Exploring USB Connection Vulnerabilities on Android Devices
Breaches using the Android Debug Bridge

Jodo Amarante! and Jodo Paulo Barros!

2

Lpolytechnic Institute of Beja, Beja, Portugal
2UNIN0VA—CTS, Monte de Caparica, Portugal

Keywords:
IoT, Mobile Cyber-physical Systems.

Abstract:

Vulnerability, USB, Smartphone, Mobile Device, Computer Security, Physical Attack, Internet of Things,

The complexity of avoiding vulnerabilities in the modern mobile operating systems makes them vulnerable

to many types of attacks. This paper presents preliminary work in the creation of scenarios to surreptitiously
extract private data from smartphones running different versions of the Android Operating System. Three
scenarios were already identified and a proof of concept script was developed, all based on the use of the
Android Debug Bridge tool. When running in a computer, the script is able to extract private data from a USB
connected smartphone. In two scenarios it was possible to extract the information in a totally surreptitious way,
without the user knowledge. In the third scenario, using a newer version of the Android operating system, a
user action is needed which makes the attack less likely to succeed, but still possible.

1 INTRODUCTION

In a world increasingly dominated by complex tech-
nologies, their negligent or ill-informed use provides
the opportunity for attack scenarios, which from the
point of view of programmers would seem improba-
ble. This current generation of smartphones like the
Apple i0OS and Google Android based devices are
powerful enough to accomplish most tasks that pre-
viously required a personal computer. In fact, this
newly acquired computing power has given rise to
many applications that try to leverage new hardware.
These include Internet browsing, e-mail, GPS naviga-
tion, personalized messages and applications, among
others. Additionally, mobile devices provide an ideal
support for mobile cyber-physical systems. All these
contribute to the presence of a large amount of per-
sonal data that is stored inside the device.

Among the many different devices that make the
Internet of Things, the smartphones are still the most
ubiquitous and also the ones with more users unaware
of the related risks. This work focus on security and
privacy in mobile systems, namely a specific type of
attack to that kind of device: the exploit of USB con-
nection vulnerabilities to target private data in An-
droid devices (Google, 2017).

Android is being used by more than 2.1 billion
people around the world (Statista, 2017) and the ubiq-

572

Amarante, J. and Barros, J.

uitous use and widespread adoption of the Universal
Serial Bus (USB) led mobile device manufacturers to
equip most third generation phones with USB ports.
With such a large number of consumers, the space to
produce a malicious attack is huge: whenever some-
one with an Android device connects it using a USB
port the device can potentially become compromised.
A small flaw, error, or misinterpretation of a security
authority specification can potentially jeopardize the
security of those systems. Proximity attacks, namely
the ones based on the USB connection, are a good
example of this and anecdotal evidence seems to indi-
cate that the associated risks are easily neglected by
users; in fact, a similar behaviour was already ob-
served regarding USB drives (Tischer et al., 2016).

Currently, USB connections are primarily used as
a means of charging the battery, communicating, and
synchronizing the contents of the phone with com-
puters and other phones. An important form of at-
tack occurs when private data is extracted from mo-
bile devices without user permission. The apparent
unawareness of many users regarding the risks of con-
necting their device to a compromised computer led
to the theme of this paper: the vulnerabilities in the
Android USB connection. The work in this paper is
part of a detailed study and evaluation of the USB
based vulnerabilities present in devices running the
Android Operating System: we present three concrete

Exploring USB Connection Vulnerabilities on Android Devices - Breaches using the Android Debug Bridge.

DOI: 10.5220/0006475905720577

In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 572-577

ISBN: 978-989-758-259-2

Copyright © 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Exploring USB Connection Vulnerabilities on Android Devices - Breaches using the Android Debug Bridge

and implemented scenarios resulting from the use of
the Android Debug Bridge tool to extract private data
from smartphones, following a connection between
the Android mobile device and a compromised per-
sonal computer. Three scenarios were already identi-
fied and a proof of concept script was implemented to
extract private data when a smartphone is connected
to a computer. In two scenarios, it was possible to
extract the information in a totally surreptitious way,
without the user knowledge. In the third scenario, us-
ing a newer version of the Android operating system,
a simple user action is needed which makes the attack
less likely to succeed, but nevertheless clearly possi-
ble for less aware or knowledgeable users.

Section 2 present background information about
the Android system and its security model. Section
3 presents the tested scenarios; Section 4 describes
the implementation of the script used to extract data
from smartphones without user awareness; Section 5
discusses related work and Section 6 concludes.

2 BACKGROUND

Android is an application execution environment for
mobile devices that includes an operating system, ap-
plication framework, and core applications. Here, we
briefly present the problem of USB based vulnerabil-
ities and the ADB tool.

2.1 Vulnerabilities in USB Connection

The USB protocol is fully software controlled; there-
fore, it is similar on all Android devices. There are
two sub-protocols that are supported by Android: (1)
the mass-storage class (for example a USB removable
disk) and (2) the Android Debugger Bridge (ADB).
Each peripheral function has an associated device
class document that specifies the default protocol for
that function. This allows hosts compatible with the
class and peripheral functions to interact without de-
tailed knowledge of each other’s operations. Class
compliance is potentially dangerous if the host and
peripheral are provided by different entities.

The USB connection does not support the network
class, audio class, or other classes, such as mass stor-
age class (MSC) or Media Transfer Protocol (MTP).
By default, ADB is disabled, and the computer refers
to Android as a mass storage device, with none of the
additional functions.

Initially, only the device’s SD card is exposed via
USB, rather than its system and data partitions. When
”USB debugging” (ADB) is enabled, the device can

be controlled with the same “adb” tool that is pro-
vided in the Android SDK. This tool makes it possi-
ble to insert and retrieve files from and to the device,
install APK files, TCP and UDP redirects, etc.

Due to the vulnerabilities that this process pre-
sented, since version 4.4.2 (KitKat), Google has cre-
ated a security process for this connection: ADB
pairing, the pairing between a USB connection and
an Android Debug Bridge (ADB). Making sure each
USB connection has a pair of RSA keys accepted by
the host computer that the Android device will con-
nect to, so that each time the Android smartphone
tries to connect to a new host, it must have been pre-
viously accepted by it.

Next, we present the ADB tool, which was used to
implement the attack scenarios described in this pa-
per.

2.2 The Android Debugger Bridge

The Android Debug Bridge (ADB) (Android Open
Source project, 2017) is a command line tool that al-
lows communication with a connected Android de-
vice or an emulator allowing several actions, namely
through a Unix shell. It facilitates several device ac-
tions including app installation and debugging appli-
cations. It is a client-server program with three com-
ponents: (1) A client, which sends commands and
runs on the development computer — it is possible
to issue an adb command to invoke the client from
a command line terminal; (2) A daemon, which exe-
cutes commands on a device and runs as a background
process on each emulator or device instance; (3) A
server, which manages communication between the
client and the daemon; the server runs as a back-
ground process on the development computer.

When starting, an adb client checks to see if there
is an adb server process running. If not, the adb client
starts the server. When the server is started, it binds
to local TCP port 5037 and listens for commands sent
from adb clients. All adb clients use that same port to
communicate with the adb server.

The server then configures connections to all em-
ulator/device instances that are running. It locates
the emulator/device instances with an odd-port scan
in the range of 5555 to 5585, which is used by em-
ulators/devices. Where the server encounters an adb
daemon, it configures a connection to the port in ques-
tion. Each emulator/device instance acquires a pair of
sequential ports: an even-numbered port for console
connections and an odd-numbered port for adb con-
nections.

When the server configures connections for all
emulator instances, it is then possible to use adb com-

573

SECRYPT 2017 - 14th International Conference on Security and Cryptography

mands to access those instances. Because the server
manages the connections to the emulator/device in-
stances and manages all commands from multiple adb
clients, it is possible to control any emulator/device
instance of any client (or script). More information
about the ADB can be found at the official site from
where this information was also extracted (Android
Open Source project, 2017).

3 SCENARIOS

Three scenarios for the retrieval of private informa-
tion were identified. All are associated with the USB
connections. After, a script was implemented allow-
ing the following actions:

1. Obtain device information;

. List of all installed packages;

. Full copy of the entire SD card contents;
. Copy a file to the device;

. Install an application on the device;

. Run an application on the device;

. Obtain the contact list;

. Obtain the messages;

. Unlock the device screen;

—_ O O 0 39 N B W

. Overcoming the ADB Pairing;

—_—

. Rooting the device.

For mobile devices, three devices, each with a dif-
ferent version of Android, were tested. Specific con-
ditions were also tested for each version. USB debug-
ging is essential to exploit the vulnerabilities consid-
ered in this work, since the only contact of the phone
with the machine containing the script is through a
USB cable.

It was decided to write a script for the Windows
7 Home Premium Operating System using one of its
available tools: the Windows PowerShell ISE 5.0 '.
Hence, the file has the .ps1 extension, which is the for-
mat associated with Windows PowerShell from Mi-
crosoft Corporation. The three scenarios correspond
to vulnerabilities that the script is able to exploit.
The versions used represent a small percentage of
the devices that have recently visited the Google Play
Store2, but the real number of these devices in use
is probably quite higher, as older and rooted devices

le.g. https://msdn.microsoft.com/en-us/powershell/script
ing/core-powershell/ise/introducing-the-windows-
powershell-ise
Zhttps://developer.android.com/about/dashboards/index.html

574

are much less likely to access the Play Store and the
number of rooted devices can be higher than usually
expected (e.g. (BusinessofApps, 2015; arsTechnica,
2016)). Additionally, it is easy to find sites teach-
ing how to enable USB debugging, apparently with
no warnings about the possible associated risks (e.g.
(TechAdvisor, 2016; Hacks, 2015)). Also the third
scenario is also significant and applicable to newer
versions of the Android system. Yet, to date, only
version 5.0 Lollipop was tested.

e Attack Scenario I:
Configuration:
— Hardware: Samsung Galaxy Mini GT-S5570
— Android version: 2.2 (Froyo)
— USB debugging on
— Device rooted

Achieved results:

. Obtain device information;

. List of all installed packages;

Full copy of the entire SD card contents;
. Copy a file to the device;

. Install an application on the device;

. Run an application on the device;

. Obtain the contact list;

. Obtain the messages;

This is the simpler attack scenario, as the debug-
ging is on and the device is rooted. This device
has a specific feature that, in practice, can increase
the vulnerability of USB Debugging: the user can
“enable” the connection, but keep it “inactive”,
possibly giving a false sense of protection, but si-
multaneously leaving the door open to an attack.
In this way, and with rooting access to the device,
it was possible to obtain all type of desired infor-
mation, compromising the device security.

Attack Scenario II:
Configuration:

— Hardware: Sony Xperia Miro ST23i

— Android version: 4.0.4 (Ice Cream Sandwich)
— USB debugging on

— Device "unrooted”

Achieved results:

. Obtain device information;
. List of all installed packages;

1
2
3. Full copy of the entire SD card contents;
4. Copy a file to the device;

5

. Install an application on the device;

Exploring USB Connection Vulnerabilities on Android Devices - Breaches using the Android Debug Bridge

6. Run an application on the device;
If application roots the device than the follow-
ing three are also possible:

(a) Obtain the contact list;

(b) Obtain the messages;

(¢) Unlock the device screen;

In this scenario there is no rooting access to the
device, which would limit the range of possible at-
tacks. However, by enabling USB debugging, the
device is still exposed to SD card attacks, namely
the extraction of private data.

e Attack Scenario III:
Configuration:

— Hardware: Aquaris ES HD

— Android version: 5.0 (Lollipop)
— USB debugging off

— Device "unrooted”

Achieved Results:

It was not possible to extract data from the device.
Yet, it was possible to confirm that, if USB debug-
ging is changed to “on” and after ADB pairing,
the script can still extract data .

4 IMPLEMENTATION

The developed script is based on the auto-detection
of a USB connection: when a device is connected
to a computer, it will be automatically detected and
the script will be started. Once the device is identi-
fied, various attempts to obtain information will be
made through Windows PowerShell ISE 5.0 and/or
Android Debug Bridge (ADB) commands. All these
processes are invisible to the victim and through
them one can access the entire contents of the SD
card and also various information of the device. At
http://y2u.be/TDgUgxgOt_o, a screencast shows the
script being run when a smartphone is connected to
the compromised host computer. Next, we present
what is executed by the script and the respective re-
sults for each of the actions listed in Section 3:

1. Obtain Device Information: It was possible to
obtain the identification of the device, as well as
information about it, such as the letter assigned by
the Operating System, the Android version, and
the model. These data includes the paths to exe-
cute the intended attacks.

2. List of All Installed Packages: Obtaining a list
of all packages installed on the device was then
used to get the exact name that the system assigns
to each package. This was useful to retrieve data

about the application that was installed in order to
execute it. In the item Run an application on the
device the usefulness of this information will be
explained.

. Full Copy of the Entire SD Card Contents: Due

to the little storage space that the devices have,
most users save a large amount of personal con-
tent on the SD card. This action retrieves all the
files and folders of the card such as photographs
and movies.

. Copy a File to the Device: Once the script gets

the contents of the SD card, it can copy a file (in
this case an application that allows you to do An-
droid Rooting) to the device and verify that it was
on the card. This process allows putting in the SD
card any type of file. If it is a malicious one, it be-
comes possible to compromise the whole device.

. Install an Application on the Device: As the file

copied to the device was an application it became
possible to perform its installation. This process
is extremely dangerous for the device if the ap-
plication being installed is some type of malware,
capable of corrupting it in any way.

. Run an Application on the Device: After in-

stalling the application on the device is was possi-
ble to execute it, which in the case of being a mali-
cious application raises serious security problems
This process happens due to the fact that it is pos-
sible to obtain a list of all installed applications
and their information. From this list it is possible
to get the exact path to execute the full command
to run the application.

. Obtain the Contact List: One of the main re-

sults was the retrieval of private information from
the device. In this case the contents of the contact
list have been copied. This is only possible if the
device is rooted, but since it was possible to copy,
install and run applications, with USB debugging
on, it was possible to do this invisibly to the victim
and obtain this type of information. After grant-
ing root access, it is then possible to change access
permissions to the protected content, so that it is
possible to give the command to copy the infor-
mation, which allowed the retrieval of the desired
list in SQL and plain text format.

. Obtain the Messages: The content of all mes-

sages in the device was another type of retrieved
data. Using the previously described process it
was also possible to obtain the information of the
respective list in SQL and plain text format.

. Unlock the Device Screen: In the identified

and implemented scenarios it is possible to by-

575

SECRYPT 2017 - 14th International Conference on Security and Cryptography

pass/disable the pattern unlock on Android via
ADB Commands, but only if two special condi-
tions are met: (1) the device is rooted and (2) the
pin code known. This is because it is necessary
to remove or update the system file containing the
screen lock key, which is only possible by chang-
ing the access permissions to it, as described pre-
viously, and restarting the device, which requires
the pin code.

10. Overcoming the ADB Pairing: If the device is
rooted, it is possible to eliminate this security en-
hancement by removing the system file containing
the ADB pairing key. However, to eliminate this
issue permanently, a first access to the device must
be given.

11. Rooting the Device: It is possible to root a de-
vice, simply by copying, installing, and running
an application.

S RELATED WORK

USB connection is just one of several ways to ex-
filtrate data from mobile devices. (Do et al., 2015)
presents a catalogue of those methods and provides a
good starting point to this subject. Here we focus on
USB connections. Due to its relative importance and
relation to USB exfiltration, we also discuss an avail-
able USB device that is able to disguise as a keyboard
thus providing a medium to extract data from other
devices.

As already stated, USB connections have been tra-
ditionally trusted mostly due to the physical proximity
it implies but also due to the presumption that both
devices belonged to the same owner. The work by
(Wang and Stavrou, 2010) was possibility the first to
demonstrate that this trust could be abused. In par-
ticular, it discusses attacks where a smartphone acts
as Human Interface Device and sends keystrokes to
control the victim host showing how to boot a smart-
phone to take over another phone using a specially
crafted cable. The same article, also proposes defence
mechanisms to counter those USB attacks. In (Wang
et al., 2012) additional proposals are presented and
discussed.

The work by Xu (Xu, 2014; Xu et al., 2015) found
that the feature available in Android 4.2.2 cannot pro-
vide sufficient protection when the host machine con-
nected to the Android device has been compromised.
It presents an implementation demonstrating this vul-
nerability. Hence, it complements the work here pre-
sented.

(Pereira et al., 2014) presents a vulnerability to

576

exploit the USB connection in a vendor customiza-
tion that allows extending the reach of AT (ATten-
tion) commands, where the system understands and
allows these commands to be sent over USB. Those
commands allows flashing a compromised boot parti-
tion without the user’s consent thus gaining root ac-
cess, enable ADB, and install a surveillance applica-
tion that is impossible to uninstall without re-flashing
the Android boot partition. In the case of Samsung, a
large list of its family of smartphones has this vulner-
ability, where it is possible to communicate with the
modem through the USB channel, without any previ-
ous configuration in the device, something that does
not happen with ADB. Samsung expands the standard
AT command set that comes with 3GPP and GSM
standards, enhancing the interaction capabilities the
computer software (Kies) has on the device. Kies
for Windows uses the standard set and expanded AT
owner set of commands to get the contacts, the con-
tents of the SD card, and update the firmware of the
device. Through this process (Pereira et al., 2014),
it is possible to force USB debugging without prior
authorization thus allowing the use of ADB to com-
promise the device.

Attacks based on USB devices constitute another
area of research where the objective is related, but
somehow symmetric to the work here presented: the
objective is to attack a (typically larger) machine us-
ing a USB device, yet they can also be used to attack
a mobile device. The USB Rubber Ducky is a de-
vice that resembles a normal USB flash drive (PEN).
When connected to a computer, it is recognized as a
keyboard, but it quickly introduces its malicious code.
It is a commonly used and very useful tool by pen-
testers. An online video shows how to use the device
to hack an Android phone (Hak$, 2012) .

Another type of attack consists in eavesdropping
the communications between an USB device and a
host. Neugschwandtner et. al describe and imple-
ment one of those attacks — a USB sniffing attack —
where a USB device passively eavesdrops on all com-
munications from the host to other devices, without
being situated on the physical path between the host
and the victim device. They also present UScramBle,
a lightweight encryption solution to prevent that kind
of attack (Neugschwandtner et al., 2016).

6 CONCLUSIONS

In this paper, three attack scenarios for USB con-
nection in Android Systems were presented, together
with a script as a proof of concept. The scenarios
use three different devices and Android versions. It

Exploring USB Connection Vulnerabilities on Android Devices - Breaches using the Android Debug Bridge

has been demonstrated — for the three specific sce-
narios — that whenever USB debugging is available,
the device is potentially compromised. In the tested
versions of the OS, the only way to prevent attacks
is to never make USB Debugging available. Once
given this access door, the entire device can be com-
promised in seconds and in a form that is completely
invisible to the victim.

In the specific model Samsung Galaxy Mini GT-
S5570 with the version 2.2 Froyo there is still a pe-
culiarity: the USB Debugging can be available, but in
“not active” state, which allows a false illusion to the
user to be protected when in fact it is not.

It has also been found that even the presence of
protection software, such as the anti-virus, does not
prevent the installation process of a potentially mali-
cious application, at it only warns that a certain appli-
cation may be harmful.

As future work new attack scenarios will be inves-
tigated, namely for newer versions of Android, over-
coming the need for ADB pairing. It would also be
interesting to have a social experience counting how
many devices are be attacked by hour, day or even
week, in places where it was offered the possibility to
charge the devices’ batteries for free. Different places
in different environments would allow the identifica-
tion of cases where more people are most likely to be
victims.

ACKNOWLEDGEMENTS

This work was partially financed by Portuguese
Agency FCT Fundagao para a Ciéncia e Tecnologia,
in the framework of project UID/EEA/00066/2013.

REFERENCES

Android Open Source project (2017). Android de-
bug bridge. https://developer.android.com/studio/
command-line/adb.html [Online; accessed 07-June-
2017].

arsTechnica (2016). 10 million android phones
infected by all-powerful auto-rooting apps.
https://arstechnica.com/security/2016/07/virulent-
auto-rooting-malware-takes-control-of-10-million-
android-devices/ [Online; accessed 07-June-2017].

BusinessofApps (2015). 80% of android phone
owners in china have rooted their device.
http://www.businessofapps.com/80-android-phone-
owners-china-rooted-device/ [Online; accessed
07-June-2017].

Do, Q., Martini, B., and Choo, K.-K. R. (2015). Exfiltrating
data from android devices. Comput. Secur., 48(C):74—
91.

Google (2017). android. http://www.android.com [Online;
accessed 07-June-2017].

Hacks, G. (2015). How to enable developer options & usb
debugging. https://android.gadgethacks.com/how-
to/android-basics-enable-developer-options-usb-
debugging-0161948 [Online; accessed 07-June-
2017].

Hak5 (2012). Android hacking with the USB rub-
ber ducky. https://www.hakS5.org/episodes/hak5-1216
[Online; accessed 07-June-2017].

Neugschwandtner, M., Beitler, A., and Kurmus, A. (2016).
A transparent defense against USB eavesdropping at-
tacks. In Proceedings of the 9th European Workshop
on System Security, EuroSec ’16, pages 6:1-6:6, New
York, NY, USA. ACM.

Pereira, A., Correia, M., and Brandao, P. (2014). USB con-
nection vulnerabilities on android smartphones: De-
fault and vendors’ customizations. In De Decker, B.
and Zuquete, A., editors, Communications and Multi-
media Security: 15th IFIP TC 6/TC 11 International
Conference, CMS 2014, Aveiro, Portugal, Septem-
ber 25-26, 2014. Proceedings, pages 19-32. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Statista (2017). Number of smartphone users
worldwide from 2014 to 2020 (in billions).
https://www.statista.com/statistics/330695/number-
of-smartphone-users-worldwide/ [Online; accessed
07-June-2017].

TechAdvisor (2016). How to get developer options on
android. http://www.pcadvisor.co.uk/how-to/google-
android/34-useful-things-you-can-do-in-android-
developer-options-new-3590299 [Online; accessed
07-June-2017].

Tischer, M., Durumeric, Z., Foster, S., Duan, S., Mori, A.,
Bursztein, E., and Bailey, M. (2016). Users really do
plug in usb drives they find. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 306-319.

Wang, Z., Johnson, R., Murmuria, R., and Stavrou, A.
(2012). Exposing security risks for commercial mo-
bile devices. In Proceedings of the 6th International
Conference on Mathematical Methods, Models and
Architectures for Computer Network Security: Com-
puter Network Security, MMM-ACNS’12, pages 3—
21, Berlin, Heidelberg. Springer-Verlag.

Wang, Z. and Stavrou, A. (2010). Exploiting smart-phone
usb connectivity for fun and profit. In Proceedings of
the 26th Annual Computer Security Applications Con-
ference, ACSAC °10, pages 357-366, New York, NY,
USA. ACM.

Xu, M. (2014). Security enhancement of secure USB de-
bugging in Android system. Master’s thesis, Univer-
sity of Toledo, USA. in http://utdr.utoledo.edu/theses-
dissertations.

Xu, M., Sun, W., and Alam, M. (2015). Security enhance-
ment of secure USB debugging in android system. In
2015 12th Annual IEEE Consumer Communications
and Networking Conference (CCNC), pages 134—139.

577

