
Analyzing and Validating Virtual Network Requests

Jorge López1, Natalia Kushik1, Nina Yevtushenko2 and Djamal Zeghlache1
1SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier 91011 Évry, France

2Department of Information Technologies, Tomsk State University, Lenin str. 36, Tomsk, Russia

Keywords: Network Virtualization Platforms, Validation, User Request Analysis, Scalable Representations.

Abstract: In this paper, we address platforms developed to provide and configure virtual networks according to user’s
request and needs. User requests are, however, not always accurate and can contain a number of
inconsistencies. The requests need to be thoroughly analyzed and verified before being applied to such
platforms. We consequently identify some important properties for the verification and classify them into
three groups: a) functional or logic issues, b) resource allocation/dependency issues, and c) security issues.
For each group, we propose an effective way to check the request consistency. The issues of the first group
are checked with the use of scalable Boolean matrix operations. The properties of the second group can be
verified through the use of an appropriate system of logic implications. When checking the issues of the third
group, the corresponding string analysis can be utilized. All the techniques discussed in the paper are followed
by a number of illustrating examples.

1 INTRODUCTION

Virtual networks are growing in usage and popularity
along with the progress being achieved in the area of
communication technologies. At the same time,
virtual networks represent one of the main concepts
of the future generation networks, such as 5G (ETSI,
2013). Therefore, the software and hardware
components of such systems need to be thoroughly
tested and verified.

Virtualization mechanisms open up the
possibilities to provide any types of networks ‘on-
demand’. Network services and their service chains
can thus be provided to users according to their
preferences. Users request (virtual) networks with
specific nodes and service function chains from
service providers that host the desired virtual
network. One of the platforms for providing such
network services was developed in our previous
works (Mechtri et al., 2016). This platform is a
service function chain orchestrator capable of
provisioning, hosting resources, deploying and
instantiating the user’s requested service chains (and
virtual network).

As the requests for providing network services are
written by users (or tenants), they can contain
inconsistencies as well as semantic errors. In the
platform selected for this study, the requests are

expressed in the Topology and Orchestration
Specification for Cloud Applications (TOSCA)
language (Palma et al., 2016). In a well formatted
TOSCA request (correct syntax, i.e., parsed
successfully), a number of semantic inconsistencies
can be present. If an inconsistent user request (a
virtual network) that for example, contains
contradicting declarations, is deployed in the
platform, unexpected or undesirable results might
occur. Different constraints might be violated, such as
for example service level agreements. As the
consistency of the system is compromised by such
requests, in one way or another the request is not
properly implemented or it can even threaten the
security and safety of the whole system. This is the
reason why tenant requests should be carefully
verified prior to their implementation.

We note that some of the requests can contain
specific dependencies between the parameters of the
virtual machines being requested and the tasks
(services) assigned for these machines together with
the order of their execution (invocation).

In this paper, we discuss how the consistency of a
user request can be checked before the platform
executes such a request. In this paper, we identify
three possible groups issues, which can occur in the
requests, i.e., functional or logic issues, resource
allocation/dependency issues, and security issues. For

López, J., Kushik, N., Yevtushenko, N. and Zeghlache, D.
Analyzing and Validating Virtual Network Requests.
DOI: 10.5220/0006472304410446
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 441-446
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

441

the first two groups, we propose the validation
techniques based on effective Boolean operations.
The third group concerns security issues in user
requests and it covers on one hand, the appropriate
access control and on the other, potential attacks of
the platform. The first problem can be solved through
the usage of the security/access control mechanisms
for example (Idrees et al., 2015), while the second
needs to be considered separately, starting from
classical SQL injections and finishing with specific
attacks for network virtualization platforms.

Similar work was performed for checking the
requests using cloud environments (Huang et al.,
2015). However, some of the properties that we have
identified cannot be expressed with their
configuration predicate language; this partially
motivates the current work presented in this paper.

Our main contributions are the identification of
the properties to validate, the design and method for
integration of a new module into the platform for
network services, namely, a user-request-validator
for checking logical, resource allocation/dependency
and security related request inconsistencies.

We note that since the proposed techniques are
generic, platform providers can always add other
properties apart from those considered in the paper.
Methods and techniques for each group are
demonstrated using the user requests written in
TOSCA language as it is done for the platform
developed and utilized as our case study.

The structure of the paper is as follows. Section 2
has a brief description of the user requests and it also
enumerates their potential inconsistencies. Section 3
describes the techniques for the request validation,
while Section 4 concludes the paper.

2 ANALYSIS OF ISSUES IN
VIRTUAL NETWORK
REQUESTS

A tenant request is a structured string, which belongs
to the TOSCA language. According to the platform
description (Mechtri et al., 2016), each user request
can be parsed into three main parts.

One part is concerned about the virtual resources
from the virtual devices according to available
capacities, ports and other parameters while another
part of the request contains a so-called network
connectivity topology (network connectivity graph).
In this graph, Virtual Network Function (VNF) pairs
are connected according to the desired topology of
neighboring nodes (Fig. 1a). In the third part of the

request, Service Function Chains (SFCs) define a
sequence (or sequences) of service functions (or
VNFs), which are applied to packets or a sequence of
packets and should be implemented using the
connections of the connectivity graph.

A service function chain defines a (partial) order
relation (Nadeau and Quinn, 2015) over a subset of
the nodes of the network connectivity graph.
Typically, this order relation is given in a graphical
form, for example, as depicted in Figure 1b.

Figure 1: Network connectivity topology graph and
network function chain without underlying connectivity.

2.1 Analysis of Properties and Issues

As mentioned above, the network virtualization
platform processes virtual network requests
expressed by users (or tenants). Based on a
vulnerability assessment performed against our
network virtualization platform, we have identified
three possible groups of inconsistencies, which can
occur in the requests: a) functional or logic issues, b)
resource/dependency issues, and c) security issues.

A. Functional / Logic Related Inconsistencies
Functional or logic related issues arise as the result of
misconfigurations. Below we expose some of these

a

b

ICSOFT 2017 - 12th International Conference on Software Technologies

442

issues and the corresponding configuration properties
that should hold.

A1. A Chain must not have Loops. A service
chain as defined in Section 2 is a partial order, and
thus, no loops are allowed in the chain. However, a
request compliant with the TOSCA’s syntax might
contain such issues. Consider the following snippet of
code and its corresponding chain representation:

Figure 2: Network function chain with a loop.

As can be seen the chain is formed with a loop.
The behavior of the service function chain with a loop
might be risky, it can potentially flood the virtual
network by infinitely sending the network packets
back and forth from / to the different VNFs at the
different connection points (CPs).

A2. A Chain can only be implemented if the
undelaying connectivity Graph allows it. A service
function chain forwards network packets to the
respective service functions at each connection point.
However, it cannot be possible if the connections
points are not logically connected. Consider the
snippet of TOSCA code and corresponding network
connectivity graph and service function chain
described in the Fig. 1.

The service function chain logically connects
packets coming from a node at the network called
‘NET-2’ to a node at the network called ‘NET-3’. The
problem is that forwarding traffic from one to the
other violates the virtual network isolation. If the
traffic is not forwarded, then the chain is not
respected.

A3. Some Chains must have a
“Complementary” reverse Chain. The majority of
communication protocols rely on some form of
bilateral communication, even if just for
acknowledging the reception of data. For that reason,
having a reverse chain for each chain at least from the
‘last’ to the ‘first’ connectivity point might be

desirable. In the previous two examples, none of the
chains depicts a reverse chain. These declarations
might be candidates to trigger warnings. Considering
the case in Fig. 1, if two chains CP11→CP21 and
CP21→CP11 are implemented, this request is
considered as valid.

B. Resource / Dependency Issues
Network service functions are implemented as

running software which has resource requirements.
Moreover, each service function runs on a
computational device, and the service intrinsically
impose restrictions on the devices executing it.

B1. Restrictions on the VNF Neighboring
Connections. Certain VNFs might require specific
configurations. For example, if a VNF is of the type
‘HTTP Cache’ it is necessary that such VNF is
connected to an ‘HTTP Server’ VNF. The reason is
that any HTTP cache needs an origin HTTP server
from which it takes the data to cache. Furthermore,
they must be connected through a service function
chain.

B2. Restrictions on the Resources used by
VNFs. A VNF might be known to be resource
intensive. As an example, consider a deep packet
inspection (DPI). The corresponding VNF requires
fast processing of the data packets if the DPI is
performed on-line. Therefore, the associated Virtual
Machine (VM) needs to have an appropriate number
of CPUs, for example least 4 CPUs. Fig. 3 depicts an
invalid configuration for the DPI VNF.

B3. Resource Capacity Dependencies.
Dependencies across different properties of the
(TOSCA) nodes might be implied. For instance, the
outbound bandwidth of a node in a SFC must be less
or equal than the inbound node which follows it.
Another interesting issue is the node resource
interdependency, i.e., the dependencies that each
node imposes according to a specific declared
resource. For example, consider a VNF which is CPU
intensive with enough CPU capacity. However, if the
inbound bandwidth is very high the possessed CPU is
not sufficient. There exist a large number of resource
implications inside a user specification. However,
due to space constraints in this publication, we list a
few of them, and omit several others, which might be
more trivial. For example, the implications of a
unique resource assignation as a port or an IP address.

C. Security Related Issues
As any application that processes complex user

requests, the virtualization platform might be
potentially vulnerable to certain inputs. In the
following, we analyze some possibilities.

C1. Code Injection Issues. As the request is
passed via a text format, the platform might use

Analyzing and Validating Virtual Network Requests

443

certain values found in the original text of the request
to process the request itself. For example, it could use
the value found in the IP address range for setting
some value(s) in the database. In Fig. 4, we illustrate
an SQL injection attack in the request.

Figure 3: Invalid configuration of the DPI VNF.

Figure 4: SQLi attack on TOSCA specification.

Other types of attacks are possible as well. For
instance, an attacker might inject a cross-site scripting
code to steal the cookies of the platform administrator
in order to obtain super user privileges. Given the fact
that the platform might use open source software,
verifying the absence of such attacks in the requests
is crucial.

C2. Denial of Service (DoS) Issues. Generally
speaking, any platform which is open for requests is
susceptible to DoS attacks. Not considering all the
network DoS or delayed data sending DoS, which are
assumed to be handled by other system components,
there exist certain types of DoS attacks, for which a
processed request might be used. For that reason, we
mind their implications. In fact, a sequence of

requests which are similar in a short period of time
might prevent the whole system to execute any
further actions. Furthermore, the requests can also be
not valid, or partially non-valid.

3 REQUEST VALIDATION

Different mathematical models can be applied for
verifying the request consistency. For checking the
properties of type A, we use Boolean matrices for the
graph representation and operators over them. A
network connectivity topology is an undirected graph
G = (V, E) where the set V = {VNF1, …, VNFk} of
nodes represents network devices while edges of the
graph (the set E) are pairs (VNFi, NNFj), VNFi,
VNFj ∈ V; edges represent connections between two
nodes. As mentioned above, in virtual networks a
chain is considered as a (partial) order (Fig. 1b). A
Service Function Chain (SFC) defines a strict
(partial) order relation on the set of service functions
(or VNFs); this relation can be represented as a list of
corresponding VNF pairs or as a directed graph.
Given an SFC over the set V of VNFs, VNFj is a direct
successor of VNFj-1 if the relation has a pair (VNFj-1,
VNFj), written VNFj-1 → VNFj, while VNFj is a
successor of VNFt, written VNFt ↦ VNFj, if the order
relation has pairs VNFt → VNFt + 1 → … → VNFj. An
SFC is an acyclic directed graph and thus, Boolean
adjacency matrices can be used for representing the
network connectivity graph as well as the set of SFCs.
If the matrix G represents a directed or an undirected
graph then the matrix Gn i.e., the product of n
matrices G, represents the set of nodes which are
connected via a path of length n.

Checking the A1 Property. To check that a
given set of VNF pairs is a partial order, i.e., an SFC,
the relation is represented by a Boolean matrix F of a
corresponding directed graph and then the problem
reduces to checking if the graph has no cycles. The
matrix Fn is derived up to appropriate n. Once some
diagonal item of Fn becomes non-zero, the graph is
not acyclic. Otherwise, the given set represents a
partial order relation.

As an example, consider the request in Fig. 1 and

a corresponding Boolean matrix F = ቀ0 11 0ቁ. The

matrix F2 =	ቀ1 00 1ቁ	and ଵ݂ଵ = 1, i.e., the requested

SFC is not a partial order.
Checking the A2 Property. If the network

connectivity graph and a requested SFC are
represented as Boolean matrices G and F
correspondingly, then it is enough to check that each

ICSOFT 2017 - 12th International Conference on Software Technologies

444

row of F is contained in the corresponding row of G.
If the SFC is represented as a list of pairs then it is
enough to check that for each pair VNFi → VNFj.
When reachability problems for the connectivity
graph G are investigated it is natural to consider the
Boolean matrix F while representing a chain as an
adjacency list. Then for each pair VNFi → VNFj of the
chain where we check whether the (i, j) cell of G
equals 1. If not then the chain cannot be implemented
by the connectivity graph G.

Checking the A3 Property. As mentioned
above, each VNF must respect possible predecessors
and successors and such example is given when
describing the A3 property. If the list of direct
successors is given as a list of pairs then it is enough
to check that no SFC contains such pairs. If any
successors are considered then it is better to represent
an SFC as a Boolean matrix F and check whether a
‘forbidden’ pair induces ‘1’ at the corresponding cell
of the matrix Fn.

For checking the properties of type B, we use
systems of logical implications which can be
represented as a CNF that is the product of disjunctive
clauses. Given a request, if CNF is not equal to ‘1’
then the well-known SAT problem can be used for
verifying an inconsistent request.

Checking the B1 Property. The property of SFC
to have a reverse chain can be described by a logical
implication that can be later converted to a CNF. For
example, if there is an SFC α = VNF1 → VNF2 →
VNF3 for which there should exist a reverse chain

such that VNF3 ↦VNF1 then there are logic
expressions for the following
implication: ࢌ	ܨܸܰ)ଵ → (ଶܨܸܰ ∧ ଶܨܸܰ) ଷܨܸܰ)	ࢋࢎ࢚	(ଷܨܸܰ→ ↦ ଵ). The aboveܨܸܰ
expression can be represented by the
following CNF: (ܸܰܨଵ → ଶ)തതതതതതതതതതതതതതതതതതതതതܨܸܰ ଶܨܸܰ)∨ → ଷ)തതതതതതതതതതതതതതതതതതതതതܨܸܰ ∨ ଷܨܸܰ) ↦ .ଵ) (a)ܨܸܰ
If the CNF is not equal to ‘1” then there is no chain

such that (VNF3 ↦ VNF1).
Checking the B2 Property. The property states

that certain VNFs might have resource limitations.
Assume that the example shown in Fig. 3 applies for
VNFs of the ‘dpi’ and ‘fw’ types (as the FW type of
VNF is also resource consuming), then the associated
logic expression (implication) is the
following:	ࢌ	ܨܸܰ). ݁ݕݐ = ("݅݀" .ܨܸܰ)∨ ݁ݕݐ = .ܨܸܰ	ࢋࢎ࢚	("ݓ݂" ݑܿ ≥ 4.		

The above expression can be represented by the
following CNF:

 ቀܸܰܨప. ݁ݕݐ = ଓ")തതതതതതതതതതതതതതതതതതതതതതതതതത݀" ∨ .ܨܸܰ) ݑܿ ≥ 4)ቁ ∧ቀܸܰܨప. ݁ݕݐ = തതതതതതതതതതതതതതതതതതതതതതതതത("ݓ݂" ∨ .ܨܸܰ) ݑܿ ≥ 4)ቁ (b).

Checking the B3 Property. There are two
examples stated for property B3. The first example
states that in an SFC, the outbound bandwidth of a
given VNF should be less or equal than the inbound
bandwidth of the subsequent VNF. This property can
be described by the following
implication: ࢌ	൫ܸܰܨ → .ܨܸܰ	ࢋࢎ࢚	൯ܨܸܰ ܤ݊݅ .ܨܸܰ	≤ 	.ܤ݊݅

The above expression can be represented by the

following CNF: ൫ܸܰܨప → ఫ൯തതതതതതതതതതതതതതതതതതതതܨܸܰ .ܨܸܰ)	∨ ܤ݊݅ .ܨܸܰ	≤ .(c) (ܤ݊݅
The second example for B3 states that certain

characteristics of the virtual machines are inter-
dependent. For example, the CPU depends on the
inbound bandwidth. For the scope of this paper, we
assume the dependency is linear and the lower bound
on the minimal demanding bandwidth is a constant.
However, thorough investigation of this correlation is
necessary. Assume that the lower bound is 100MB/s.
In this case, the associated logical implication can be
described by the following implication: ࢌ	ܨܸܰ). ܤ݊݅ ≥ .ܨܸܰ	ࢋࢎ࢚	(ݏ/ܤܯ100 ݑܿ > 2 .ܨܸܰ∗ .ܤ݊݅

The above expression can be represented by the
following CNF: (ܸܰܨప. ଓ݊ܤ ≥ തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(ݏ/ܤܯ100 .ܨܸܰ)∨ ݑܿ > 2 ∗ .ܨܸܰ .(d) (ܤ݊݅

In this paper, we do not discuss trivial
inconsistencies of a tenant, e.g., inconsistent
requested capacities (for example, requested memory
exceeds the maximal physical limits), etc. All such
inconsistencies can be checked simply enough using
arithmetic rules (mostly inequalities) such as ܸܰܨ.݉݁݉ ≤ .ܺܣܯ_ܯܧܯ

There can be more examples of logic implications
when consistency rules are extended for applied
requests. However, as it can be seen there is a system
of logic implications which can be written as a CNF.
This CNF is in fact the conjunction of all previously
depicted CNFs, i.e., ܽ ∧ ܾ ∧ ܿ ∧ ݀.

According to the CNF, a request is resource
consistent if the CNF result equals to ‘1’. Using CNFs
opens more possibilities. For example, if the CNF
equals 0 for a given request we could solve a
corresponding SAT problem in order to find a
solution that is the closest to the request data.

For checking properties of the C group, we
propose the use of different methods, which are
known to be good for detecting the corresponding
security threats.

Checking the C1 Property. In order to check that
the request is safe with respect to code injection
attacks, different approaches have been proposed.
Nonetheless, among all these methods, anomaly

Analyzing and Validating Virtual Network Requests

445

detection using supervised machine learning
techniques have proven to be highly
effective (Watson et al., 2016). For example, a
training set with negative labels for strings containing
ill-formatted strings could report a SQL injection as
an invalid request. Another possibility is to avoid the
verification and directly transform the input into a
‘safe’ one through the string analysis. In this case, the
request can be sanitized in order to be consistent
(Alkhalaf, 2014).

Checking the C2 Property. In order to avoid the
DoS attacks, many approaches have been proposed as
well (Zargar et al., 2013). Depending on the type of
an application that processes the request, different
approaches have been proven to be effective. In our
studies, the majority of virtualization platform
orchestrators are implemented in any form of a web
service or web application. For that reason, such
platforms are susceptible to a number of DoS
including the attacks that exploit slow
request/response or fragmentation attacks. One
possibility to avoid these threats is to make use of
anomaly detection methods applied to the users’
behavior.

We note that the properties of types A-C
described above form just a small subset of the issues
that can appear in user requests. However, the
scalable solutions discussed above can be applied to
other types of inconsistencies.

4 CONCLUSIONS

In this paper, we addressed the problem of the
verification and validation of user requests for
systems providing network services.

We discussed the possibilities of checking three
types of request issues, namely functional/logical
issues, resource allocation or parameter dependency
issues, and finally security issues. We also proposed
a number of scalable techniques for solving the
problems listed above and illustrated these techniques
by a number of examples of user requests.

As for the future work, we first plan to implement
the proposed request-validator solution and then
perform experimental evaluation in order to prove its
effectiveness. As one of existing platforms providing
virtual networks and service function chains has been
developed in our previous works, we plan to use it as
a case study.

Finally, we plan to study other non-functional
issues that can be added to the verification/validation
process of the user request.

ACKNOWLEDGEMENTS

The results in this work were partially funded by the
Celtic-Plus European project SENDATE, ID
C2015/3-1; French National project CARP (FUI 19);
Bilateral contracts with Orange Labs; Russian
Science Foundation (RSF), project № 16-49-03012.

REFERENCES

European Telecommunications Standards Institute (ETSI),
2013. Network Functions Virtualisation (NFV); Use
Cases, NFV-MAN V1.1.1, ETSI Standard.

Mechtri, M., Benyahia, I. G., Zeghlache, D., 2016. Agile
service manager for 5G, in the proceedings of the
IEEE/IFIP Network Operations and Management
Symposium (NOMS), Istanbul, Turkey, pp. 1285-1290.

Nadeau, T., Quinn, P., 2015. Problem Statement for Service
Function Chaining, Internet Engineering Task Force
(IETF) Request for Comments (RFC) 7498.

Palma, D., Rutkowski, M., Spatzier, T, 2016. TOSCA
Simple Profile in YAML Version 1.0. OASIS
Committee Specification 01.

Huang, P., Bolosky, W. J., Singh, A., Zhou, Y., 2015.
ConfValley: a systematic configuration validation
framework for cloud services, in the proceedings of the
Tenth European Conference on Computer Systems
(EuroSys '15). New York, USA, pp. 19:1-19:16.

Watson, M. R., Shirazi, N.-u.-h., Marnerides, A. K.,
Mauthe, A., Hutchison, D., 2016. Malware Detection in
Cloud Computing Infrastructures, IEEE Transactions
on Dependable and Secure Computing, vol. 13, no. 2,
pp. 192–205.

Zargar, S. T., Joshi, J. Tipper, D., 2013. A Survey of
Defense Mechanisms Against Distributed Denial of
Service (DDoS) Flooding Attacks, IEEE
Communications Surveys & Tutorials, vol. 15, no. 4,
pp. 2046-2069.

Idrees, M. S., Ayed, S., Cuppens-Boulahia, N. and
Cuppens, F., 2015. Dynamic Security Policies
Enforcement and Adaptation Using Aspects, in the
preceedings of the IEEE Trustcom/BigDataSE/ISPA,
pp. 1374-1379.

Alkhalaf, M. A., 2014. Automatic Detection and Repair of
Input Validation and Sanitization Bugs. PhD thesis,
University of California, Santa Barbara.

ICSOFT 2017 - 12th International Conference on Software Technologies

446

