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Abstract: In this paper, we address platforms developed to provide and configure virtual networks according to user’s 
request and needs. User requests are, however, not always accurate and can contain a number of 
inconsistencies. The requests need to be thoroughly analyzed and verified before being applied to such 
platforms. We consequently identify some important properties for the verification and classify them into 
three groups: a) functional or logic issues, b) resource allocation/dependency issues, and c) security issues. 
For each group, we propose an effective way to check the request consistency. The issues of the first group 
are checked with the use of scalable Boolean matrix operations. The properties of the second group can be 
verified through the use of an appropriate system of logic implications. When checking the issues of the third 
group, the corresponding string analysis can be utilized. All the techniques discussed in the paper are followed 
by a number of illustrating examples. 

1 INTRODUCTION 

Virtual networks are growing in usage and popularity 
along with the progress being achieved in the area of 
communication technologies. At the same time, 
virtual networks represent one of the main concepts 
of the future generation networks, such as 5G (ETSI, 
2013). Therefore, the software and hardware 
components of such systems need to be thoroughly 
tested and verified. 

Virtualization mechanisms open up the 
possibilities to provide any types of networks ‘on-
demand’. Network services and their service chains 
can thus be provided to users according to their 
preferences. Users request (virtual) networks with 
specific nodes and service function chains from 
service providers that host the desired virtual 
network. One of the platforms for providing such 
network services was developed in our previous 
works (Mechtri et al., 2016). This platform is a 
service function chain orchestrator capable of 
provisioning, hosting resources, deploying and 
instantiating the user’s requested service chains (and 
virtual network). 

As the requests for providing network services are 
written by users (or tenants), they can contain 
inconsistencies as well as semantic errors. In the 
platform selected for this study, the requests are 

expressed in the Topology and Orchestration 
Specification for Cloud Applications (TOSCA) 
language (Palma et al., 2016). In a well formatted 
TOSCA request (correct syntax, i.e., parsed 
successfully), a number of semantic inconsistencies 
can be present. If an inconsistent user request (a 
virtual network) that for example, contains 
contradicting declarations, is deployed in the 
platform, unexpected or undesirable results might 
occur. Different constraints might be violated, such as 
for example service level agreements. As the 
consistency of the system is compromised by such 
requests, in one way or another the request is not 
properly implemented or it can even threaten the 
security and safety of the whole system. This is the 
reason why tenant requests should be carefully 
verified prior to their implementation.  

We note that some of the requests can contain 
specific dependencies between the parameters of the 
virtual machines being requested and the tasks 
(services) assigned for these machines together with 
the order of their execution (invocation).  

In this paper, we discuss how the consistency of a 
user request can be checked before the platform 
executes such a request. In this paper, we identify 
three possible groups issues, which can occur in the 
requests, i.e., functional or logic issues, resource 
allocation/dependency issues, and security issues. For 
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the first two groups, we propose the validation 
techniques based on effective Boolean operations. 
The third group concerns security issues in user 
requests and it covers on one hand, the appropriate 
access control and on the other, potential attacks of 
the platform. The first problem can be solved through 
the usage of the security/access control mechanisms 
for example (Idrees et al., 2015), while the second 
needs to be considered separately, starting from 
classical SQL injections and finishing with specific 
attacks for network virtualization platforms. 

Similar work was performed for checking the 
requests using cloud environments (Huang et al., 
2015). However, some of the properties that we have 
identified cannot be expressed with their 
configuration predicate language; this partially 
motivates the current work presented in this paper. 

Our main contributions are the identification of 
the properties to validate, the design and method for 
integration of a new module into the platform for 
network services, namely, a user-request-validator 
for checking logical, resource allocation/dependency 
and security related request inconsistencies.  

We note that since the proposed techniques are 
generic, platform providers can always add other 
properties apart from those considered in the paper. 
Methods and techniques for each group are 
demonstrated using the user requests written in 
TOSCA language as it is done for the platform 
developed and utilized as our case study.  

The structure of the paper is as follows. Section 2 
has a brief description of the user requests and it also 
enumerates their potential inconsistencies. Section 3 
describes the techniques for the request validation, 
while Section 4 concludes the paper. 

2 ANALYSIS OF ISSUES IN 
VIRTUAL NETWORK 
REQUESTS 

A tenant request is a structured string, which belongs 
to the TOSCA language. According to the platform 
description (Mechtri et al., 2016), each user request 
can be parsed into three main parts.  

One part is concerned about the virtual resources 
from the virtual devices according to available 
capacities, ports and other parameters while another 
part of the request contains a so-called network 
connectivity topology (network connectivity graph). 
In this graph, Virtual Network Function (VNF) pairs 
are connected according to the desired topology of 
neighboring nodes (Fig. 1a). In the third part of the 

request, Service Function Chains (SFCs) define a 
sequence (or sequences) of service functions (or 
VNFs), which are applied to packets or a sequence of 
packets and should be implemented using the 
connections of the connectivity graph.  

A service function chain defines a (partial) order 
relation (Nadeau and Quinn, 2015) over a subset of 
the nodes of the network connectivity graph.  
Typically, this order relation is given in a graphical 
form, for example, as depicted in Figure 1b. 

 

Figure 1: Network connectivity topology graph and 
network function chain without underlying connectivity. 

2.1 Analysis of Properties and Issues 

As mentioned above, the network virtualization 
platform processes virtual network requests 
expressed by users (or tenants). Based on a 
vulnerability assessment performed against our 
network virtualization platform, we have identified 
three possible groups of inconsistencies, which can 
occur in the requests: a) functional or logic issues, b) 
resource/dependency issues, and c) security issues.  

A. Functional / Logic Related Inconsistencies 
Functional or logic related issues arise as the result of 
misconfigurations. Below we expose some of these 

a

b
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issues and the corresponding configuration properties 
that should hold. 

A1. A Chain must not have Loops. A service 
chain as defined in Section 2 is a partial order, and 
thus, no loops are allowed in the chain. However, a 
request compliant with the TOSCA’s syntax might 
contain such issues. Consider the following snippet of 
code and its corresponding chain representation: 

 

 

Figure 2: Network function chain with a loop. 

As can be seen the chain is formed with a loop. 
The behavior of the service function chain with a loop 
might be risky, it can potentially flood the virtual 
network by infinitely sending the network packets 
back and forth from / to the different VNFs at the 
different connection points (CPs). 

A2. A Chain can only be implemented if the 
undelaying connectivity Graph allows it. A service 
function chain forwards network packets to the 
respective service functions at each connection point. 
However, it cannot be possible if the connections 
points are not logically connected. Consider the 
snippet of TOSCA code and corresponding network 
connectivity graph and service function chain 
described in the Fig. 1. 

The service function chain logically connects 
packets coming from a node at the network called 
‘NET-2’ to a node at the network called ‘NET-3’. The 
problem is that forwarding traffic from one to the 
other violates the virtual network isolation. If the 
traffic is not forwarded, then the chain is not 
respected.  

A3. Some Chains must have a 
“Complementary” reverse Chain. The majority of 
communication protocols rely on some form of 
bilateral communication, even if just for 
acknowledging the reception of data. For that reason, 
having a reverse chain for each chain at least from the 
‘last’ to the ‘first’ connectivity point might be 

desirable. In the previous two examples, none of the 
chains depicts a reverse chain. These declarations 
might be candidates to trigger warnings. Considering 
the case in Fig. 1, if two chains CP11→CP21 and 
CP21→CP11 are implemented, this request is 
considered as valid. 

B. Resource / Dependency Issues  
Network service functions are implemented as 

running software which has resource requirements. 
Moreover, each service function runs on a 
computational device, and the service intrinsically 
impose restrictions on the devices executing it.  

B1. Restrictions on the VNF Neighboring 
Connections. Certain VNFs might require specific 
configurations. For example, if a VNF is of the type 
‘HTTP Cache’ it is necessary that such VNF is 
connected to an ‘HTTP Server’ VNF. The reason is 
that any HTTP cache needs an origin HTTP server 
from which it takes the data to cache. Furthermore, 
they must be connected through a service function 
chain.  

B2. Restrictions on the Resources used by 
VNFs. A VNF might be known to be resource 
intensive. As an example, consider a deep packet 
inspection (DPI). The corresponding VNF requires 
fast processing of the data packets if the DPI is 
performed on-line. Therefore, the associated Virtual 
Machine (VM) needs to have an appropriate number 
of CPUs, for example least 4 CPUs. Fig. 3 depicts an 
invalid configuration for the DPI VNF. 

B3. Resource Capacity Dependencies. 
Dependencies across different properties of the 
(TOSCA) nodes might be implied. For instance, the 
outbound bandwidth of a node in a SFC must be less 
or equal than the inbound node which follows it. 
Another interesting issue is the node resource 
interdependency, i.e., the dependencies that each 
node imposes according to a specific declared 
resource. For example, consider a VNF which is CPU 
intensive with enough CPU capacity. However, if the 
inbound bandwidth is very high the possessed CPU is 
not sufficient. There exist a large number of resource 
implications inside a user specification. However, 
due to space constraints in this publication, we list a 
few of them, and omit several others, which might be 
more trivial. For example, the implications of a 
unique resource assignation as a port or an IP address. 

C. Security Related Issues 
As any application that processes complex user 

requests, the virtualization platform might be 
potentially vulnerable to certain inputs. In the 
following, we analyze some possibilities.   

C1. Code Injection Issues. As the request is 
passed via a text format, the platform might use 
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certain values found in the original text of the request 
to process the request itself. For example, it could use 
the value found in the IP address range for setting 
some value(s) in the database. In Fig. 4, we illustrate 
an SQL injection attack in the request. 

 

Figure 3: Invalid configuration of the DPI VNF. 

 

Figure 4: SQLi attack on TOSCA specification. 

Other types of attacks are possible as well. For 
instance, an attacker might inject a cross-site scripting 
code to steal the cookies of the platform administrator 
in order to obtain super user privileges. Given the fact 
that the platform might use open source software, 
verifying the absence of such attacks in the requests 
is crucial.  

C2. Denial of Service (DoS) Issues. Generally 
speaking, any platform which is open for requests is 
susceptible to DoS attacks. Not considering all the 
network DoS or delayed data sending DoS, which are 
assumed to be handled by other system components, 
there exist certain types of DoS attacks, for which a 
processed request might be used. For that reason, we 
mind their implications. In fact, a sequence of 

requests which are similar in a short period of time 
might prevent the whole system to execute any 
further actions. Furthermore, the requests can also be 
not valid, or partially non-valid. 

3 REQUEST VALIDATION 

Different mathematical models can be applied for 
verifying the request consistency. For checking the 
properties of type A, we use Boolean matrices for the 
graph representation and operators over them. A 
network connectivity topology is an undirected graph 
G = (V, E) where the set V = {VNF1, …, VNFk} of 
nodes represents network devices while edges of the 
graph (the set E) are pairs (VNFi, NNFj), VNFi, 
VNFj ∈ V; edges represent connections between two 
nodes. As mentioned above, in virtual networks a 
chain is considered as a (partial) order (Fig. 1b). A 
Service Function Chain (SFC) defines a strict 
(partial) order relation on the set of service functions 
(or VNFs); this relation can be represented as a list of 
corresponding VNF pairs or as a directed graph. 
Given an SFC over the set V of VNFs, VNFj is a direct 
successor of VNFj-1 if the relation has a pair (VNFj-1, 
VNFj), written VNFj-1 → VNFj, while VNFj is a 
successor of VNFt, written VNFt ↦ VNFj, if the order 
relation has pairs VNFt →  VNFt + 1 → … → VNFj. An 
SFC is an acyclic directed graph and thus, Boolean 
adjacency matrices can be used for representing the 
network connectivity graph as well as the set of SFCs.  
If the matrix G represents a directed or an undirected 
graph then the matrix Gn i.e., the product of n 
matrices G, represents the set of nodes which are 
connected via a path of length n. 

Checking the A1 Property. To check that a 
given set of VNF pairs is a partial order, i.e., an SFC, 
the relation is represented by a Boolean matrix F of a 
corresponding directed graph and then the problem 
reduces to checking if the graph has no cycles. The 
matrix Fn is derived up to appropriate n. Once some 
diagonal item of Fn becomes non-zero, the graph is 
not acyclic. Otherwise, the given set represents a 
partial order relation. 

As an example, consider the request in Fig. 1 and 

a corresponding Boolean matrix F = ቀ0 11 0ቁ. The 

matrix F2 =	ቀ1 00 1ቁ	and ଵ݂ଵ = 1, i.e., the requested 

SFC is not a partial order. 
Checking the A2 Property. If the network 

connectivity graph and a requested SFC are 
represented as Boolean matrices G and F 
correspondingly, then it is enough to check that each 
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row of F is contained in the corresponding row of G. 
If the SFC is represented as a list of pairs then it is 
enough to check that for each pair VNFi → VNFj. 
When reachability problems for the connectivity 
graph G are investigated it is natural to consider the 
Boolean matrix F while representing a chain as an 
adjacency list. Then for each pair VNFi → VNFj of the 
chain where we check whether the (i, j) cell of G 
equals 1. If not then the chain cannot be implemented 
by the connectivity graph G. 

Checking the A3 Property. As mentioned 
above, each VNF must respect possible predecessors 
and successors and such example is given when 
describing the A3 property. If the list of direct 
successors is given as a list of pairs then it is enough 
to check that no SFC contains such pairs. If any 
successors are considered then it is better to represent 
an SFC as a Boolean matrix F and check whether a 
‘forbidden’ pair induces ‘1’ at the corresponding cell 
of the matrix Fn. 

For checking the properties of type B, we use 
systems of logical implications which can be 
represented as a CNF that is the product of disjunctive 
clauses. Given a request, if CNF is not equal to ‘1’ 
then the well-known SAT problem can be used for 
verifying an inconsistent request. 

Checking the B1 Property. The property of SFC 
to have a reverse chain can be described by a logical 
implication that can be later converted to a CNF. For 
example, if there is an SFC α = VNF1 → VNF2 → 
VNF3 for which there should exist a reverse chain 

such that VNF3 ↦VNF1 then there are logic 
expressions for the following 
implication: ࢌ	ܨܸܰ)ଵ → (ଶܨܸܰ ∧ ଶܨܸܰ) ଷܨܸܰ)	ࢋࢎ࢚	(ଷܨܸܰ→ ↦  ଵ). The aboveܨܸܰ
expression can be represented by the 
following CNF: (ܸܰܨଵ → ଶ)തതതതതതതതതതതതതതതതതതതതതܨܸܰ ଶܨܸܰ)∨ → ଷ)തതതതതതതതതതതതതതതതതതതതതܨܸܰ ∨ ଷܨܸܰ) ↦  .ଵ) (a)ܨܸܰ
If the CNF is not equal to ‘1” then there is no chain 

such that (VNF3 ↦ VNF1). 
Checking the B2 Property. The property states 

that certain VNFs might have resource limitations. 
Assume that the example shown in Fig. 3 applies for 
VNFs of the ‘dpi’ and ‘fw’ types (as the FW type of 
VNF is also resource consuming), then the associated 
logic expression (implication) is the 
following:	ࢌ	ܨܸܰ). ݁ݕݐ = ("݅݀" .ܨܸܰ)∨ ݁ݕݐ = .ܨܸܰ	ࢋࢎ࢚	("ݓ݂" ݑܿ ≥ 4.		  

The above expression can be represented by the 
following CNF: 

 ቀܸܰܨప. ݁ݕݐ = ଓ")തതതതതതതതതതതതതതതതതതതതതതതതതത݀" ∨ .ܨܸܰ) ݑܿ ≥ 4)ቁ ∧ቀܸܰܨప. ݁ݕݐ = തതതതതതതതതതതതതതതതതതതതതതതതത("ݓ݂" ∨ .ܨܸܰ) ݑܿ ≥ 4)ቁ (b). 

Checking the B3 Property. There are two 
examples stated for property B3. The first example 
states that in an SFC, the outbound bandwidth of a 
given VNF should be less or equal than the inbound 
bandwidth of the subsequent VNF. This property can 
be described by the following 
implication: ࢌ	൫ܸܰܨ → .ܨܸܰ	ࢋࢎ࢚	൯ܨܸܰ ܤ݊݅ .ܨܸܰ	≤   	.ܤ݊݅

The above expression can be represented by the 

following CNF: ൫ܸܰܨప → ఫ൯തതതതതതതതതതതതതതതതതതതതܨܸܰ .ܨܸܰ)	∨ ܤ݊݅ .ܨܸܰ	≤  .(c) (	ܤ݊݅
The second example for B3 states that certain 

characteristics of the virtual machines are inter-
dependent. For example, the CPU depends on the 
inbound bandwidth. For the scope of this paper, we 
assume the dependency is linear and the lower bound 
on the minimal demanding bandwidth is a constant. 
However, thorough investigation of this correlation is 
necessary. Assume that the lower bound is 100MB/s. 
In this case, the associated logical implication can be 
described by the following implication: ࢌ	ܨܸܰ). ܤ݊݅ ≥ .ܨܸܰ	ࢋࢎ࢚	(ݏ/ܤܯ100 ݑܿ > 2 .ܨܸܰ∗   .ܤ݊݅

The above expression can be represented by the 
following CNF: (ܸܰܨప. ଓ݊ܤ ≥ തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(ݏ/ܤܯ100 .ܨܸܰ)∨ ݑܿ > 2 ∗ .ܨܸܰ  .(d) (	ܤ݊݅

In this paper, we do not discuss trivial 
inconsistencies of a tenant, e.g., inconsistent 
requested capacities (for example, requested memory 
exceeds the maximal physical limits), etc. All such 
inconsistencies can be checked simply enough using 
arithmetic rules (mostly inequalities) such as ܸܰܨ.݉݁݉ ≤  .ܺܣܯ_ܯܧܯ

There can be more examples of logic implications 
when consistency rules are extended for applied 
requests. However, as it can be seen there is a system 
of logic implications which can be written as a CNF. 
This CNF is in fact the conjunction of all previously 
depicted CNFs, i.e., ܽ ∧ ܾ ∧ ܿ ∧ ݀.  

According to the CNF, a request is resource 
consistent if the CNF result equals to ‘1’. Using CNFs 
opens more possibilities. For example, if the CNF 
equals 0 for a given request we could solve a 
corresponding SAT problem in order to find a 
solution that is the closest to the request data.  

For checking properties of the C group, we 
propose the use of different methods, which are 
known to be good for detecting the corresponding 
security threats. 

Checking the C1 Property. In order to check that 
the request is safe with respect to code injection 
attacks, different approaches have been proposed. 
Nonetheless, among all these methods, anomaly 
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detection using supervised machine learning 
techniques have proven to be highly 
effective (Watson et al., 2016). For example, a 
training set with negative labels for strings containing 
ill-formatted strings could report a SQL injection as 
an invalid request. Another possibility is to avoid the 
verification and directly transform the input into a 
‘safe’ one through the string analysis. In this case, the 
request can be sanitized in order to be consistent 
(Alkhalaf, 2014). 

Checking the C2 Property. In order to avoid the 
DoS attacks, many approaches have been proposed as 
well (Zargar et al., 2013). Depending on the type of 
an application that processes the request, different 
approaches have been proven to be effective. In our 
studies, the majority of virtualization platform 
orchestrators are implemented in any form of a web 
service or web application. For that reason, such 
platforms are susceptible to a number of DoS 
including the attacks that exploit slow 
request/response or fragmentation attacks. One 
possibility to avoid these threats is to make use of 
anomaly detection methods applied to the users’ 
behavior.  

We note that the properties of types A-C 
described above form just a small subset of the issues 
that can appear in user requests. However, the 
scalable solutions discussed above can be applied to 
other types of inconsistencies.  

4 CONCLUSIONS 

In this paper, we addressed the problem of the 
verification and validation of user requests for 
systems providing network services.  

We discussed the possibilities of checking three 
types of request issues, namely functional/logical 
issues, resource allocation or parameter dependency 
issues, and finally security issues. We also proposed 
a number of scalable techniques for solving the 
problems listed above and illustrated these techniques 
by a number of examples of user requests. 

As for the future work, we first plan to implement 
the proposed request-validator solution and then 
perform experimental evaluation in order to prove its 
effectiveness. As one of existing platforms providing 
virtual networks and service function chains has been 
developed in our previous works, we plan to use it as 
a case study.  

Finally, we plan to study other non-functional 
issues that can be added to the verification/validation 
process of the user request. 
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