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Abstract: The paper presents a novel adaptive genetic programming based iterative improvement algorithm for 
hardware/software co-synthesis of distributed embedded systems. The algorithm builds solutions by starting 
from suboptimal architecture (the fastest) and using system-building options improves the system’s quality. 
Most known genetic programming algorithms for co-synthesis of embedded systems are built choosing 
fixed probability. In our approach we decided to change the probability during the work of the program. 

1 INTRODUCTION 

Embedded systems (Jiang, Eles and Peng, 2012) are 
hardware systems able to execute some tasks by 
embedded software. Distributed embedded systems 
(Garcia, Botella, Ayuso, Prieto, and Tirado, 2013, 
Konar, Bhattacharyya, Sharma, Sharma, Pradhan, 
2017) are built using two kinds of resources: 
processing elements (PEs) and communication links 
(CLs). PEs are responsible for execution of the 
tasks. Communication links provide the communica-
tion between PEs. There are two possible groups of 
PEs: programmable processors (PPs) and hardware 
cores (HCs). PPs are universal resources able to 
execute more than one task. HCs are dedicated 
resources that can execute only one task. In some 
works (Grzesiak-Kopeć, Oramus and Ogorzałek, 
2015) it is proposed to implement PEs in 3D layout. 

According to De Micheli and Gupta (De Micheli 
and Gupta 1997) design of embedded systems can 
be divided into three phases: modelling, 
implementation and validation.  

Unexpected tasks can appear when the system 
has been already designed and produced and no 
changes in its architecture are possible. Thus another 
part of embedded systems design process could be 
assignment of unexpected tasks (Górski and 
Ogorzałek, 2016). 

One of very important problems in embedded 
system design process is the problem of co-

synthesis. Co-synthesis (Densmore, Sangiovanni-
Vincentelli and Passerone, 2006, Jozwiak, Nedjah 
and Figueroa, 2010) is a process of generation of an 
architecture of embedded system based on the 
specification provided. The process consists of: 
allocation of resources – the choice of type and 
number of resources, assignment – the choice of PE 
for predicted tasks, task scheduling – needed if one 
resource has to execute more than one task. 

Existing co-synthesis methodologies can be 
divided into two groups: constructive and iterative 
improvement. Constructive algorithms (Dave, 
Lakshminarayana, and Jha, 1997) make decisions 
for every task separately. Therefore they can stop in 
local minima when searching optimal parameters. 
Iterative improvement methodologies (Yen and 
Wolf, 1995) start from suboptimal architecture and 
by local changes (like allocation or reallocation of 
resources, moving task from one resource to another, 
etc.) try to improve system quality. However 
obtained results are still suboptimal.  

In genetic algorithms (Dick and Jha, 1998, Guo, 
Li, Zou and Yhuang, 2007) solutions are mostly 
represented by a string or an array. Next, using 
operators such as mutation, crossover and 
reproduction, new solutions are created. 

Very good results were obtained using genetic 
programming (Deniziak and Górski 2008, Górski 
and Ogorzałek 2014b). In such methodologies 
(Koza, 2010) trees which represent design decisions 
are evolved. 
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Adaptive solutions (Górski and Ogorzałek 
2014a) are able to adapt to the environment by 
making changes during their execution. 

In the present paper we propose a novel adaptive 
iterative improvement methodology based on 
genetic programming. Unlike other genetic 
programming based adaptive methodologies the 
embryo, in every individual, is a suboptimal solution 
– the fastest architecture. Therefore any other node 
includes function which allows modification of the 
architecture or task assignment. 

2 PRELIMINARIES 

The behaviour of distributed embedded system is 
described by a task graph G = {T, E}. It is an acyclic 
directed graph which shows the concurrency and 
other dependencies of the tasks. The nodes of the 
graph represent the tasks (T). The edges describe 
amount of data di,j that need to be transferred 
between two connected tasks. Transmission time 
(ti,j) is depended on CLs’ bandwidth (b). The time 
can be calculated using the following formula:  
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Figure 1 presents an example of task graph. 
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Figure 1: Example of task graph. 

The graph consists of eight nodes: T0, T1, T2, T3, 
T4, T5, T6 and T7. Tasks T1 and T2 can start their 
execution after T0 is executed. T3 cannot start its 
execution before T1 or T2 is finished. T4 can be 
executed only after T2, T5 after T3, T6 and T7 after 

T4. Tasks T1 and T2, T3 and T4, T5, T6 and T7 are 
parallel. Table 1 includes example of resource 
database for the system described by the graph of 
figure 1. The target system can be built of four kinds 
of PEs: two kinds of PP (PP1 and PP2) and two 
kinds of HCs (HC1 and HC2). Cost (C) of used PP 
must be added to overall cost of the system only 
ones. Cost of HCs is added to the cost of tasks’ 
execution. Communication can be provided by two 
kinds of CLs (CL1 and CL2). CLs also have cost (c) 
of connection to each PE. 

Table 1: Example of resource database. 

Task
PP1 

C=100 
PP2 

C=250 
HC1 HC2 

t c t c t c t c 
T0 20 6 30 5 10 200 5 360 
T1 40 8 35 10 12 150 8 190 
T2 23 3 20 4 5 120 1 210 
T3 14 10 18 9 2 300 5 220 
T4 68 20 80 15 20 150 10 200 
T5 34 5 30 7 9 110 8 130 
T6 29 9 32 8 4 200 5 180 
T7 36 10 28 15 6 190 8 160 

CL1, 
b=5 

c=5 c=6 c=25 

CL2, 
b=10

c=6 c=7 c=30 

The final system specified by the graph of figure 
1 executes n processes consists of, m programmable 
processors and p communication links (CLs). The 
resources are chosen from the database given in 
table 1. Overall cost (Co) of the system is described 
by the formula below:  
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The system cannot exceed the time constrains. 
The co-synthesis algorithm needs to find an 
architecture with the lowest Co value.  

3 THE METHODOLOGY 

At the beginning of the algorithm initial population 
must be created. The population consists of 
genotypes. Every genotype is a tree. The tree 
includes system-building options in its nodes. 
Number of individuals in the population is described 
by the following formula:  

 

e*n* = αΠ  (3)
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where: n – number of tasks in task graph,  
e – number of possible types of PEs, α – parameter 
given by the designer.  

The first node in every genotype is called an 
embryo. The embryo is chosen as the fastest possible 
architecture. In such an architecture every task is 
executed by a different resource. The rest of the 
genotype is created randomly. Therefore every 
genotype can be a different tree containing different 
number of nodes. Number of nodes in the tree is not 
greater than number of tasks in the task graph. Table 
2 presents options for system construction. Each 
option has probability to be chosen. 

Table 2: Options for building system. 

Step Option 

PE a. The cheapest implementation of 
the most expensive task 
b. The fastest implementation of 
the slowest task 
c. min (t*s) for most expensive 
task 
d. The last task from critical path 
move on the same processor as 
task’s predecessor  
e. The first task from the most 
expensive path move on the 
cheapest implementation 
f. The slowest task from critical 
path move on the fastest 
implementation 

CL  a. The fastest CL 
b. The cheapest CL 
c. the same as in the previous node 

Task scheduling list scheduling 

The options are executed according to the level 
in the tree. Such options can allow more than one 
modification of the assignment of any task in 
investigating genotype.  Nodes at the same level are 
executed from left to right. After generating each 
population solutions are rank by cost. Next the 
algorithm counts the percentage/frequency of 
appearance of each system-building option in the 
first half of the population. The result is the new 
value of probability for the options. 

The first half of new population is generated the 
same way as initial population using options 
included in table 2 but with modified probability. 

Second half of the next population is created 
using genetic operators: reproduction, crossover and 
mutation. Number of individuals obtained by every 
genetic operator is presented below. 
 Φ = β*П/2 – number of individuals obtained by 

reproduction; 

 Ψ = γ*П/2 – number of individuals obtained by 
crossover; 

 Ω = δ*П/2 – number of individuals obtained by 
mutation; 

 β + γ + δ = 1 – the condition responsible for 
fixed number of individuals in every 
population. 

Parameters β, γ, δ control the evolution process. 
Their values are given by the designer. 

Mutation randomly chooses Ω genotypes and 
replaced option from randomly selected node by 
another option from table 2 but with probability 
actual for current population. 

Reproduction selects Φ individuals and copies 
them to a new population. Each solution has 
a probability to be selected during reproduction. The 
probability depends on position r of the solution in 
a rank list: 

Π
−Π= r

P  (4)

Crossover generates Ψ solutions. The algorithm 
randomly selects two individuals and randomly set 
one different crossing point for each solution. Next 
created subtrees are substituted between the 
genotypes. 

The stop condition is stimulated by parameter ε. 
If the algorithm does not find better solution in 
ε next steps, it will be stopped. Parameter ε is set by 
the designer. 

4 THE EXAMPLE 

Figure 2 presents an example of genotype for the 
task graph from figure 1. The example is consisted 
of five nodes. The nodes contain system-building 
options from table 2. 

c/c 

embryo 

e/a 

a/c c/b 

 

Figure 2: Example of genotype. 
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In accordance with developmental genetic 
programming rules the first node in the genotype is 
an embryo. The embryo is the fastest 
implementation of all the tasks. For the transmission 
it was used CL2 which has the highest bandwidth 
value. The cost of a system is 2020, the time of 
execution of all tasks is 38,3. Next the second node 
is executed. Therefore task T0 is moved to PP1. The 
transmission for T0 is also provided by CL2. The 
third node moves T3 to PP1. The fourth node 
assigns T2 to PP1. The last node moves T6 to PP1. 
The system is contained of one PP (PP1) which 
executes four tasks, four HCs which execute four 
tasks and one CL (CL2). The final cost of the system 
is 963. The time of execution of all the tasks is 93,8. 

5 CONCLUSIONS 

In this paper a new adaptive genetic programming 
approach to HW/SW co-synthesis was presented. 
The approach builds genotypes by starting from 
suboptimal solution and improves the system quality 
by local changes. The methodology is able to adapt 
to the environment. It is achieved by modifying the 
probability of selecting each system-building options 
during the work of the algorithm. The main 
advantage of presented methodology, in comparison 
with constructive algorithm, is reduced complexity. 
Therefore the time of calculation can be much less. 

In the future we plan to examine another 
chromosomes and genetic operators.  
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