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Abstract: The size of the aging population has been increasing over the last years, leading to a search for solutions that
can increase the quality of life of the elderlies. One of the main means of action is focused on their physical
activity. A non-sedentary life can help in disease prevention and disability reduction, leading to an independent
living with quality. Moreover, the practice of physical exercise can decrease fall risks and its consequences.
Furthermore, it is desirable that the solutions can be accessed by anyone, with a low inherent cost. The Boccia
game is a good way to promote physical activity to the elderly, due to its simplicity and easy adaptability to
the physical limitations of the elderly. Following this trend, this paper presents iBoccia, a novel framework
to monitor elderly while playing Boccia game, through wearable sensors, Mio Fuse band and pandlet (inertial
sensor), and a non-wearable device, Kinect camera. Several performance metrics are expected to be measured
during the gameplay. Using the pandlet we calculate wrist rotation angles and force applied during ball throw,
using the Kinect we recognize facial expressions and from the Mio Fuse band we retrieve heart rate.

1 INTRODUCTION

Physical inactivity is one of the main causes of several
health diseases, as heart diseases, beyond being cor-
related to overweight and obesity (Lee et al., 2012;
Blair et al., 1999; Warburton et al., 2006). (Lee et al.,
2012) estimated that physical inactivity is the cause of
6% of the burden of disease from coronary heart dis-
ease, 7% of type 2 diabetes, 10% of breast cancer and
10% of colon cancer. Moreover, it is the cause of 9%
of premature deaths, causing the death of more than
5.3 million of the 57 million deaths occurred in 2008
worldwide (Lee et al., 2012). The practice of physi-
cal exercises may increase cardiorespiratory and mus-
cular fitness, functional health, improve bones and
joint health, and cognitive functions (Warburton et al.,
2006; Lee et al., 2012).

The physical inactivity tends to become more pro-
nounced while aging, making the elderly the most
sedentary age group. Therefore, it is important to find
solutions that may solve this problem, encouraging

physical activity practice. For this, it is essential to
give the elderly the necessary motivation, with pleas-
ant, social and fun solutions, achieved through games
in order to promote social activity and interaction, and
improve self-confidence and quality of life. Boccia is
a simple game that can be adapted to the age and limi-
tations, and beyond the practice of physical activity, it
promotes the contact with others. Therefore, this pa-
per discusses the possibility of monitoring a group of
elderly people playing the boccia game. The objective
is to collect performance and affective information as
well as movements data.

For the elderly it can be seen as a way to moni-
tor the game through the suggestion of performance
improvement of some of the movements. For formal
caregivers besides the playful aspect, it may be in-
teresting for them to realize what kind of moves were
made during the game, access the affective state of the
patient and to detect physical or cognitive declines by
analyzing the data collected.

For the system development it will be important
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to collect acceleration data of the arm of the player as
well as through the Kinect to extract facial cues, de-
termine the angles, and to analyze movements during
the game. In a first phase the game results of each
player will be manually inserted into the system and
it may help in suggesting improvements in the move-
ment of the ball. Subsequently, the system can be im-
proved by incorporating an analysis of the play and
rating through processing and analysis the position of
the ball in the game.

This article is organized as follows: in section 2
the Boccia game scenario is explained. Section 3
presents the state of the art solutions for monitor phys-
ical activity. The system architecture is presented in
section 4. The article finishes with section 5 concern-
ing the conclusions and future work.

2 BOCCIA GAME

Boccia is an indoor precision game played with one
white, six blue and six red leather balls. The objec-
tive is to score by throwing the colored balls as close
as possible to the white one (called jack). It is allowed
to throw the balls with hands, kicked with feet or, in
a case of a severe disability, launch with aid instru-
ments. This modality can be played individually, by
pairs or by teams (Fong et al., 2012; BISFed, 2016).

Originally designed for individuals with cerebral
palsy, Boccia has become a Paralympic Game in
1984, being played by athletes with different physi-
cal and functional disabilities (Fong et al., 2012; BIS-
Fed, 2016). Apart from its competitive side, Boccia
game can also be used as an alternative to rehabilita-
tion exercises, as well as be adapted to be played by
the elderly, encouraging the physical activity practice,
assisting in balance and coordination and increasing
strength and flexibility. Moreover, it can help in self-
confidence and appreciation, as well as self-esteem
improvement. In addition, it helps the player to de-
velop character and to understand social norms, by
playing as a team.

3 STATE OF THE ART

With a large application areas, as health, fitness and
safety, the demand for physical activity monitoring
has been increasing, following the technological ad-
vances (Choudhury et al., 2008; Figueira et al., 2015).
Herewith, several solutions have been commercial-
ized, with increasingly features and functionalities.
These solutions are mostly based on wearable or

smartphone built-in sensors, and are focused on fit-
ness, calculating the number of calories lost, steps
given and distance traveled, on safety, with emer-
gency buttons to call for help, or on physiological
field, monitoring the heart rate and body temperature,
for example (Guo et al., 2013; Mukhopadhyay, 2015).

Regarding targeted systems for seniors, several
systems have been developed in order to measure
their movements and discriminate between everyday
movements and emergencies, like being laying down
or falling. These systems are suitable for elderly mon-
itoring living at home or institutions (Charlon et al.,
2013; Van Kasteren et al., 2010; Ohta et al., 2002).
Gociety has two physical activity and fall monitor-
ing solutions, targeted primarily for the elderly: the
GoLivePhone and the GoLiveWear. GoLivePhone is
an Android application that detects falls and evalu-
ates its associated risks. When a fall is detected an
emergency message is sent to the caregiver. It also
has an emergency button, where one touch is enough
to alert professionals and caregivers. It also notifies
about taking medication and collects physical activ-
ity data (number of steps taken, calories lost and time
spent in different activities such as walking or stand-
ing). In addition, caregivers can also receive notifi-
cations when the user is inactive for a certain period
of time. GoLiveWear is a waterproof clip-on device
with a built-in emergency button that, connected to
the GoLivePhone application, can access to all of its
features without the need of having the smartphone al-
ways around (Gociety, 2016). Among other features,
the AT&T’s EverThere Emergency Response System
has also a call button that notifies caregivers if the
senior experiences a fall or other emergency (Ever-
There, 2017) and the Flowie solution is a persuasive
tool which aims to encourage the elderly to walk more
(Albaina et al., 2009).

Despite all the existing solutions, there is none
adapted to a gaming environment, monitoring the el-
derly while playing, for example, a Boccia gameplay.

4 SYSTEM ARCHITECTURE

The architecture was designed envisioning the in-
tegration of different sensors to monitor the game
movements and the face expressions of the user in or-
der to suggest improvements of the game movements
to the players. The system will also provide and log
this sensor data and provide it to caregivers to assist
them in the detection of physical or cognitive decline.
In Figure 1 the system architecture is presented.

The movements and acceleration of the user are
collected using a sensor in the wrist called pandlet.

iBoccia - Monitoring Elderly While Playing Boccia Gameplay

671



Figure 1: iBoccia architecture.

Additionally, a kinect is used to collect the gestures,
body position, posture and face expressions of the
user. On the wrist, another sensor, the Mio Fuse, col-
lects the heart rate of the user. The pandlet and Mio
Fuse communicates by employing the Bluethooth 4.0
low energy (BLE) protocol, which is an industry-
standard and allows devices to run for long periods.
The kinect is connected through an USB cable to the
Intel Compute Stick which is used to retrieve the data
from the different sensors and display in the LCD
this information to the user. The software architec-
ture is based on a three-tier framework that organizes
modules (games) into dynamic categories, acting as a
launcher and providing them a set of APIs for com-
mon functionalities, such as sensor communication
(HRate lib, Sensor lib, motion lib) user profile and
game session management. The proposed system ar-
chitecture allows the modules to be agnostic on which
sensors are currently supported and being used, as
well as which backend server may be used to man-
age user profiles and store game session data. The
API (Matos et al., 2014) for sensor communication
provided by the framework is implemented as shared
library/DLL in pure native code (C++) and supports
most of the existing platforms: Windows, Linux and
Android. The library is responsible for all communi-
cation details with any sensor. The received data from
sensors is processed and merged into a single proto-
col and send to any client (game) that asked for it and
provided a callback. The protocol considers data from
inertial sensors, gestures, body tracking, hand track-
ing, face’s expressions, and heart rate. The process-
ing algorithms use this for gesture recognition and fa-
cial expression recognition. The gestures recognition
algorithm is used to evaluate the performance of the
player movement and suggest improvements based on
the game classification. The facial expression recog-
nition algorithm is used to detect emotions, opinions,
and clues regarding player’s cognitive states. The next

sections include further detail about the sensors that
are used and also the algorithms adopted to achieved
the proposed goals.

4.1 Sensors

The main purpose of this project is to be used in
community or nursing home unsupervised contexts,
employing standard and relatively inexpensive equip-
ment to monitor elderly players during a Boccia game
scenario. Thus, currently there is support for a small
set of available sensor devices, such as the Kinect sen-
sor, a Mio Fuse, and pandlet (Figure 1). To study the
behavior of each player during the game, all the sen-
sory information is going to be combined, allowing to
actively track the player movements and his/her emo-
tional state.

4.1.1 Kinect

There is a connection between affective states and ex-
ercise in real life (Schöndube et al., 2016). Under-
standing this association may be important for creat-
ing successful exercise promotion programs. More-
over, the strongest factor that contributes to the main-
tenance of the exercise behavior can be the positive
affective valence (Schöndube et al., 2016). The user
affective state might affect exercise in daily life.

The Microsoft Kinect V2 is a depth sensor that
employs the time of light technique for tracking the
body movements, extract facial features, and recog-
nizing gestures of the user. It has a built-in a 1080p
color camera, a 3D depth sensor, and a microphone
array. A Software Development Kit (SDK) was re-
leased by Microsoft, giving access to the raw sensor
data streams as well as skeletal tracking. In order to
accomplish the goals of this work the Kinect V2 is go-
ing to be used along with its SDK and the Kinteract
(Matos et al., 2014) library to extract facial features,
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track the player, and recognizing gestures, allowing to
monitor the user activity during a Boccia game sce-
nario. The APIs for the Kinect allow to retrieve the
position (in high detail) of up to 36 facial landmarks
and it gives access to a skeleton model composed of
25 joints that can be used to track each joint position
(Microsoft, 2017). Additionally, the Kinteract library
can compute the angles enabling, together with the
Kinect SDK, the employment of gesture recognition.

4.1.2 Inertial Sensors

The Pandlet (Letting Everything Sense) is a bracelet
with a novel architecture of embedded electronics for
wireless devices that can be used to develop Wearable
and IoT solutions. It includes an accelerometer, mag-
netometer, and gyroscope that can be used to track
the user movements during the game, with a 100 Hz
frequency. Moreover, the Pandlet is composed by an
ARM M0+, running at 16 MHz and an environmen-
tal measurement unit. It is also charged wirelessly
and Bluetooth Smart. The radio range is 40 meters
in line of sight, and in a high 2.4 GHz polluted en-
vironment. Although the kinect can detect the player
movements the force applied when launching the ball
is hard to assess. Using the pandlet and by knowing
the ball mass we can easily estimate the force applied
to the ball and estimate the landing point. The pan-
dlet’s acceleration fused with the kinect’s tracking of
player’s movements will provide the required data to
the gesture recognition algorithm to access the player
performance in the game.

4.1.3 Heart Rate Monitor

Physical exercise has proven its benefits in the health
of a patient. Thus, the risk of heart diseases is re-
duced. However, there are limits to the exercise which
considers the maximum heart rate (HRmax), calcu-
lated as 220− age in years (Atwal et al., 2002). Sur-
passing this limit may lead to severe problems due to
excessive heart stress. The heart rate is retrieved by
the Mio Fuse, which is placed on the patient’s wrist.
Through this device the caregiver may control the user
heart health and, if necessary, stop the game in an ear-
lier stage.

4.2 Processing Algorithms

4.2.1 Gestures Recognition Algorithms

Gestures recognition can be considered as a super-
vised classification problem, if annotated gestures se-
quential data is given to a classifier as a time series.

Some of the common used approaches rely on: Sup-
port Vector Machines, K-Nearest Neighbors or Naı̈ve
Bayes. These algorithms use labeled data (in this
case, the gestures) to train the classifier, which be-
comes able to map new inputs (Wilde, 2010). On
the other hand, for supervised learning and for an
in-depth study of gestures recognition, it has been
also considered the Hidden Markov Models (HMM),
which aims to present results from the present out-
comes through probabilities. HMM can model con-
ditions of the occasions that may happen repeatedly
over time or predictable events that take place over
time (Fosler-Lussier, 1998). Dynamic Time Warp-
ing (DTW) (Muhammad and Devi, 2016) is another
algorithm commonly used for time series similarity
evaluation, which aligns each sequence prior to es-
tablishing the distance measurement. Moreover, Re-
current Neural Networks have also been used to ges-
ture recognition (Eleni, 2015; Murakami and Taguchi,
1991).

The authors have been working in gesture recog-
nition. With this, several projects and master thesis
have concerned the classification of gestures using
HMM, DTW or other classification algorithms. Some
examples are the (da Silva, 2013), where hand ges-
tures where recognized with a smartphone, (da Costa
et al., 2015) classified activities of daily-living in
post-stroke patients and (Freixo, 2015) combined
electromyography and inertial sensor for gesture de-
tection and control.

The proposed system will rely on supervised algo-
rithms, that will be trained with annotated data from
the Boccia game movements. Boccia is characterized
as a throwing sport, so the movements to recognize
will focus on ball throw. Since the objective is to get
close to the jack ball, force is not always necessary to
reach the better position. So, precision is occasionally
worth than long throws. With practice, players de-
velop their own strategies to win the game, as the way
they throw the ball or roll depends on players’ body
movements. The goal of this system, is to provide
user movements’ feedback during the game, as for ex-
ample, when a user is given with specific information
of ball throw and given the ball position on the court,
users can understand which movements result better
and try to improve their performance. As the physics
mechanisms applied to the ball on the court could
not be inferred by the system, due to uncontrolled
parameters (opponent’s balls positions, jack position,
rolling on the floor, etc.), we can not relate move-
ments performance with game scoring. However, the
player is able to infer such relation and relate higher
scores with different body movements. Focusing on
game related movements, the system could be able
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to recognize and characterize ball throws into their
main movements: wrist movements for ball prepara-
tion, body position adjustment during court observa-
tion, wrist rotation angle and force applied during ball
throw. For the caregiver point of view, these move-
ments’ characterization could be useful to evaluate
arm movements of the user, that are important for up-
per body rehabilitation.

4.2.2 Facial Expression Recognition Algorithms

Facial expressions are innate in any communication
and interaction between humans. They can trans-
mit emotions, opinions, and clues regarding cognitive
states. Several psychological studies have been con-
ducted in order to decode the information contained
in a facial expression. For example, the system de-
veloped by Ekman and Friesen (Ekman and Friesen,
1978), the Facial Action Codding System (FACS), al-
lowed researches to analyze and classify facial ex-
pressions in a standardized framework. This system
associates the action of the muscles to the changes in
facial appearance. The measurements of the FACS
are called Action Units which are actions performed
by a muscle or a group of muscles. There are two
main approaches regarding facial expression recogni-
tion, the feature-based ones, which uses textural or
geometrical information, and the template based ones
that uses 2D or 3D head and face models (Kotsia and
Pitas, 2007). Usually, these systems try to classify
the six basic emotions, also considered the six uni-
versal emotions – happiness, sadness, anger, surprise,
fear, and disgust. Some researchers are using machine
learning techniques to detect such patterns.

(Silva et al., 2014) proposed an automatic human
facial expression recognition frame-based system that
classifies six basic facial expressions plus the neu-
tral state. The proposed framework compared the
performance of three different classifiers (Artificial
Neural Network, Linear Discriminant Analysis and k-
Nearest Neighbor). Other authors, (Silva et al., 2016;
Youssef et al., 2013), used Support Vector Machines
(SVM) in order to classify the emotional state of the
user.

5 FINAL REMARKS

The present paper concerns the development of phys-
ical and cognitive monitoring technologies to support
and promote exercise programs, focusing in elderly
people. Nowadays, physical inactivity can be one of
the main causes of several illness. Physical inactivity
tends to be more present in the elderly. Following this

trend, the main purpose of the present work is to de-
velop a system for collecting performance and affec-
tive information as well as movements data. As stated
before, affective states should be considered in creat-
ing effective interventions to foster exercise behavior
and enhance maintenance. The system is composed
of a Kinect sensor, a Mio Fuse band, the pandlet, and
an Intel compute stick.

The developed system is going to be evaluated in
different scenarios in order to assess its performance.
This evaluation will be based on several metrics, tak-
ing into account the wrist rotation angles and force
applied during the ball throw calculated by the Pan-
dlet. Through the Kinect, facial expressions recogni-
tion will also be performed and with the Mio Fuse
band the heart rate will be retrieve, too. First, the
system is going to be tested in a laboratorial envi-
ronment with a set of 12 participants, simulating a
Boccia game. This first evaluation step is going to be
conducted with the purpose of detecting the system
constraints and to tune the conditions of the experi-
mental scheme. Several Boccia movements should be
defined and validated by the proposed system. Also,
emotional states should be simulated by the test group
and correctly detected and correlated by the system.
After this first validation in a controlled environment,
a second test should be developed in a real-world con-
text. So, an evaluation will be performed with a set of
12 elderly participants in a nursing room. In this eval-
uation, the participants are going to be monitored on
site by professionals, and the research team is going
to oversee the progress of the game, and monitor the
system. The detection of the movements and the de-
gree of engagement in the game should be correctly
monitored. iBoccia will then be subjected to exten-
sive tests in order to validate it as an adequate tool to
promote physical activity in the elderly.
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An activity monitoring system for elderly care using
generative and discriminative models. Personal and
ubiquitous computing, 14(6):489–498.

Warburton, D. E., Nicol, C. W., and Bredin, S. S. (2006).
Health benefits of physical activity: the evidence.
Canadian medical association journal, 174(6):801–
809.

Wilde, A. G. (2010). An overview of human activity de-
tection technologies for pervasive systems. Depart-
ment of Informatics University of Fribourg, Switzer-
land, 212.

Youssef, A. E., Aly, S. F., Ibrahim, A. S., and Abbott,
a. L. (2013). Auto-Optimized Multimodal Expres-
sion Recognition Framework Using 3D Kinect Data
for ASD Therapeutic Aid. International Journal of
Modeling and Optimization, 3(2):112–115.

iBoccia - Monitoring Elderly While Playing Boccia Gameplay

675


