opinion of experts on violence should be considered 
in order to determine the initial classification of the 
images to be used, it should also be taken into account 
that gender is not the only thing that can be inferred 
in the reaction of the human brain before the 
visualization of violent images or not. 
Also, the creation of a more extensive database 
with a greater number of participants, in order to be 
able to contemplate cases that reacted abnormally to 
the presence of violence could help in the training 
stage for several algorithms such as SVM or 
Adaboost. It could also be an option, to use videos 
with violent or non-violent content instead of images 
for future works. 
REFERENCES 
Hassner, T., Itcher, Y., Kliper-Gross, O., 2012, "Violent 
flows: Real-time detection of violent crowd 
behavior," Computer Vision and Pattern Recognition 
Workshops (CVPRW), 2012 IEEE Computer Society 
Conference on, Providence, RI, pp. 1-6. 
Wang, D., Zhang, Z., Wang, W., Wang, L., Tan, T., 2012, 
"Baseline Results for Violence Detection in Still 
Images,"  Advanced Video and Signal-Based 
Surveillance (AVSS), 2012 IEEE Ninth International 
Conference on, Beijing, pp. 54-57. 
Tisserom, S., 2006, "Los 11-13 años frente al estrés de las 
imágenes violentas", Subjetividad y procesos 
cognitivos, vol. 9, no. 1, pp. 177-197. 
Wiswede, D., Taubner, S., Münte, T., Roth, G., Strüber, D., 
Wahl, K., Krämer, U., 2011, “Neurophysiological 
correlates of laboratory-induced aggression in young 
men with and without a history of violence”, PLoS 
ONE. 
Manrique, C. J., 2014, “Detección acústica de disparos de 
armas de fuego usando técnicas de minería de datos” 
proyecto terminal, División de Ciencias Básicas e 
Ingeniería, Universidad Autónoma Metropolitana, 
México. 
R Core Team, 2017. R: A language and environment for 
statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-
project.org/. 
Meyer, D., Dimitriadou, E., Hornik, K, Weingessel, A., 
Leisch, A., 2015. e1071: Misc Functions of the 
Department of Statistics, Probability Theory Group 
(Formerly: E1071), TU Wien. R package version 1.6-7. 
https://CRAN.R-project.org/package=e1071 
Chatterjee, S., 2016. fastAdaboost: a Fast Implementation 
of Adaboost. R package version 1.0.0. https://CRAN.R-
project.org/package=fastAdaboost 
Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased 
Recursive Partitioning: A Conditional Inference 
Framework. Journal of Computational and Graphical 
Statistics, 15(3), 651--674. 
Hennig, C., 2015. fpc: Flexible Procedures for Clustering. 
R package version 2.1-10. https://CRAN.R-
project.org/package=fpc 
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., 
Hornik, K., 2016.  cluster: Cluster Analysis Basics and 
Extensions. R package version 2.0.5. 
Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B., 
2007, “A review of classification algorithms for EEG-
based brain-computer interfaces”. Journal of Neural 
Engineering, IOP Publishing, 4, pp. 24 
Karatzoglou, A., Meyer, D., & Hornik, K., 2006. Support 
Vector Machines in R. Journal of Statistical Software, 
15(9), 1 - 28.  
Platt JC., 1998. “Fast Training of Support Vector Machines 
Using Sequential Minimal Optimization.” In B 
Schölkopf, CJC Burges, AJ Smola (eds.), “Advances in 
Kernel Methods – Support Vector Learning,” pp. 185–
208. MIT Press, Cambridge, MA.  
Osuna, E., Freund, R., Girosi, F. 1997. "An improved 
training algorithm for support vector machines," Neural 
Networks for Signal Processing VII. Proceedings of the 
1997 IEEE Signal Processing Society Workshop, 
Amelia Island, FL, pp. 276-285. 
Vishwanathan SVN, Smola A, Murty N., 2003. 
“SimpleSVM.” In “Proceedings of the Twentieth 
International Conference on Machine Learning (ICML-
2003), Washington DC” AAAI Press.