
The Mid Level Data Collection Ontology (DCO)
Generic Data Collection using a Mid Level Ontology

Joel Cummings and Deborah Stacey
School of Computer Science, University of Guelph, Guelph, Ontario, Canada

Keywords: Mid Level Ontology, Data Collection Ontology (DCO), BFO, Data Collection, OBO Foundry, Foundational
Ontology, Upper Level Ontology, Domain Ontology.

Abstract: Capturing data through an ontology is a common goal where instances exist as datums mapping to universal
terms defined in an ontology. Currently these ontologies lack a shared conceptualization for data collection
terms. We propose a mid level Data Collection Ontology (DCO) that defines data collection terms in a domain
agnostic way enabling extension for domain ontologies to build off of. Such an ontology should provide
reasoning support and enable automated error detection required by all data collection ontologies. By using the
Basic Formal Ontology (BFO) as its base it enables existing OBO foundry ontologies to extend the proposed
ontology in their design allowing existing domain level ontologies an entry point.

1 INTRODUCTION

Collecting data is a common purpose for an ontology
whose terms, descriptions, and relationships describe
universal categories that collected data are arranged
under as instances. Due to the requirement of domain
terms these ontologies are created at the domain level
meaning they only seek to define terms that reflect
the particular domain they operate in, ignoring hierar-
chies and more general terms that may apply to other
areas. The result is an ontology that defines data col-
lection with a domain specific view of the world.

We define ontology as a shared conceptualization
that should seek to define terms in their most for-
mal regard and should not use terms that are specific
to particular areas wherever possible (Gruber, 1995).
The data collection components of domain specific
ontologies provide little in the way of reuse poten-
tial and violate the idea of shared conceptualization
in defining data collection terms. Ontology develop-
ers should therefore strive to produce solutions that
enable reuse among other ontologies instead of re-
defining terms and patterns that can be defined once
and shared (Gruber, 1995). It is for this reason upper
level ontologies exist that seek to define terms that are
necessary for any ontology. An example is the Basic
Formal Ontology (Bas, 2017) which defines domain
neutral terms that can be used for all ontologies due
to their high level of formalism and domain agnosti-
cism. BFO starts by organizing terms by where they

sit in the world based on if they exist in time space.
Therefore, upper level ontologies seek to serve all

ontologies regardless of domain or purpose. Mid level
ontologies are a level deeper and build off of upper
level ontologies by providing terms that apply to on-
tologies of a large domain or similar purpose and put
these terms in the appropriate hierarchical space de-
fined by the upper level ontology they extend. This
provides a stepping stone for domain level ontologies
through allowing them to share more specifically re-
lated terms with other domain level ontologies and
increasing the potential for reuse that upper level on-
tologies offer. In the context of our problem we might
say that our domain or purpose is data collection and
we seek to define terms to allow data collection re-
gardless of domain. In this case the definition of mid
level ontologies is what we are interested in. Thus we
ascertain that our problem centers around the creation
of a mid level ontology that serves to define the data
collection domain. We argue that the creation of a mid
level ontology for the purpose of data collection will
help foster reuse and enable faster creation of domain
level ontologies that collect data through instances.

In this paper we present our idea for what a mid
level Data Collection Ontology (DCO) will look like,
where it fits in the ontology hierarchy and how it will
remain domain independent. Specifically, we will
look at particular definitions and where the DCO fits
into the existing ontology framework.

Cummings J. and Stacey D.
The Mid Level Data Collection Ontology (DCO) - Generic Data Collection using a Mid Level Ontology.
DOI: 10.5220/0006497501750182
In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2017), pages 175-182
ISBN: 978-989-758-272-1
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 BACKGROUND

Ontologies that are designed for reuse in a more gen-
eral form will help to frame our problem and provide
terms as a starting place for our design. In this section
we discuss different types of ontologies and the level
of concern they have for reuse to determine if and
where existing designs or ontologies can be reused by
a generic data collection ontology. We then focus on
ontology categorization in the context of where our
problem is best tackled keeping in mind our desired
high level view of data collection. Finally, we summa-
rize by drawing conclusions on existing designs and
what needs to be done in terms of defining generic
and reusable ontologies.

Ontological research has become widespread in
the design of information systems. Recently the de-
sire for ontologies to span and integrate different
views of a domain and even across domains has come
to fruition (Mascardi et al., 2010). The development
of these ontologies provides the opportunity for sys-
tems to integrate and become interoperable allow-
ing for information sharing (Herre, 2010) (Mascardi
et al., 2010). In this case an ontology acts as a
bridge between systems unifying information (Herre,
2010) and allowing systems to communicate through
the ontology using their standard language and mes-
sage passing techniques. Unifying data allows the
key components of one or more domains to be cap-
tured and shared among ontologies that further define
a particular domain. The ability for an ontology to
capture a particular domain is related to its viewpoint
of the world, each ontology imposes a particular view
which defines its ability to share information. This
viewpoint is therefore what we are concerned with.

2.1 Classifying Ontologies

Domain level ontologies are ontologies that seek to
capture a shared conceptualization of a particular do-
main. These ontologies contain domain specific terms
and may only be linked to a specific application
(Roussey et al., 2011). Domain ontologies are im-
portant in that they describe the type of data we seek
to capture but for our problem we may not assume
any particular domain to capture data from. A do-
main level ontology, however, could represent the end
product for a system using our ontology.

A core ontology is linked to a particular domain
but has the advantage of providing several view-
points relating to different user groups (Roussey et al.,
2011). Core ontologies are often the result of several
domain level ontologies mapped together (Roussey
et al., 2011). Core level ontologies represent a higher

level of term generality as they seek to span and
provide definitions for a wider domain or domains.
From our perspective core level ontologies are cer-
tainly closer but still maintain the requirement of do-
main specific content within them and cannot generi-
cally be applied to any domain.

Foundational or upper level ontologies can be
summed up with the following definition: a founda-
tional ontology seeks to provide definitions and terms
that are general to all domains. (Mascardi et al.,
2007). They serve as a building block for future on-
tologies by enabling reuse since they define common
terms that will be contained by domain level ontolo-
gies. The goal of an upper level ontology is to avoid
the redefinition of common terms to allow for easier
and consistent reuse of defined terms. In other words
they provide a single agreed upon definition of terms
(Mascardi et al., 2010) (Roussey et al., 2011). More
importantly however is the fact that they are designed
to support all domains which differs from core or do-
main ontologies that only define terms for their par-
ticular domain, likely choosing specific (overloaded)
definitions over general definitions (Roussey et al.,
2011).

A mid level ontology seeks to provide a bridge
between an upper ontology and a domain level on-
tology by providing terms that will be common to
several domain level ontologies or areas of domain
level ontology (Ceusters and Smith, 2015). There-
fore mid level ontologies serve a similar purpose to
the upper level ontology by preventing term redefi-
nition and providing consistent relationships but at a
more specific level. This has several advantages in
addition to avoiding redefinition, firstly, it provides
a common understanding between derived ontologies
through similar terms, structures and relations, sec-
ondly, it provides a more streamlined starting place
for those new to the construction of ontologies by pro-
viding terms more closely related to their domain than
that of upper level ontologies. In terms of an ontology
category hierarchy the mid level ontology falls in the
middle with domain level ontologies extending mid
level ontologies and mid level ontologies extending
upper level ontologies. The full hierarchy can be seen
in fig. 1.

One might then wonder why the work put into
the development of upper level ontologies has not re-
sulted in a common ontology that is shared among
all domain level ontologies. One particular reason for
this is down to implementation, where languages im-
plemented by computer scientists are based on set the-
ory that captures abstract content well but does not
capture the concrete objects and their relationships
well enough to be completely generic (Degen et al.,



Upper Level Ontologies

Mid Level Ontologies

Core Ontologies

Domain Level Ontologies

Application Ontologies

General terms for all ontologies to be 
based off. Enforces high level structure.

Bridge the gap between generic upper 
level terms to domain level terms.

Core ontologies define multiple view 
points or multiple domains.

Ontologies that define the view a 
particular domain has of the world.

Local or Application ontologies define a 
view specific to a particular application

Figure 1: Ontology Classification Hierarchy.

2001). More recently the author of the General For-
mal Ontology (GFO) stated that we may not be able
to meet such a lofty goal at all (Herre, 2010). How-
ever, for our purposes this is still acceptable since we
must work with what is available. With that in mind
we will focus on available upper level ontologies to
seek a design that best meets our needs. All of our
ontologies are sourced from Mascardi et al (Mascardi
et al., 2007) due to their capturing of relatively recent
and active implementations. For evaluation we will
define a criteria that will help us to draw conclusions
based on upper level ontology design, purpose, and
applications.

The first criteria we define is based on the num-
ber of terms and relations in the ontology, where we
prefer to have fewer of each for two main reasons.
Firstly, upper level ontologies are meant to be derived
into a domain level ontology and thus will have more
terms and relations added over time and, large ontolo-
gies introduce performance penalties potentially re-
sulting in an ontology that is intractable for a reasoner
(Horrocks, 2005). Secondly, in terms of understand-
ability the fewer terms a person must know to use an
ontology the easier it is to get started. Furthermore,
large ontologies may deter usage of the ontology al-
together.

The second criteria we care about is usage and
popularity. Popularity of an upper level ontology is
important when considering its purpose of unifying
ontologies. Also, an upper level ontology must be free
from any domain specific terms or relations. Finally,
we are not interested in ontologies that take the role of
defining thousands of terms to satisfy a large number
of domains since it is unlikely such an ontology could
satisfy each domain realistically.

Ontologies considered include: the Basic For-
mal Ontology (BFO), the General Formal Ontology
(GFO), a Descriptive Ontology for Linguistic and
Cognitive Engineering (DOLCE), and the Suggested
Merged Upper Ontology (SUMO).

For the sake of brevity we will focus on our choice

based on the criteria defined above, although all ver-
sions were evaluated and its likely a case could be
made for any of the above upper level ontologies. Our
choice was the Basic Formal Ontology (BFO) which
is an an upper level ontology with development start-
ing in 1998 (Mascardi et al., 2007). It currently con-
sists of 35 classes in version 2 making it relatively
small (Bas, 2016). BFO is commonly applied in the
biology domain but does exist in a number of other
domains and is used in over 150 ontologies as of
this writing (Bas, 2016). BFO itself contains no do-
main specific content, and focuses on describing ob-
jects through time and space which is common to all
physical objects. It considers both abstract and con-
crete terms and seeks to define terms based on their
lifespan as either occurrent or continuant, with occur-
rent defining objects that exist during a period of time
while continuant objects exist throughout time (Bas,
2016).

In terms of our criteria, BFO does well through its
definition of only high level concepts involving time
and space, maintaining a small size making the ontol-
ogy suitable for additional development and for rea-
soning. In terms of popularity and usage we examined
resources on the web to see how many ontologies cite
themselves as using each considered upper level on-
tology. On the BFO web page they cite well over 150
ontologies or projects using BFO (Bas, 2016). The
important point here is that the projects stem from
more than just the biological field which was not the
case for other entries.

Based on our defined criteria, BFO fairs best
which is why we will focus on discussing BFO and
why it best fits our needs. The Basic Formal Ontol-
ogy is in its second major version therefore we will
focus on that version in discussion of terms and struc-
ture although the first version is quite similar (Bas,
2016).

2.1.1 Mid Level Ontologies

BFO provides a starting point for the creation of an
ontology but does not give direction about where to
stop development which can go to various levels (see
section 2.1). We propose a mid level ontology as the
design target for the problem and in this section dis-
cuss why that choice best reflects the problem, our
definition of ontology, and works with the chosen up-
per level ontology. We will start at examining how
the problem fits with this design as well as discussing
downsides to the design.

Mid level ontologies seek to define a domain that
is at a very high level and span multiple ontologies.
They therefore are generally independent and define
terms at a high level to avoid conflict with ontologies



that will extend them. This fits well with our prob-
lem since it is expected that our solution will form
the basis of a domain ontology but not be exhaustive
in term definition. Second in terms of our definition
they seek to define terms as generically as possible
but also while avoiding redesigning existing ontolo-
gies and redefining terms.

Another important part of mid level ontology
compatibility is the source ontology. The OBO
foundry provides the framework and existing ontolo-
gies that are developed using BFO and demonstrates
existing mid level ontologies that are active. This
demonstrates merit to the proposed pattern as it pro-
vides concrete examples functioning with the Basic
Formal Ontology (WG, 2017). Furthermore, the Ba-
sic Formal Ontology does not have a derived ontol-
ogy that exists for this particular problem demonstrat-
ing a gap in existing mid level ontologies into which
our solution could fit. The design of BFO has taken
into consideration mid level ontologies with working
examples of mid level ontologies and domain level
ontologies utilizing those mid level ontologies (WG,
2017).

3 ONTOLOGY DESIGN

This section is dedicated to an overview of the Data
Collection Ontology (DCO), its components, rela-
tions, and design choices that make it suitable for data
collection. The DCO is designed as a mid level ontol-
ogy that extends the Basic Formal Ontology (BFO)
to organize and provide placement for data collection
terms. The DCO seeks to provide domain indepen-
dent definitions as a starting place for domain data
collection developers. Due to the fact that the DCO
is a mid level ontology and is in its early design it is
by no means finished and is expected to change over
time. Like an upper level ontology it may be found to
be incorrect or lacking and will need to be updated.

With its purpose in mind we start by noting the
design intentions in other words: how it is expected
to be used by domain ontology developers. We then
move on to discussing the components and relations
of the ontology to understand why particular compo-
nents exist and how they contribute to the intended
use of the ontology.

3.1 Design Intentions

The design intentions are an important place to start
since they set the basis for how one is expected to
use the DCO. The design has a philosophy about how
data collection should be performed and does so at a

high level allowing for more specific work flows to
be integrated. This view is based on first describing
what you are collecting; these are subjects which rep-
resent a timeless view of your object. The DCO uses
BFOs independent continuants to define subjects that
describe objects as they are in concept but not as an
instance that exists in time and space. Instead, your
captured data are represented as instances and have a
type of the subject. DCO also includes processes to
capture how data is collected and what stages it goes
through. This is common in data collection activities
such as surveys or cyclic forms of collection. Addi-
tionally DCO places stress on types and units through
the definitions of datums that capture both measures
and units of measure ensuring all values are labelled
appropriately. The final portion of the ontology con-
sists of classifiers that are entities in BFO since they
are time and space irrelevant and may be used to clas-
sify any type. In this case it was felt that classifiers
should not be restricted to time or space due to their
function of classifying any type.

Classifiers are hierarchies of terms over which
one defines equivalence relations to define what con-
stitutes this particular category. Classifiers are de-
signed around the suspicions or anecdotal estimates
of what range one expects data to fall into. Clas-
sifiers are designed to be populated with instances,
which exist as individuals of any type in the ontol-
ogy. These instances are then grouped based on the
reasoner and can be queried to determine if they are
of the expected type when entered in the ontology. In
other words, it allows validation of the estimates or
anecdotal data one has. Classifiers provide additional
advantages concerning data validity in that they are
non-destructive whereas traditional approaches may
place strict boundaries on collected data, removing
instances that do not fit. Classifiers allow invalid or
inconsistent data to be filtered but not permanently re-
moved if an inconsistency in classification is detected.
This supposes there is a dynamic aspect of the ontol-
ogy that over time will be shaped by the instances that
it collects and that definitions will be challenged.

3.2 Ontology Components

With the high level view of DCO established we can
further break down its main components: Subjects,
Processes, Data Qualities, Classifiers, and Meta Data.
In this section each of these terms are defined. We
then move on to using the components with the de-
fined object and data properties to form a working ex-
ample of the DCO. Due to the main premise of the
DCO, or any mid level ontology, the DCO only de-
fines terms at a relatively high level.



Table 1: Object Relations.

Relation Description

has part Allows individuals to be com-
posed of other instances. This
is important where data is cap-
tured on different parts of a
larger item or data is aggregated
into a larger sum. Composition
should not be thought of only in
terms of physical objects having
parts.

has measure Measurements are considered
any numerical value one cap-
tures and links to an individual.
Note that this is a object prop-
erty so it forces one to link to
some descriptor for the value.

Subclass of has measure

has measure-
ment datum

This will be one of the most
common properties as it links
measurement datums to individ-
uals so data is annotated with
units.

has measure-
ment unit

This provides a link for unit
definitions to measurement da-
tums.

has time stamp Links a time value to some mea-
surement datum that contains
some time unit allowing a uni-
versal way to save time in an on-
tology.

3.2.1 Classes

Subjects represent what data is being collected from
or about. Subjects can be either physical objects
or concepts, meaning types can be either material
or immaterial. Subjects are designated as indepen-
dent continuants, meaning they should only repre-
sent high level subjects. For example, if we are sur-
veying people then the subject may be a person and
we would define person at a universal level while in-
stances may have a relationship with the person sub-
ject, i.e. part to Person but are themselves occur-
rent and do exist in space time. Additionally, through
BFOs Role class, one can assign the roles that Sub-
jects may operate in .

Processes fall under the BFO definition with ex-
tensions provided by DCO for convenience and al-
low one to support both state driven and independent
processes. State driven processes require one process
block to finish before another can start while indepen-

Table 2: Object Relations Continued.

Relation Description

contains
process

Links a process to an object. For
example, some subject may go
through some process that data is
captured on. The data collection
may itself be a process and have a
relation to another process.

has quality Allows instances to possess partic-
ular qualities or require particular
qualities on data being classified.

has object
control

Used for objects that act as a con-
trol. For example, in a process
something may be a terminator.

branches to Supposes that an instance in a pro-
cess will branch to another instance
when it has completed. Allows for
order to captured.

dent processes can have any number of process blocks
running concurrently.

Classifiers are where equivalence relations are de-
fined to classify instances in your ontology. Classi-
fiers are where one would normally define the range
that data is expected to fall into so as to form a par-
ticular category or type. One may think of a classifier
as having the ontology assign a type to an individual
based on its understanding. Classifiers can be thought
of as the dynamic component of the ontology. They
are designed to change as data may prove them to be
invalid or individuals may change if they are proven
invalid based on the ontology’s view of the world. For
an example of how classifiers look see Table 2.

Meta Data are descriptors that exist to define a
data point or complex structure that one expects an
individual to contain. Meta data describes the types
and units that data will exhibit allowing one to cap-
ture data in multiple formats and multiple units but
have it link to the same individual type without caus-
ing confusion later. An example case of this would
be if a study were conducted across North America
where in Canada the metric system dominates while
Americans use the imperial system. Data could be
captured for the same study using different meta data
classes to describe the units.

Data Qualities exist to define restrictions and set
theory properties on instances that can be used as a
part of the classifiers to group instances or as a part
of a larger system. Examples of data qualities include
boundedness, cardinality, and equality.



Classifier

ClassiferEX1 ClassifierEX2Equivalency Relations

InstanceEX1 InstanceEX2

 ClassifierEX1"Has_expected_type Has_expected_type

Classifiers group instances 
based on equivalency 
relations using a reasoner 
where the has expected type 
serves to store the classifier 
you expect an instance to be 
grouped under

Based on the has_expected_type 
one can see where there is a 
discrepancy between the reasoned 
type or the ontology view of the 
world and the expected view 
highlighting an error on either side

Figure 2: Classifiers.

3.2.2 Relations

In addition to the classes defined, DCO defines sev-
eral high level relations that are designed to be sub-
classed and added to. Object relations are summed up
in Tables 1 and 2 with data relations being summed
up in Table 3.

4 WORKING EXAMPLE

As an example of how the design works we will con-
struct a very basic ontology around collecting vehi-
cle performance data with a goal of comparing the
consistency of output figures against other instances
(vehicles) of the same type. The first subject of our
collection will be Vehicle which is the most generic
object. The Vehicle subject will describe what a vehi-
cle is composed of from the performance perspective
as this is the view our ontology has of the world. For
example, every vehicle has an Engine and a Transmis-
sion so we will define those as other subjects since we
are interested in these components as they alter a vehi-
cles performance substantially. Our last subjects will
be the Make and Model since we need to compare
like vehicles and therefore need to know who manu-
factured them.

Now we define the relations between our subjects.
Vehicles are made up of an Engine and a Transmission
so we can use composition to define a Vehicle having
those parts. DCO defines the part of relation which
allows us to produce a composite relationship. Addi-
tionally, models are produced under some Make and

Table 3: Data Properties.

Relation Description

has expected
property

Denotes what property this
value is intended to represent.
This is designed primarily for
external use where a value may
link with a variable.

has expected type Denotes what type we expect
an instance to be. This is in-
tended to be used in conjunction
with classifiers allowing ontol-
ogy verification based on ex-
pected types. It is additionally
intended to be used to link to
external systems where we want
an instance to link to a particular
type.

has control Represents data values that act
as controls such as booleans that
alter the flow of a process.

Subclass of has control

can repeat Denotes whether a particular
entity can repeat such as a pro-
cess block. Some processes
may be cyclical.

has sequence Denotes a sequence value that
may be used to order process
blocks or other entities.

has value The base compositor for values
allows an instance to be com-
posed of particular values.

Subclass of has value

has coordinate
value

Used for denoting the location
of instances.

has maximum Represents a maximum ex-
pected value for an instance to
have; good for creating ranges.

has minimum Represents a minimum ex-
pected value for an instance to
have; good for creating ranges.

has time value Links time values to instances.
Note that format is independent
and can be any type based on the
ontology design.

has percentage Values can be captured as per-
centages.

has measurement
value

Used to link measurement val-
ues to measurement datums.

we can consider them part of what a company pro-
duces. For our example, we can use the has part for



Vehicle to the Engine and Transmission and we can
subclass part to to include example of for Vehicle to
Model while adding produces to has part to state that
a manufacturer produces Vehicles and Models.

Moving on to the data we would like to capture,
we will define measurement datums that will capture
key performance points for a vehicle. In this sim-
ple example we would like to capture the power and
torque the vehicle produces so we will define some
common units. Power is measured commonly us-
ing horsepower and kilowatts while torque is mea-
sured commonly using foot pounds and newton me-
ters. These are defined as instances under Power Unit
and Torque Unit measurement units respectively. Fi-
nally we create datums for power that requires a nu-
merical value and some power unit as well as torque
that requires a numerical value and some torque unit.
With these measures defined we will say that a sub-
class of an Engine requires at least one of each mea-
sure using has measurement datum relation. Datums
are also defined for fuel economy in a similar way
with fuel economy units and a Vehicle having mea-
sures for city, highway, and combined fuel economy.

The design can be illustrated as seen in fig. 3
where datums and units are defined as well as subjects
linking to their respective datums. This is the general
structure expected for data that is to be collected on
subjects.

Now since we are capturing data on vehicle per-
formance we may define classifiers that are based
on estimations of what we expect. For this example
let us say we are verifying vehicles are within their
rated power measurements so we will define classi-
fiers based around manufacturer provided power and
torque ratings for a particular vehicle and apply some
expected variance to create boundaries. These clas-
sifiers will use range values around the power and
torque measurement datums we just defined. This al-
lows us to create classifiers around a particular model
using values for the Make and Model as well as ranges
for power and torque for a particular engine to group
our vehicles. The greatest importance here is when
populating the ontology we must use the has expected
type relation and link to the corresponding make and
model classifier to allow the data and the ontology to
be validated. This is done by using the reasoner to
add the type of our added instances and then querying
the reasoner for the intersection of instances that are
not the same type as the has expected type URI value
stated. In other words, this presents there is an error
with the vehicle that data was captured on or that the
ontology has an inaccurate view of what values are
valid for that vehicle. In creating classifiers it is useful
to assign a name that relates to what you are capturing

so has expected type values can be application or hu-
man generated very easily. For example, in our case
we might name a classifier DodgeRam57Auto to de-
note that we expect this classifier to group all Dodge
Ram pickups with the 5.7 litre engine and automatic
transmission making it easy to to generate the URI
with the data we use to populate an instance.

5 CONCLUSIONS

We have presented our Data Collection mid level on-
tology (DCO) which is a mid level ontology provid-
ing domain agnostic data collection terms and provid-
ing reasoning capability for derived ontologies. Based
upon BFO, this ontology provides an entry point for
OBO foundry ontologies that already make use of
BFO as their source. Additionally through the use of
the BFO and defining high level terms the DCO will
achieve its goal of domain agnosticism.

The use of a mid level ontology for data collection
provides several key advantages over domain level
designs starting with defining common terms that all
data collections ontologies will require in some form.
Secondly, it sets up ontologies for reasoning and uses
the reasoner for much of the typing and labelling of
data to allow for automated error checking and error
prevention.

In a deeper context the DCO provides greater ben-
efit to systems at large though its classifiers which
provide two key benefits. Firstly, they allow data in-
consistencies to be caught through comparing the as-
signed type to the has expected type where the classi-
fier is known to be good. Secondly, they allow esti-
mated ranges through the ontologies world view to be
validated. They may be proven to be invalid when the
assigned type and has expected type do not match but
a datum is known to be good. This allows the ontol-
ogy to help perform “error detection” in an external
system through the use of classifiers. Secondly, it can
allow external systems to resolve inconsistency on the
ontology itself, creating a dynamic ontology design.

Finally, the existence of a mid-level data collec-
tion ontology based on BFO also serves the existing
ontological community using the BFO ontology who
have a domain ontology and are interested in adding
data collection to their domain ontology or are look-
ing to classify existing ontology instances.

For the full Data Collection Ontology, please
email either of the authors who will provide it to you
in various formats.



Vehicle Engine

Measurement 
Datum

Has_part some Engine

Power 
Datum

Measurement 
Unit

Horsepower LB/FT l/100km

Power Unit

Fuel 
Economy 

Datum
Has unit some Consumption Unit

Subject
Subjects

Measurement Units Defined as 
Instances

Measurement datums are 
defined for the measures 
that expected to be 
captured from subjects. 
They serve to link values 
with some unit type.

Two Subjects are 
defined for fuel 
economy in this case, 
the engine and a 
vehicle that data will be 
captured from.

Measurement types 
are divided into broad 
categories: power units 
for engines and 
consumption for 
vehicle fuel economy

Consumption 
Unit

Has Unit exactly 1 Power Unit

Has Measurement Datum exactly 2 power datums
Has Measurement Datum exactly 3 Fuel Economy Datum

Figure 3: The Vehicle Ontology.

REFERENCES
(2016). Basic formal ontology (BFO) — users.

http:// ifomis.uni-saarland.de/bfo/users. (Accessed on
02/12/2017).

(2017). Basic formal ontology. http://www.obofoundry.org/
ontology/bfo.html. (Accessed on 03/26/2017).

Ceusters, W. and Smith, B. (2015). Aboutness: To-
wards foundations for the information artifact ontol-
ogy. pages 1–5.

Degen, W., Heller, B., Herre, H., and Smith, B. (2001). Gol:
A general ontological language. In Formal Ontology
and Information Systems. Citeseer.

Gruber, T. R. (1995). Toward principles for the design of
ontologies used for knowledge sharing. Int. J. Hum.-
Comput. Stud., 43(5-6):907–928.

Herre, H. (2010). General Formal Ontology (GFO):
A Foundational Ontology for Conceptual Modelling,
pages 297–345. Springer Netherlands, Dordrecht.

Horrocks, I. (2005). Description logics in ontology applica-
tions. In International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods,
pages 2–13. Springer.

Mascardi, V., Cordı̀, V., and Rosso, P. (2007). A comparison
of upper ontologies. In WOA, volume 2007, pages 55–
64.

Mascardi, V., Locoro, A., and Rosso, P. (2010). Automatic
ontology matching via upper ontologies: A system-
atic evaluation. IEEE Transactions on Knowledge and
Data Engineering, 22(5):609.

Roussey, C., Pinet, F., Kang, M. A., and Corcho, O. (2011).
An introduction to ontologies and ontology engineer-
ing. In Ontologies in Urban Development Projects,
pages 9–38. Springer.

WG, O. T. (2017). The OBO foundry. http://www. obo-
foundry.org/. (Accessed on 03/26/2017).


