negation (e.g. no,
never)

Whether the word is a punctuation mark

[o3]

x| W

o

o

4.3 WordNet Features(WNE)

The word vector embeddings capture syntagmatic re-
lations between words but may fail to capture paradig-
matic relations for which we use WordNet. We use
the word embeddings of the immediate hypernym and
hyponym of the correctly disambiguated sense of the
given word as features in supervised classification.
After learning multi-prototype word representations
using the method proposed by (Bartunov et al., 2016)
as above and finding the correct word embedding cor-
respoding to the correct sense of the word used in the
context, we find the immediate hypernyms and hy-
ponyms of that sense of that word and use word2vec
embeddings of these words as additional features to
train our model.

4.4 Hand-crafted Word Features

Despite the obvious advantages of distributed rep-
resentations, there are a few discriminatory features
missed. We augment our vector embeddings with the
following feature vector:

S CNN MODEL FOR TWITTER
SENTIMENT CLASSIFICATION

Figure 3 illustrates our convolutional neural network
for twitter sentiment classification. Our architecture
is very similar to (Kim, 2014; Deriu et al., 2016).
Features for our model: 1. sentiment-specific MWE
embeddings, 2. sense-disambiguated word vectors, 3.
WordNet features, and 4. hand-crafted word features.
All these are explained in the section above.
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Rdxn R™i x (n—hi+1)
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Softmax
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Yeah, | will kick the E cket. I

Figure 3: Convolutional Neural Network model for twit-
ter sentiment classification. SSMWE: sentiment-specific
MWE features, SDWE: sense-disambiguated word embed-
dings, WNE: WordNet features, HC: hand-crafted features.

The details of the layers of the CNN architecture
are as follows:

1. Sentence Matrix A tweet is represented by hor-
izontal concatenation of d-dimensional word em-
beddings of its n constituent tokens. The tokens
can be any MWE present in the tweet or individual
words. This generates a matrix S € RY*" which is
input to the convolutional neural network model.

2. Convolutional Layer Convolution layer com-
prises of multiple filters of fixed length which are
convolved with the input sentence matrix to ex-
tract discriminative word sequence patterns use-
ful for classification. The convolution operation
is defined as under:

Ci = Z(S[i:i+h])k7j ‘ Fkrrlj @
k.j

where § is input sentence matrix, 4 is filter width,
and ka are m'™" filter’s coefficients. ¢; is the value
of the learned feature. The entire convolution of
the m'" filter with the input tweet produces 1 —
h+ 1 values which are concatenated together to
produce a vector ¢ € R""*1. The vectors ¢ are
then aggregated over all m filters into a feature
map matrix C € R"*(*=/+1),

3. Max Pooling The output of the convolutional
layer is passed through a non-linear activation
function such as hardTanh or sigmoid or RelLU.

Pooling layer aggregates vector elements by tak-
ing the maximum from each element of the con-
volutional feature map. The resulting vector is
Cpooled S RmXI-

4. Softmax Pooling layer output Cpeolea € R™ is
used for softmax regression which returns the
class § € [1, K] with largest probability. i.e.,

y=argmaxP(y = j|x,w,a) ®)
J

e(cpooledwj+aj)

= argmax 9
q g J ZkK—l e(Cpoolede +aj) ( )
where wj denotes the weights vector of class j and

aj the bias of class j.

e Model Parameters The objective of training the
model over a dataset of tweets is to learn the fol-
lowing parameter set: S,F,W,a. Where S is a
sentence matrix consisting of word embeddings,
F are filter weights, W are concatenation of the
weights wj for every output class in the softmax
layer, and a the bias of the softmax layer. The loss
is minimized using the Adam optimizer(Kingma
and Ba, 2014).

o Regularization We use the dropout method pro-
posed by (Srivastava et al., 2014) after the max
pooling layer: each dimension is randomly set to
0 using a Bernoulli distribution B(p) where p is a
hyperparameter. In addition, we complement this
method of regularization with L2-Regularization
of softmax parameters.

6 EXPERIMENTS AND RESULTS

6.1 Dataset and Experimental Setup

To evaluate our novel features for twitter sentiment
classification, we use supervised setup of convolu-
tional neural networks similar to (Kim, 2014). We
perform experiments on the benchmarked dataset
from SemEval sentiment analysis shared task (from
2013 through 2016). Since the datasets available on
SemEval website contain only tweet identifiers, we
used Twitter API to download the actual tweets. How-
ever, some of the tweets could not be downloaded as
they may have been deleted. Table 3 summarizes the
dataset of those tweets that we could obtain using the
APL

Baseline Methods

We compare our method with three top performing
systems whose methodology is very close to our ap-



Table 3: SemEval dataset summary. Txx stands for Twit-
ter20xx and S13 stands for SMS2013.

Pos Neg | Neutral All
Ti3train | 3,641 | 1,457 | 4,586 | 9,684
T13-dev 575 | 340 739 | 1,654
T13-test 1475 | 550 | 1513 | 3,547
ST3-test 492 | 394 | 1,08 | 2,094
TTd-test 982 | 202 669 | 1,853
LT T4-test 27| 304 AT | 1142
TT5-test 038 | 365 987 | 2,390
Tibtrain | 3,094 | 2,043 863 | 6,000
TT6-dev 843 | 301 765 | 1,099
Tl6-deviest | 994 | 325 681 | 2,000
Tibtest | 7.059 | 0| 3231 | 0
Total 20,620| 16722| 19953 | 53995

proach. Since we could not find their original im-
plementations, we re-implement these methods with
the choices of the hyperparameters for which they ob-
tained best results:

e NRC-canada (Mohammad et al., 2013): Top
ranked in SemEval2013 twitter sentiment clas-
sification task, their system uses diverse senti-
ment lexicons and hand-crafted features for train-
ing SVM classification model.

e Coooolll (Tang et al., 2014a): ranked 2nd on the
Twitter2014 test set of SemEval 2014 Task 9,
Coooolll employs SVM for twitter sentiment clas-
sification using their sentiment-specific word em-
bedding (SSWE)(Tang et al., 2014b) features in
addition to using features from (Mohammad et al.,
2013). They learn SSWE from 10M tweets using
emoticons in a distant supervision model.

e SwissCheese (Deriu et al., 2016): Top ranked
in SemEval-2016 twitter sentiment classifica-
tion task (Task 4), SwissCheese leverages large
amounts of data with distant supervision to train
an ensemble of 2-layer convolutional neural net-
works whose predictions are combined using a
random forest classifier. However, unlike them,
we did not train the model on 90M tweets in the
distant-supervised phase in the first epoch.

Preprocessing

We perform the following steps sequentially as pre-
processing:

1. Remove tweets that are too short (i.e., less than 6
words)

2. Remove @user, URLs, and hashtags from each

tweet as they directly do not contain sentiment in-
formation.

. We use the Stanford tokenizer* to tokenize the

tweets.

. Replace all occurences of MWEs by unique iden-

tifiers. We use WikiMWE(Hartmann et al., 2012)
which contains multiword expressions mined
from Wikipedia for finding occurrences of MWEs
in tweets. It contains over 350,000 multiword
units of size 2-4, including technical terminol-
ogy, non-compositional multiword expressions,
and collocations. For example, in the sentence
“Yeah, i will kick the bucket today”, we find
that the phrase kick the bucket is present in the
WikiMWE lexicon and so we replace it with
ktb001.

. Remove stop words?. To find stop words, we tem-

porarily convert the tweet words in lower case;
however, for subsequent processing, we keep the
words in their original case.

. Use of words like cooooolll, awesommmme, are

sometimes used in tweets to emphasize emotion.
We use a simple trick to normalize such occur-
rences. Let n denote the number of such let-
ters that have three or more consecutive occur-
rences in a given word. We first replace three or
more consecutive occurrences of the same char-
acter with two occurrences. Then we generate (g)
prototypes that are at edit distance 1 (only delete
operation, deleting only repeated character) and
look for this prototype in the dictionary to find the
word. For example, coooooolllll — cooll — cool.

. We use an acronym dictionary from an online re-

source® to find expansions of the tokens such as
gr8, lol, rotfl, etc.

. Assign a unique vocabulary id to each token. At

testing time, we ignore the unknown words.

Experimental Setup

e To find the prior polarity of words, we use Sen-

tiWordNet 3.0(Baccianella et al., 2010). Senti-
WordNet is a pre-trained lexical resource that as-
signs to each synset of WordNet 3.0 three sen-
timent scores: positivity, negativity, neutrality.
Since we perform WSD, using SentiWordNet pro-
vides us with better sentiment scores than other
lexicons such as MPQA, AFINN and Bing Lius
Opinion Lexicon.

“https://nlp.stanford.edu/software/tokenizer.htm

Shttp://www.nltk.org
Shttp://www.noslang.com



e We use DeepNL(Attardi, 2015) toolkit to

learn sentiment-specific multiword expressions’.
DeepNL implements (Tang et al., 2014b) and pro-
vides code for creating word embeddings from
text. We use a public dataset Sentiment140(Go
et al., 2009) which used distant supervision ap-
proach (using emoticons to generate sentiment la-
bel). Sentiment140 contains 1.6M tweets with
positive and negative labels.

e To learn multi-prototype word representations we
use (Bartunov et al., 2016)’s Adaptive Skip-gram
(AdaGram) model and their code from an online
git repository3.

e For implementing CNN, we have used Tensor-
Flow® and also borrow code from an online github
repository'®. We use Sentiment140 for learning
multi-prototype representations.

e To augment WordNet hypernym/hyponym fea-
tures, we use word2vec!! vectors which has vo-
cabulary of 3 million words and phrases. These
publicly available vectors have dimensionality of
300 and are trained on roughly 100 billion words
from a Google News dataset using the continuous
bag-of-words architecture(Mikolov et al., 2013b).

e We conducted our experiments on Intel Core i5
machine (4 cores), with 16 GB RAM.

Hyperparameters

e For learning SSMWE embeddings (DeepNL):
size of word window: 5, embedding vector size:
100, learning rate: 0.05, number of hidden neu-
rons: 200.

e For CNN classification model: filter sizes: 3,4,5,
number of filters per filter size: 128 filters per
filter size, learning rate: 0.001, activation unit:
ReL.U, dropout probability: 0.4.

e For finding multi-prototype representations (Ada-
Gram): size of word window: 6, embedding vec-
tor size: 200, maximum number of learned proto-
types: 3, parameter for Dirichlet process a: 0.1,
minimum word frequency below which a word
will be ignored: 20.

Thttps://github.com/attardi/deepnl

8https://github.com/sbos/AdaGram.jl

https://www.tensorflow.org/

10https://github.com/bernhard2202/twitter-sentiment-
analysis

https://code.google.com/archive/p/word2vec

6.2 Results and Error Analysis

Table 4 shows the results on the SemEval test datasets.
It shows the comparison of macro-averaged F1 score
(for all three classes: positive, negative, neutral) we
obtain using our CNN model trained with baseline
features and newly introduced features. SSWE fea-
tures use (Tang et al., 2014b)’s sentiment-specific
word embeddings, SSMWE uses our sentiment-
specific MWE embeddings. Each subsequent row of
the table uses additional features with SSMWE fea-
tures. SDWE uses sense-disambiguated word embed-
dings, HC uses hand-crafted features, and WNE uses
word2vec embeddings of the hypernym and hyponym
of each word. Results are displayed on the combined
set of tweets in the training, testing, and development
sets for each SemEval dataset. The last column in
table (8) shows the incremental percentage improve-
ment each from the previous step starting with SSWE
(baseline).

Table 4: Effect of our features on SemEval dataset. Overall
14.24% improvement from baseline.

ieatures S13- LJ14- T13- Tl4- TI15- Tl6- 8

test test  test test test test

word2vec 51.76 53.09 50.44 50.58 58.87 60.89

SSWE 6281 70.04 69.76 63.56 65.33 61.71 0
SSMWE 7043 7033 71.66 68.45 71.12 7004 *732%
*SDWE 29 11 71.69 74.11 72.53 73.76 72.67 T>>1%
+HC +3.41%

75.02 73.87 75.38 77.13 75.11 75.17

+WNE -10.1%

69.78 69.34 70.06 65.89 66.33 65.57

Table 5 compares our best best SSMWE model
with baseline models. NRC-canada is our implemen-
tation of (Mohammad et al., 2013) which uses hand-
crafted features and sentiment scores from many on-
line sentiment lexicons; Cooolll is our implementa-
tion of (Tang et al., 2014a) which uses SSWE; Swiss-
Cheese is our implementation of (Deriu et al., 2016)

Table 6 presents the confusion matrix with re-
spect to all consolidated SemEval data with our
SSMWE+SDWE+HC features.

Table 7 presents the effect on Macro-F1

score by various combinations of features.
For example, column 2 of row 2 shows the
results with SSMWE+HandCrafted features,

and column 3 or row 2 are the results of
SSMWE+HandCrated+WordNetEmbeddings  fea-
tures.



Table 5: Macro-F1 comparison of baseline with our model
on SemEval test datasets.

Model S13-| LJ144 T13-| T14-| T15-| T16-
test | test | test | test | test | test

NRC-
Canada 66.23| 70.34| 67.51| 68.13| 69.12| 70.30

Coooolll

67.68| 72.90| 70.40| 70.14| 71.09| 68.23

Swiss-

Cheese 67.81| 67.19| 68.01| 68.95| 64.75| 62.83
SSMWE

Best 74.43| 74.44| 77.33| 76.39| 75.21| 74.87

Table 6: Confusion matrix with respect to all consolidated
SemEval test data with our SSMWE+SDWE+HandCrafted
features.

Positive | Negative | Neutral
Positive 7815 933 2724
Negative 1322 3334 405
Neutral 1657 2044 11424

Table 7: Effect of various feature combinations on macro-
F1 score on consolidated SemEval dataset.

SSMWE | +SDWE | +HCraft | +WNE

+SDWE 72.29 75.46 67.87

+HCraft — 69.17 70.91

+WNE = . 62.61
Discussion

As can be seen from the results, our novel se-
mantics based distributed features significantly out-
perform baseline. Table 4 shows the incremental
percentage improvement in accuracy starting with
SSWE. Rather than using all unigram and bigram em-
beddings, using only MWE embeddings (which are
sentiment-encoded) increases the macro-averaged F1
score by 7.32%. We attribute this to the fact that
MWE:s are independent semantics-bearing units so
that the use of distributed representations learned in
sentiment-distinguishing supervised model provides
better discriminative power over ngram word embed-
dings. Adding sense-disambiguated word embed-
dings (SDWE) improves the score further by 3.51%
totaling 10.83% improvement over baseline. While
word2vec vectors learned from a massive dataset ex-
hibits algebraic semantic compositionality, they are
found to be less suitable for tasks requiring finer se-
mantic processing since they ignore different mean-
ing of the same word. On the other hand, because of
their use of distributed representations of the correct
sense of each word, SDWE seems intuitively appeal-
ing features for the underlying classification model

and achieves higher accuracy score. Adding hand-
crafted features further increase the score by 3.41%
totaling 14.24% overall improvement. The reason
for this is in our view largely because of two particu-
lar hand-crafted features: negation, and prior polarity
from existing sentiment lexicons. Lastly, we note that
using WordNet hypernym and hyponym words em-
beddings degrade the performance. This is owing to
the fact that including hypernym and hyponym em-
beddings “dilutes” specificity of the feature. We un-
dertake a more principled investigation of this in our
future work.

It is observed from Table 6 that misclassifications
between positive and neutral categories are more fre-
quent than other classes. We believe this is due to the
limitation of our model in understanding “objective”
polarity of the tweet given the words present. How-
ever, we also note that there are many errors in gold-
standard human evaluations too with respect to this.
Another observation is the difficulty in achieving pre-
cision in negative class. This is due to the sarcasm
and idioms used to convey negativity.

Error Analysis

Throughout the development and testing of our de-
veloped approach, we noticed several cases where
the errors are inevitable regardless of the efficiency
and soundness of the model because of either lack of
discriminating information or the subjectivity of the
statement that would make any sound mathematical
model void. Examples of such non-avoidable errors
are listed below:

e Errors due to presence of equal number of words
with opposing polarity. For instance, our method
misclassified the tweet: ’Girls Gone Wild’ cre-
ator Joe Francis hit with $20 million verdict in
Steve Wynn lawsuit... as positive due to presence
of words “gone wild” and “verdict” even though
the polarity of the tweet is negative.

e Errors due to unseen words and phrases. E.g., the
tweet Why these mfs jus blastin Rella like itz the
hood on Saturday N shit lolz smh is misclassified
as positive due to the word ’lolz’. However most
of the words in this tweet were unknown to the
system.

e Errors due to non-standard way of writing a
word/slang or unknown slang. E.g., the tweet even
the sun shines on a dogs a$$ some days ... was
misclassified as positive owing to the failure of
our system to understand "a$$’.

e Errors due to information loss from hashtag re-
moval in preprocessing where many tweets have



crucial information about the sentiment in the
hash-tag. For example, the tweet Buzzed that Im
going Amsterdam on Friday! Ajax tickets could
do with turning up though #fuckyouviagogoext is
misclassified as positive in our system.

7 CONCLUSIONS

In this paper, we proposed three novel semantics-
based distributed representation features for Twit-
ter sentiment classification: sentiment-specific multi-
word expressions embeddings (SSMWE), sense-
disambiguated word embeddings (SDWE), and hy-
pernym and hyponym embeddings (WNE) of the cor-
rect sense of a given word. Because of its acknowl-
edged performance in past SemEval Sentiment Anal-
ysis competitions, we advocated the use of a convolu-
tional neural network architecture. The performances
of the newly introduced features are then compared
to state of art model and baseline in SemEval bench-
marked dataset, where an improvement of more than
14% has been testified. On the other hand, the results
also showed that unlike the previous approaches to
learn all bigrams and trigrams embeddings, learning
specific (MWE) embeddings provides better discrim-
inative features for classification. Further, we pre-
sented an approach to learn such distributed represen-
tations of MWE jointly encoding their sentiment po-
larity information into them. Motivated by our finding
that word2vec embeddings learned from massive text
datasets ignores polysemy and thereby fails to faith-
fully represent fine semantic information, we also ad-
vocate the use of sense-specific word embeddings for
twitter sentiment classification.
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