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Abstract: Cross-domain sentiment classification consists in distinguishing positive and negative reviews of a target do-
main by using knowledge extracted and transferred from a heterogeneous source domain. Cross-domain so-
lutions aim at overcoming the costly pre-classification of each new training set by human experts. Despite
the potential business relevance of this research thread, the existing ad hoc solutions are still not scalable
with real large text sets. Scalable Deep Learning techniques have been effectively applied to in-domain text
classification, by training and categorising documents belonging to the same domain. This work analyses
the cross-domain efficacy of a well-known unsupervised Deep Learning approach for text mining, called
Paragraph Vector, comparing its performance with a method based on Markov Chain developed ad hoc for
cross-domain sentiment classification. The experiments show that, once enough data is available for training,
Paragraph Vector achieves accuracy equivalent to Markov Chain both in-domain and cross-domain, despite
no explicit transfer learning capability. The outcome suggests that combining Deep Learning with transfer
learning techniques could be a breakthrough of ad hoc cross-domain sentiment solutions in big data scenarios.
This opinion is confirmed by a really simple multi-source experiment we tried to improve transfer learning,
which increases the accuracy of cross-domain sentiment classification.

1 INTRODUCTION

Understanding people’s opinions about products, ser-
vices, brands and so on is a compelling sentiment
classification task of valuable importance for opera-
tional as well as strategic business decisions. Never-
theless, semantic comprehension of natural language
text is definitely arduous, because of its intrinsic am-
biguity and context dependence. Both word polar-
ity, namely its positive or negative orientation, and
relationships among words have to be taken into ac-
count to properly understand the meaning of a sen-
tence. Then the task becomes even more challeng-
ing when document-level understanding is required,
namely when the overall document polarity has to
be discovered. Recently, Deep Learning has given
a boost to sentiment classification due to its intrinsic
ability in mining hidden relationships in text. Deep
Learning approaches are usually more robust and ef-
ficient than those based on classical text mining tech-
niques, because their performance typically scales
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better with dataset size both in terms of accuracy and
from the computational point of view.

A classification task consists in using an in-
domain approach, where documents of the training
and test belong to the same domain, for instance clas-
sifying a new set of book reviews, after the training
on a pre-classified text set, but always of book re-
views. However, in practice this is not always fea-
sible because of the missing or insufficient availabil-
ity of labelled documents to be used for training the
model. This is particularly evident in social network
posts, such as Facebook, Twitter, LinkedIn etc., and
more generally in chats, emails and opinions or re-
views in fora, blogs, online press and so on. They
are all examples of plain texts, wherein authors can
write whatever without strict content constraints. Al-
though there are no labels associated to the plain texts,
they have proved to be useful for supporting complex
tasks, such as stock market prediction (Domeniconi
et al., 2017) and job recommendation (Domeniconi
et al., 2016). A solution to the lack of labelled doc-
uments is to let a team of human experts pre-classify
one or more document sets, so as to have enough data
for effectively training algorithms. Unfortunately, the
text pre-classification by human experts, though ef-
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fective to extract reliable knowledge, is a costly activ-
ity, in general infeasible for the wide variety and large
volume of real big data sources. The cross-domain
learning thread has been introduced to address these
limitations. Basically, after that a knowledge model
has been built on a source domain of pre-classified
data, for instance from book reviews labelled as pos-
itive and negative, the goal of cross-domain learning
is to reuse this knowledge in a different unclassified
target domain, for instance to distinguish positive and
negative unlabelled DVD reviews. The main differ-
ence between in-domain and cross-domain is that the
latter approach generally requires a transfer learn-
ing phase, so that the knowledge model built on the
source domain could be effectively applied to the tar-
get domain. Indeed, language is typically heteroge-
neous in documents of different domains. For in-
stance, just think that a book can be engaging or bor-
ing, whereas an electrical appliance can be working
or damaged. A human being is able to easily under-
stand that engaging and working have both positive
orientation, while boring and damaged are negative
attributes. On the other hand, this inference is chal-
lenging for an automated system: in fact, it could not
trivially infer that working has a positive meaning if
it only knows that engaging is positive but the two
words never co-occur in the document set used for
training. Therefore, transferring the knowledge learnt
from the source domain to the target domain is funda-
mental in cross-domain tasks.

As far as we are concerned, despite the recent suc-
cess of Deep Learning in several research areas, lit-
tle effort has been made in cross-domain sentiment
classification so far. This work investigates if, and
to what extent, Deep Learning algorithms can auto-
matically bridge the inter-domain semantic gap typi-
cal of cross-domain sentiment classification, strength-
ened by their ability to learn syntactic as well as
possibly hidden relationships in text. Our research
is motivated by the fact that several works (Socher
et al., 2013; Le and Mikolov, 2014; Zhang and Le-
Cun, 2015; Tang et al., 2015) pointed out the capabil-
ity of Deep Learning to learn semantic-bearing word
representation, which is typically achieved without
supervision, independently of specific domains. To
assess the potentiality of Deep Learning in cross-
domain sentiment classification, we compare two dif-
ferent approaches: a Markov Chain based method de-
veloped by Domeniconi et al. (Domeniconi et al.,
2015b), and Paragraph Vector by Le and Mikolov (Le
and Mikolov, 2014). The Markov Chain based ap-
proach is tailored to cross-domain sentiment classifi-
cation, where it has achieved the state-of-the-art per-
formance on some benchmark text sets. Paragraph

Vector is a well-known unsupervised Deep Learning
method that is able to map words into a vector space
wherein semantics arises, that is, similar words are
nearer than unrelated ones. Although Paragraph Vec-
tor has not been designed for cross-domain sentiment
classification and does not provide a transfer learning
phase, we argue that its ability in learning semantic-
bearing word representation could help bridging the
inter-domain semantic gap.

To assess this idea, we first perform in-domain ex-
periments, which act as baseline. Then, the cross-
domain ability of both approaches is evaluated and
discussed. The outcome shows that Paragraph Vec-
tor needs very large training sets for learning accurate
word and paragraph representations. Anyhow, once
enough data is available for training, it achieves ac-
curacy comparable with Markov Chain not only in-
domain but also cross-domain, despite not provid-
ing any explicit transfer learning mechanism. We
strongly believe that if only we were able to com-
bine transfer learning and Deep Learning methods to-
gether, there would be a breakthrough of ad hoc cross-
domain sentiment solutions in big data scenarios. To
validate our opinion, we then propose a really simple
multi-source approach, where knowledge is extracted
from N heterogeneous source domains and then the
resulting model is applied to a target domain. The
basic idea is that more variability in instances can
be captured when training the model, and this should
help the transfer learning capability of Paragraph Vec-
tor. In fact, this experiment shows that Paragraph
Vector achieves a significant improvement in terms of
accuracy in the N sources cross-domain problem. It
is important to restate that, although Paragraph Vec-
tor does not provide a transfer learning mechanism, it
has shown to be able to automatically extract relevant
domain-independent information anyway. Moreover,
the outcome suggests that the multi-source approach
can definitely help transfer learning in cross-domain
sentiment classification.

The rest of the paper is organised as follows. Af-
ter a review of the related literature in Section 2, we
outline the main features of the compared methods in
Section 3. Then, Section 4 introduces and discusses
the performed experiments. Finally, Section 5 points
out conclusions and possible future work.

2 STATE OF THE ART

Transfer learning techniques are usually advisable to
effectively map knowledge extracted from a source
domain into a target domain. This is particularly use-
ful in cross-domain methods, also known as domain



adaptation methods (Daume III and Marcu, 2006),
where labelled instances are only available in a source
domain but a different target domain is required to be
classified. Basically, two knowledge transfer modes
have been identified in (Pan and Yang, 2010), namely
instance transfer and feature representation transfer.
In order to bridge the inter-domain gap, the former
adapts source instances to the target domain, whereas
the latter maps source and target features into a differ-
ent space.

Before the advent of Deep Learning, many ap-
proaches have already been attempted to address
transfer learning in cross-domain sentiment classifi-
cation, mostly supervised. Aue and Gamon tried sev-
eral approaches to adapt a classifier to a target do-
main: training on a mixture of labelled data from
other domains where such data is available, possi-
bly considering just the features observed in the target
domain; using multiple classifiers trained on labelled
data from different domains; a semi-supervised ap-
proach, where few labelled data from the target is in-
cluded (Aue and Gamon, 2005). Blitzer et al. dis-
covered a measure of domain similarity supporting
domain adaptation (Blitzer et al., 2007). Pan et al.
advanced a spectral feature alignment to map words
from different domains into same clusters, by means
of domain-independent terms. These clusters form a
latent space that can be used to enhance accuracy on
the target domain in a cross-domain sentiment clas-
sification problem (Pan et al., 2010). Furthermore,
He et al. extended the joint sentiment-topic model
by adding prior words sentiment; then, feature and
document enrichment were performed by including
polarity-bearing topics to align domains (He et al.,
2011). Bollegala et al. recommended the adoption of
a thesaurus containing labelled data from the source
domain and unlabelled data from both the source and
the target domains (Bollegala et al., 2013). Zhang
et al. proposed an algorithm that transfers the po-
larity of features from the source domain to the tar-
get domain with the independent features as a bridge
(Zhang et al., 2015). Their approach focuses not only
on the feature divergence issue, namely different fea-
tures are used to express similar sentiment in different
domains, but also on the polarity divergence problem,
where the same feature is used to express different
sentiment in different domains. Franco et al. used
the BabelNet multilingual semantic network to gen-
erate features derived from word sense disambigua-
tion and vocabulary expansion that can help both
in-domain and cross-domain tasks (Franco-Salvador
et al., 2015). Bollegala et al. modelled cross-domain
sentiment classification as embedding learning, using
objective functions that capture domain-independent

features, label constraints in the source documents
and some geometric properties derived from both do-
mains without supervision (Bollegala et al., 2016).

On the other hand, the advent of Deep Learning,
whose a brilliant review can be found in (LeCun et al.,
2015), brought to a dramatic improvement in senti-
ment classification. Socher et al. introduced the Re-
cursive Neural Tensor Networks to foster single sen-
tence sentiment classification (Socher et al., 2013).
Apart from the high accuracy achieved in classifi-
cation, these networks are able to capture sentiment
negations in sentences due to their recursive struc-
ture. Dos Santos et al. proposed a Deep Convo-
lutional Neural Network that jointly uses character-
level, word-level and sentence-level representations
to perform sentiment analysis of short texts (Dos San-
tos and Gatti, 2014). Kumar et al. presented the Dy-
namic Memory Network (DMN), a neural network
architecture that processes input sequences and ques-
tions, forms episodic memories, and generates rele-
vant answers (Kumar et al., 2015). The ability of
DMNs in naturally capturing position and temporal-
ity allows this architecture achieving the state-of-the-
art performance in single sentence sentiment classi-
fication over the Stanford Sentiment Treebank pro-
posed in (Socher et al., 2013). Tang et al. in-
troduced Gated Recurrent Neural Networks to learn
vector-based document representation, showing that
the underlying model outperforms the standard Re-
current Neural Networks in document modeling for
sentiment classification (Tang et al., 2015). Zhang
and LeCun applied temporal convolutional networks
to large-scale data sets, showing that they can perform
well without the knowledge of words or any other
syntactic or semantic structures (Zhang and LeCun,
2015).

Despite the recent success of Deep Learning in in-
domain sentiment classification tasks, few attempts
have been made in cross-domain problems. Glo-
rot et al. used the Stacked Denoising Autoen-
coder introduced in (Vincent et al., 2010) to extract
domain-independent features in an unsupervised fash-
ion, which can help transferring the knowledge ex-
tracted from a source domain to a target domain (Glo-
rot et al., 2011). However, they relied only on the
most frequent 5000 terms of the vocabulary for com-
putational reasons. Although this constraint is often
acceptable with small or medium data sets, it could be
a strong limitation in big data scenarios, where very
large data sets are required to be analysed.



3 METHODS

This Section outlines the main features of the two
methods that are compared in this work, namely Para-
graph Vector (referred as PV hereinafter), proposed
in (Le and Mikolov, 2014), and a Markov Chain
(referred as MC hereinafter) based algorithm intro-
duced in (Domeniconi et al., 2015b) and extended in
(Domeniconi et al., 2015a).

The former is an unsupervised Deep Learning
technique that aims to solve the weaknesses of the
bag-of-words model. Alike bag-of-words, PV learns
fixed-length feature representation from variable-
length pieces of texts, such as sentences, paragraphs,
and documents. However, bag-of-words features lose
the ordering of the words and also do not capture their
semantics. For example, ”good”, ”robust” and ”town”
are equally distant in the feature space, despite ”good”
should be closer to ”robust” than ”town” from the se-
mantic point of view. The same holds for the bag-
of-n-grams model, because it suffers from data spar-
sity and high dimensionality, although it considers the
word order in short context. On the other hand, PV
intrinsically handles the word order by representing
each document by a dense vector, which is trained to
predict words in the document itself. More precisely,
the paragraph vector is concatenated with some word
vectors from the same document to predict the follow-
ing word in the given context. The paragraph token
can be thought of as another word that acts as a mem-
ory that remembers what is missing from the current
context. For this reason, this model, represented in
Figure 1, is called the Distributed Memory Model of
Paragraph Vector (PV-DM).

Figure 1: The figure (Le and Mikolov, 2014) shows a frame-
work for learning the Distributed Memory Model of Para-
graph Vector (PV-DM). With respect to word vectors, an
additional paragraph token is mapped to a vector via matrix
D. In this model, the concatenation or average of this vector
with a context of three words is used to predict the fourth
word. The paragraph vector represents the missing infor-
mation from the current context and can act as a memory of
the topic of the paragraph.

Another way to learn the paragraph vector is to
ignore the context words in the input, but force the

model to predict words randomly sampled from the
paragraph in the output. Actually this means that at
each iteration of stochastic gradient descent, a text
window is sampled, then a random word is sam-
pled from the text window and a classification task
is formed given the Paragraph Vector. This version of
the Paragraph Vector, shown in Figure 2, is called the
Distributed Bag of Words version (PV-DBOW).

Figure 2: The figure (Le and Mikolov, 2014) shows the Dis-
tributed Bag of Words version of Paragraph Vector (PV-
DBOW). The paragraph vector is trained to predict the
words in a small window.

Both word vectors and paragraph vectors are
trained by means of the stochastic gradient descent
and backpropagation (Williams and Hinton, 1986).

Sentiment classification requires sequential data
to be handled, because the document semantics is
typically affected by the word order. PV is shown
to be able to learn vector representation for such se-
quential data, becoming a candidate technique for
sentiment classification. We have already stated the
PV learns fixed-length feature representation from
variable-length pieces of texts, dealing with any kind
of plain text, from sentences to paragraphs, to whole
documents. Though, this aspect is just as relevant
as exactly knowing how many of these features are
actually required to learn accurate models. The fea-
ture vectors have dimensions in the order of hundreds,
much less than bag-of-words based representations,
where there is one dimension for each word in a dic-
tionary. The consequence is that either the bag-of-
words models cannot be used for representing very
large data sets due to the huge number of features or
a feature selection is needed to reduce dimensional-
ity. Feature selection entails information loss, beyond
requiring parameter tuning to choose the right num-
ber of features to be selected. The fact that PV is not
affected by the curse of dimensionality suggests that
the underlying method is not only scalable just like
an algorithm should be when dealing with large data
sets, but it also entirely preserves information by in-
creasing the data set size.

(Le and Mikolov, 2014) showed that Paragraph



Vector achieves brilliant in-domain sentiment classi-
fication results, but no cross-domain experiment has
been conducted. Nevertheless, some characteristics
of PV make it appropriate for cross-domain senti-
ment classification, where the language is usually het-
erogeneous across domains. PV is very powerful in
modelling syntactic as well as hidden relationships
in plain text without any kind of supervision. More-
over, words are mapped to positions in a vector space
wherein the distance between vectors is closely re-
lated to their semantic similarity. The capability of
extracting both word semantics and word relation-
ships in an unsupervised fashion makes it appealing
to test whether PV is able to automatically manage
transfer learning. For this purpose, a comparison with
a Markov Chain based method tailored to this task
(Domeniconi et al., 2015b) will be shown in Section
4.

As described in (Le and Mikolov, 2014), in order
to use the available labelled data, each subphrase is
treated as an independent sentence and the represen-
tations for all the subphrases in the training set are
learnt. After learning the vector representations for
training sentences and their subphrases, they are fed
to a logistic regression to learn a predictor of the sen-
timent orientation. At test time, the vector represen-
tation for each word is frozen, and the representations
for the sentences are learnt using the stochastic gra-
dient descent. Once the vector representations for the
test sentences are learnt, they are fed through the lo-
gistic regression to predict the final label.

Alike PV, MC can handle sentences, paragraphs
and documents, but it is much more affected by the
curse of dimensionality, because it is based on a dense
bag-of-words model. Feature selection is often advis-
able to mitigate this issue, or even necessary with very
large data sets, typically containing million or billion
words. Basically, only the k most significant terms
according to a given scoring function are kept. The
basic idea of the MC based approach consists in mod-
elling term co-occurrences: the more terms co-occur
in documents the more their connection are stronger.
The same strategy could be followed to model the po-
larity of a given term: the more terms are contained in
positive (negative) documents the more they tend to
be positive (negative). Following this idea, terms and
classes are represented as states of a Markov Chain,
whereas term-term and term-class relationships are
modelled as transitions between these states. Thanks
to this representation, MC is able to perform both
sentiment classification and transfer learning. It is
pretty easy to see that MC can be used as a clas-
sifier, because classes are reachable from terms at
each state transition in the Markov Chain, since each

edge models a term-class relationship. Instead, it
is less straightforward to understand why it is also
able to perform transfer learning. The assumption
the method relies on is that there exists a subset of
common terms between the source and target domains
that act as a bridge between domain specific terms,
allowing and supporting transfer learning. Dealing
with this assumption, at each state transition in the
Markov Chain, sentiment information can flow from
the source-specific to the target-specific terms passing
through the layer of shared terms (Figure 3). The in-
formation flow is possible by exploiting the edges in
the Markov Chain that, as previously stated, represent
term-term relationships.

Figure 3: The figure (Domeniconi et al., 2015b) shows
transfer learning in the Markov Chain from a book specific
term like boring to an electrical appliance specific term like
noisy through a common term like bad. . . .

Actually, the classification process usually works
in the opposite direction, i.e. from the target-specific
to the source-specific terms, and goes on while the
class states are eventually reached. For instance, say
that a review from the target domain only contains
target-specific terms. None of these terms is con-
nected to the classes, but they are connected to some
terms within the shared terms, which in turn are con-
nected to some source-specific terms. Finally, both
the shared and source-specific terms are connected
to the classes. Therefore, starting from some target-
specific terms, the Markov Chain performs firstly
transfer learning and then sentiment classification. It
is important to remark that the transfer learning mech-
anism is not an additional step to be added in cross-
domain tasks; on the contrary, it is intrinsic to the
Markov Chain algorithm.

Careful readers can find further details on the
described approaches in (Le and Mikolov, 2014;
Domeniconi et al., 2015b; Domeniconi et al., 2015a).



4 EXPERIMENTS

This Section presents some experiments to show
whether outstanding unsupervised techniques as Para-
graph Vector are suitable for cross-domain sentiment
classification, despite no explicit mechanism to man-
age transfer learning. The underlying investigation
also gives users insights into the awkward choice of
the most suitable algorithm for a given problem, with
reference to the amount of data available for training.

The Markov Chain based method has been imple-
mented in a custom Java-based framework. Instead,
for Paragraph Vector we relied on gensim (Rehurek
and Sojka, 2010), a Python-based open sourced and
freely available framework2. In particular, all tests
have been performed by using its 0.12.4 software re-
lease. Apart from the two main approaches compared,
we also employed Naı̈ve Bayes (NB) as baseline for
the experiments. The Naı̈ve Bayes implementation is
from the 3.9.1 software release of the Weka (Frank
et al., 2005) workbench.

4.1 Setup

In order for the results to be comparable, we used
a common benchmark data set, namely, a collection
of Amazon reviews3 about Books (B), Movies (M),
Electronics (E) and Clothing-Shoes-Jewelry (J). Each
domain contains plain English reviews along with
their labels, namely a score from 1 (very negative)
to 5 (very positive). We mapped the reviews whose
scores were 1 and 2 to the negative category, those
whose scores were 4 and 5 to the positive one, dis-
carding those whose score was 3 that were likely to
express a neutral sentiment orientation.

For the sake of assessing the effectiveness of the
algorithms by varying the amount of labelled data
available for training, we tested source-target parti-
tions with three different orders of magnitude, al-
ways preserving the source-target ratio, i.e. 80%-
20%, and the balancing between positive and neg-
ative instances. The smallest data set counts 1600
instances as the training set and 400 as the test set;
the medium 16000 and 4000 respectively; and the
largest 80000 and 20000 respectively. For each ex-
amined source-target combination, accuracy has been
chosen as performance measure, namely, the percent-
age of correctly classified instances. This is a typ-
ical choice in a balanced binary classification prob-
lem, where there is an even number of instances for
the 2 categories considered. Moreover, results have
been averaged on 10 different training-test partitions

2http://nlp.fi.muni.cz/projekty/gensim/
3http://jmcauley.ucsd.edu/data/amazon/

to reduce the variance, that is, the sensitivity to small
fluctuations in the training set.

For all the following experiments we used the Dis-
tributed Bag of Words version of Paragraph Vector
(PV-DBOW) presented in (Le and Mikolov, 2014),
choosing 100-dimensional feature vectors, consider-
ing 10 words in the window size, ignoring words oc-
curring in just one document and applying negative
sampling with 5 negative samples. Moreover, we set
the initial learning rate to 0.025, letting it linearly
drop to 0.001 in 30 epochs. For further details on
the parameters, careful readers could refer to (Le and
Mikolov, 2014; Mikolov et al., 2013). To accomplish
sentiment classification, the positive or negative ori-
entation of the reviews has been predicted by means
of a logistic classifier, whose regression coefficients
have been estimated employing the Newton-Raphson
method.

Concerning the MC based method, we relied
on the technique described in (Domeniconi et al.,
2015b). Firstly, the relative frequency of terms in
documents has been chosen as term weighting. Then,
feature selection was required to mitigate the curse
of dimensionality because MC is based on a dense
bag-of-words model, as explained in Section 3. The
features have been selected by means of χ2 scoring
function. After a tiny tuning, we chose 750, 10000
and 25000 terms for the small, medium and large
data sets respectively. The Markov Chain has been
built including the selected terms only. As already
explained in Section 3, the more terms co-occur in
reviews the more their connection are stronger. Like-
wise, the more terms are contained in positive (nega-
tive) reviews the more they tend to be positive (nega-
tive). For further details, careful readers could refer to
(Domeniconi et al., 2015b; Domeniconi et al., 2015a).

Finally, the Naı̈ve Bayes algorithm has been run
with default parameters after the same feature se-
lection performed for MC, namely, 750, 10000 and
25000 terms for the small, medium and large data sets
respectively by means of χ2 scoring function.

Three experiments will be shown below. The
first focuses on in-domain sentiment classification,
namely, where the algorithms are tested on a set of
reviews from the same domain used for training. In
this way, it is possible to evaluate how the perfor-
mance varies with respect to the amount of train-
ing data. The second experiment focuses on cross-
domain sentiment classification, where transfer learn-
ing is usually needed to handle the heterogeneity of
language across domains. The test assesses the capa-
bility of Paragraph Vector in automatically bridging
the inter-domain semantic gap, without providing any
explicit transfer learning mechanism. The last experi-



ment shows a simple multi-source approach, in order
to analyse whether this positively affects the perfor-
mance of Paragraph Vector in cross-domain sentiment
classification.

4.2 In-Domain Results

The first experiment assesses the in-domain perfor-
mance of the algorithms. Table 1 shows the results
over the 4 domains of the Amazon dataset, namely
Books (B), Movies (M), Electronics (E) and Clothing-
Shoes-Jewelry (J).

The first outcome that catches the eye is that PV
requires much more training data than MC in order to
perform well, as it is even clearer by observing Fig-
ure 4. Indeed, although it achieved brilliant results as
stated by Le and Mikolov (Le and Mikolov, 2014), it
underperforms MC and performs slightly better than
Naı̈ve Bayes on average when small data sets are in-
volved. This is not completely surprising because
Deep Learning techniques typically require very large
training sets to learn models that are able to gener-
alise over new test instances. On the other hand, PV
scales very well in terms of accuracy when the model
is learnt from very large labelled text sets. In fact,
accuracy boosts from 75.44% in the small text set to
77.63% in the medium one, and it is even 84.93%
on average in the largest. Careful readers could have
noted that, when enough training data is available, the
accuracy of PV has low deviation from the mean in
each of the four domains. This proves that PV is a ro-
bust approach, which is effective independetly of the
particular domain analysed.

Apart from what has been just stated about PV, it
is noteworthy to point out that the accuracy achieved
by MC is pretty stable by increasing the amount of
training data. This outcome suggests that both MC
and PV could be candidate methods in the analysis of
very large data sets. However, a tiny feature selection
phase is always demanded by MC before learning the
model to reduce dimensionality and let the method be
applicable to new data sets.

4.3 Cross-Domain Results

The second experiment is about cross-domain senti-
ment classification. The goal is to assess whether
Paragraph Vector is able to bridge the semantic gap
between the source and target domains, despite no
explicit transfer learning mechanism. For this pur-
pose, we compare them with the Markov Chain
based method in all source-target configurations of
the Amazon datasets, namely B→ E, B→M, B→ J,
E → B, E → M, E → J, M → B, M → E, M → J,
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Figure 4: Accuracy achieved by the compared methods on
average in the in-domain sentiment classification task, by
varying the dataset size. Nk-Mk means that the experiment
has been performed by using N*1000 instances as the train-
ing set and M*1000 instances as the test set.

J → B, J → E, J → M. As in the previous experi-
ment, Naı̈ve Bayes is used as baseline. The results of
the comparison are shown in Table 2 and in Figure 5.

As expected, the accuracy of the baseline algo-
rithm is very low on average, because Naı̈ve Bayes
has no transfer learning capability. MC performs
much better than Naı̈ve Bayes on average, thanks to
the transfer learning mechanism described in Section
3. Differently from the in-domain problem, where the
accuracy achieved by MC is stable with respect to the
dataset size, here its accuracy improves by increasing
the number of training examples, as shown in Figure
5. This means that MC requires a large amount of
training data in order to effectively transfer the knowl-
edge extracted from the source domain to the target
domain.

Though, the most surprising outcome is certainly
the accuracy obtained by PV, which is comparable
with MC on average and even better in the analysis
of the smallest data sets. This is actually astonish-
ing if we think that PV does not provide for a transfer
learning phase. It could be explained by considering
that PV is instrinsically able to handle the word order,
because each document is represented by a dense vec-
tor, which is trained to predict the following word in
the document itself. Training the model, terms are
mapped into a vector space where the distance be-
tween them is related to their semantics. For exam-
ple, the distance between ”good” and ”robust” is less
than the distance between either of these terms and
”town”. The fact that PV learns vector representa-



Table 1: Comparison between PV and MC in sentiment classification, using NB as baseline. Nk-Mk means that the experiment
has been performed by using N*1000 instances as the training set and M*1000 instances as the test set. X→Y means that the
model has been learnt on reviews from domain X and then applied to different reviews from domain Y .

1.6k-0.4k 16k-4k 80k-20k
Domain(s) PV MC NB PV MC NB PV MC NB

In-domain experiments
B→ B 67.25% 79.25% 78.25% 75.40% 81.90% 63.30% 84.74% 83.84% 66.36%

M→M 79.75% 91.23% 74.50% 74.87% 82.43% 70.10% 84.11% 80.23% 71.30%
E→ E 79.25% 92.00% 79.50% 80.15% 80.72% 69.53% 85.61% 84.41% 76.41%
J→ J 75.50% 71.97% 67.50% 80.08% 83.76% 72.23% 85.25% 86.98% 73.81%

Average 75.44% 83.61% 74.94% 77.63% 82.20% 68.79% 84.93% 83.87% 71.97%

Table 2: Comparison between PV and MC in cross-domain sentiment classification, using NB as baseline. Nk-Mk means
that the experiment has been performed by using N*1000 instances as the training set and M*1000 instances as the test set.
X→Y means that the model has been learnt on reviews from the source domain X and then applied to reviews from the target
domain Y .

1.6k-0.4k 16k-4k 80k-20k
Domain(s) PV MC NB PV MC NB PV MC NB

Cross-domain experiments (source→ target)
B→ E 70.75% 69.29% 67.50% 67.27% 71.22% 55.85% 73.24% 74.05% 58.77%
B→M 66.75% 70.85% 70.50% 80.25% 79.32% 61.15% 81.97% 79.01% 61.99%
B→ J 73.25% 79.70% 63.75% 70.60% 71.83% 53.38% 74.87% 75.99% 54.92%
E→ B 74.00% 54.00% 64.50% 78.80% 80.10% 65.43% 76.87% 79.19% 66.15%
E→M 71.50% 56.75% 70.75% 76.17% 76.20% 64.43% 76.86% 77.15% 66.06%
E→ J 82.75% 74.25% 72.00% 79.47% 80.49% 63.23% 80.80% 81.91% 73.09%
M→ B 74.75% 65.75% 65.25% 85.55% 86.05% 76.55% 85.21% 83.81% 69.05%
M→ E 71.75% 68.18% 65.25% 75.32% 77.10% 66.35% 74.79% 72.87% 63.94%
M→ J 82.25% 81.95% 63.25% 73.45% 74.86% 62.03% 76.96% 78.58% 67.26%
J→ B 66.25% 75.25% 62.50% 69.62% 80.55% 64.48% 76.53% 78.55% 65.88%
J→ E 76.50% 80.60% 75.75% 78.55% 79.76% 68.90% 80.08% 81.79% 70.88%
J→M 74.25% 81.25% 72.50% 70.77% 74.30% 63.25% 76.07% 77.93% 66.27%

Average 73.73% 71.49% 67.79% 75.49% 77.65% 63.75% 77.85% 78.40% 65.36%

tions without any kind of supervision is probably what
could have helped more bridging the inter-domain se-
mantic gap. Some readers could object that the aver-
age cross-domain accuracy in the smallest data sets
is surprising. In fact, while we stated in 4.2 that
PV requires big training sets to perform well, PV
outperforms MC on average in the respective cross-
domain configuration, where the two methods achieve
73.73% and 71.49% accuracy respectively. The ex-
planation of this outcome has to be found in the con-
cept of supervision. MC includes a transfer learning
mechanism, which relies on labelled data to transfer
semantics from the source domain to the target do-
main. Therefore, when few labelled data is available,
the algorithm does not achieve high accuracy on tar-
get domains. On the other hand, PV does not handle
transfer learning explicitly and relies on an unsuper-
vised approach to map terms in a vector space, i.e. the
feature space. For this reason, PV is less affected than
MC by the change of domain.

This experiment has shown that PV is so able to
generalise that it could even foster a challenging task
as cross-domain sentiment classification, especially if

pre-trained without supervision to learn fixed-length
vector representations of terms. We argue that unsu-
pervised pre-training of Deep Learning algorithms, if
opportunely combined with a proper transfer learn-
ing approach, can be a breakthrough of ad hoc cross-
domain sentiment solutions in big data scenarios.

4.4 Multi-Source Results

The third experiment evaluates the impact of a multi-
source approach on the transfer learning capability of
Paragraph Vector. Multi-source basically means that
3 out of 4 domains are used to train the model, which
is then tested on the remaining domain. For instance,
the model is built on Books, Electronics and Movies,
and then applied to Jewelry. Such a configuration is
referred as ∗→ J, and the others are assembled in the
same way. This still is a cross-domain sentiment clas-
sification problem, because the model is learnt on la-
belled data from some domains but its performance is
evaluated on a different unlabelled domain. The only
difference between the single-source Paragraph Vec-
tor (1S−PV ) and the multi-source Paragraph Vector
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Figure 5: Accuracy achieved by the compared methods on
average in the cross-domain sentiment classification task,
by varying the dataset size. Nk-Mk means that the experi-
ment has been performed by using N*1000 source instances
as the training set and M*1000 target instances as the test
set.

(MS−PV ) is that the latter relies on heterogeneous
data sources when training the model.

The experiment has been performed to support our
claim that Deep Learning and transfer learning solu-
tions can, if combined, break through cross-domain
sentiment classification. The rationale is that, training
the model on heterogeneous domains, more variabil-
ity in instances can be captured and Paragraph Vector
could automatically learn how to handle the language
heterogeneity, improving its transfer learning capabil-
ity and, as a consequence, its cross-domain perfor-
mance.

Table 3 and Figure 6 report the comparison be-
tween the single-source and multi-source Paragraph
Vector in cross-domain sentiment classification. The
training on multiple heterogeneous domains allows
Paragraph Vector learning better semantic-bearing
word representation than using a single domain only.
It is pretty easy to see that MS − PV outperform
1S−PV on average, achieving accuracy from 2% to
3% higher independently of the dataset size. This
proves that even a simple gimmick as the multi-source
approach is effective to increase the accuracy of PV
in cross-domain tasks, despite it has not been de-
signed to explicitly handle transfer learning. Further-
more, the outcome supports our claim that combining
Deep Learning techniques as Paragraph Vector with
more advanced transfer learning solutions could break
through cross-domain sentiment classification.
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Figure 6: Accuracy achieved by the compared methods on
average in the multi-source cross-domain sentiment classi-
fication task, by varying the dataset size. Nk-Mk means that
the experiment has been performed by using N*1000 source
instances as the training set and M*1000 target instances as
the test set. Actually, the number of training instances is
such that there is an even number of examples from each of
the source domains.

5 CONCLUSIONS AND FUTURE
WORK

The cross-domain sentiment classification distin-
guishes positive and negative reviews of a domain,
such as car reviews, by exploiting and transferring
the knowledge extracted from another domain, gener-
ally heterogeneous in language, such as pre-classified
electronics reviews.

The goal of this work was to experimentally eval-
uate if, and to what extent, a well-known Deep
Learning algorithm, not designed for cross-domain
classification, can compete with ad hoc solutions
based on transfer learning techniques. We compared
an unsupervised Deep Learning technique known
as Paragraph Vector (PV), unprovided for explicit
transfer learning capability, with a state-of-the-art
Markov Chain based algorithm (MC), tailored to
cross-domain sentiment classification. The major out-
come is that the Deep Learning algorithm is able
to extract generalised knowledge in an unsupervised
fashion, so as to bridge the inter-domain semantic
gap and achieve comparable performance with MC.
This result persuades us that, if transfer learning so-
lutions were explicitly added to unsupervised pre-
trained Deep Learning approaches as Paragraph Vec-
tor, there would be a breakthrough of ad hoc cross-



Table 3: Comparison between single-source PV (referred as 1S−PV ) and multi-source PV (referred as MS−PV ) in cross-
domain sentiment classification. ∗ → Y means that the model has been applied to reviews from the target domain Y , after
learning on the others except from Y . Nk-Mk means that the experiment has been performed by using N*1000 source instances
as the training set and M*1000 target instances as the test set. Actually, the number of training instances is such that there is
an even number of examples from each of the source domains.

1.6k-0.4k 16k-4k 80k-20k
Domain(s) 1S−PV MS−PV 1S−PV MS−PV 1S−PV MS−PV

Multi-source experiments
∗→ B 71.67% 76.85% 77.99% 78.22% 79.54% 81.38%
∗→ E 73.00% 75.08% 73.71% 78.04% 76.04% 78.46%
∗→ J 79.42% 75.15% 74.51% 78.79% 77.54% 81.05%
∗→M 70.83% 76.10% 75.73% 80.73% 78.30% 82.06%

Average 73.73% 75.80% 75.49% 78.95% 77.85% 80.74%

domain methods. Furthermore, since Paragraph Vec-
tor can learn fixed-length feature representation from
variable-length pieces of texts and, hence, it is not
threaten by the curse of dimensionality, the break-
through will also involve big data scenarios.

To certify our viewpoint, we proposed a really
simple multi-source approach, where knowledge is
extracted from N heterogeneous source domains and
the resulting model is applied to a different target do-
main. The idea was that the model could capture more
variability in instances if trained on more than a single
source domain. Our hypothesis has been confirmed
by the experiments, which have shown that accuracy
increases of 2− 3% on average when training Para-
graph Vector on multiple source domains rather than
on a single source domain. The boost in terms of ac-
curacy is independent of the dataset size. This sup-
ports our belief that the breakthrough, which is feasi-
ble by combining Deep Learning and transfer learn-
ing, will also involve big data scenarios, where very
large data sets are usually required to be analysed.

Future work will focus on combining transfer
learning approaches with Deep Learning solutions as
Paragraph Vector and other techniques. A possible
option is to use a semi-supervised approach: basi-
cally, after the training on one or more source do-
mains, a fine-tuning phase is performed, where the
model is refined on few instances of the target do-
main before applying it to classify new target exam-
ples. Another viable alternative is to combine Para-
graph Vector with the Markov Chain based method,
exploiting the advantages of both approaches. On the
one hand, PV is able to learn word semantics without
supervision; on the other hand, MC provides a trans-
fer learning mechanism to bridge the gap between the
source and target domains in cross-domain sentiment
classification.
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