
Employing Linked Data in Building a Trace Links Taxonomy

Nasser Mustafa and Yvan Labiche
Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Dr, Ottawa, Canada

Keywords: Traceability, Trace Links, Semantics, Taxonomy, Requirement Engineering, Systems Engineering, Model
Driven Engineering, Linked Data, Resource Description Factor, Open Service for Lifecycle Collaboration.

Abstract: Software traceability provides a means for capturing the relationship between artifacts at all phases of
software and systems development. The relationships between the artifacts that are generated during
systems development can provide valuable information for software and systems Engineers. It can be used
for change impact analysis, systems verification and validation, among other things. However, there is no
consensus among researchers about the syntax or semantics of trace links across multiple domains.
Moreover, existing trace links classifications do not consider a unified method for combining all trace links
types in one taxonomy that can be utilized in Requirement Engineering, Model Driven Engineering and
Systems Engineering. This paper is one step towards solving this issue. We first present requirements that a
trace links taxonomy should satisfy. Second, we present a technique to build a trace links taxonomy that has
well-defined semantics. We implemented the taxonomy by employing the Link data and the Resource
Description Framework (RDF). The taxonomy can be configured with traceability models using Open
Service for Lifecycle Collaboration (OSLC) in order to capture traceability information among different
artifacts and at different levels of granularity. In addition, the taxonomy offers reasoning and quantitative
and qualitative analysis about trace links. We presented validation criteria for validating the taxonomy
requirements and validate the solution through an example.

1 INTRODUCTION

Software traceability provides a means for capturing
the relationship between software artifacts at
different levels of abstractions and across multiple
domains. Software artifacts can be produced during
Requirement Engineering (RE), Model Driven
Engineering (MDE), and Systems Engineering (SE).
They are heterogeneous in nature since they are
produced by different tools, and for different system
disciplines. Establishing relationships between these
artifacts requires different types of trace links with
precise semantics. Unfortunately, there is a lack of
consensus among software practitioners for defining
precise trace links semantics. This is an issue since
using different, either overlapping or conflicting
semantics for trace links can have adverse effect on
product quality (Ramesh, B. and M. Jarke, 2011).

Our aim is to build a trace links taxonomy which
has well-defined semantics and that encompasses
various types of trace links in the RE, MDE, and SE
disciplines. This is important for many reasons.
First, in RE, many artifacts are produced during

requirements elicitation, analysis, and validation,
hence, require different types of trace links with
different semantics. Second, in MDE, which permits
model transformations, a large number of trace links
is required to link artifacts in source and target
models, some of which are generated automatically
while others require manual generation; relating
these artifacts requires well-defined semantics for
trace links, which are slightly different from what
one can define in RE or SE. Third, in SE, the
development of a complex system involves the
generation of heterogeneous artifacts as a result of
using different modeling tools for modeling different
aspects of the system, from different disciplines
(e.g., electrical, software). Fourth, comprehending
the rationale for creating different types of trace
links among artifacts at different levels of
granularity requires well-defined trace links
semantics. Fifth, there are situations that require
many types of trace links in the same domain but for
different purposes. For instance, when linking two
requirements, a requirement derived from another
requires a different trace link than a requirement
clarified by another. Sixth, the meaning of a trace

186
Mustafa, N. and Labiche, Y.
Employing Linked Data in Building a Trace Links Taxonomy.
DOI: 10.5220/0006471701860198
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 186-198
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

link can be viewed differently by different
stakeholders. For instance, a trace link between a
requirement and a design element may be viewed by
a designer as a constraint the requirement imposes
on the design element, while an end user might view
the same link as a design element produced by the
requirement (Ramesh, B. and M. Jarke, 2011).
Finally, with the various types of modeling tools
across different domains, it is a necessity to have a
trace links taxonomy that can be integrated with
other API’s. In other words, we need a portable
taxonomy that can be integrated easily with other
tools.

In an effort to have more insight about trace links
and their classifications we conducted a systematic
literature review about traceability aspect in which
trace links is among them (Nasser Mustafa and Yvan
Labiche, 2017). The review covers the published
papers between the years 2000-2016 in five major
computing libraries (i.e., IEEE Xplore, ACM,
Google Scholar, Science Direct, and Springer). We
specified the following search string in order to
extract the traceability publications in RE, MDE,
and Systems Engineering: Traceability AND
(Heterogeneous OR Modeling OR Models OR MDE
OR Model Driven OR Trace Link OR Requirement
Engineering OR Systems Engineering OR Software
Engineering). Based on our review, we identified
some research papers that define traceability and
traceability relations (Ramesh, B. and M. Jarke,
2011; Spanoudakis, G. and A. Zisman, 2005; Gotel,
O. and A. Finkelstein, 1994; Nasser Mustafa, Yvan
Labiche, 2015; Mason, P., et al., 2003; IEEE, 1990;
Cleland-Huang, et al., 2014; Gotel, O., et al., 2012;
Ramesh, B. and M. Edwards, 1993; Aizenbud-
Reshef, N., et al., 2006; Nasser Mustafa, Yvan
Labiche, 2015), other papers that classify or identify
some types of trace links (Ramesh, B. and M. Jarke,
2011; Spanoudakis, G. and A. Zisman, 2005; Gotel,
O. and A. Finkelstein, 1994; Spanoudakis, G., et al.,
2004; Xu, P. and B. Ramesh, 2002; Pohl, K., 1996;
Alexander, I., 2003; Riebisch, M. and I. Philippow,
2001; Mason, P., et al., 2003; Cleland-Huang, J., et
al., 2014; Gotel, O., et al., , 2012; Paige, F., et al.,
2008; Mohan, K. and B. Ramesh, 2002; Maletic, J.
I., et al., 2003; Gotel, O. and A. Finkelstein, 1995;
Constantopoulos P., et al., 1993; Pinheiro, F. A. C.
and J. A. Goguen, 1996; Grammel, B., 2014; Olsen,
G. K. and J. Oldevik, 2007; Paige, R. F., et al.,
2011), and some papers that discuss the need for
trace links semantics (Paige, R. F., et al., 2011;
Letelier, P., 2002; Dick, J., 2002; Lucia, A. D., et al.,
2007; Rummler, A., 2007). Although these papers
provide valuable information on traceability

definitions and classifications, we couldn't find any
paper that suggests a technique for building a trace
links taxonomy that combines trace links from all
domains. Most of these studies are confined to
defining trace links and their semantics only for a
specific problem or domain, i.e., solutions are
problem or domain specific. For instance, there is a
great deal of effort on classifying traceability links
and their usage in RE (Ramesh, B. and M. Jarke,
2011; Spanoudakis, G. and A. Zisman, 2005),
though classifications only apply to RE.

The contribution of this paper includes the
followings. First, we propose requirements for trace
links taxonomy. Second, we offer a technique to
build a trace links taxonomy which has well-defined
semantics and that can accommodate the
classification of trace links in RE, MDE, and SE.
The taxonomy employs the Open Service for
Lifecycle Collaboration (OSLC), and the Resource
Description Framework (RDF) (W3C, 2016(a)) for
defining a set of properties and their values for each
trace link. Third, we validate the taxonomy through
a case study that requires heterogeneous artifacts
from multiple domains.

This paper is structured as follows. Section 0
discusses an example that will help us illustrate the
motivation behind this work. Section 0 presents
related work on trace links and their limitations.
Section 0 highlights the requirements for trace links
taxonomy and introduces the RDF technique.
Section 0 shows our proposed taxonomy
requirements. Section 0 describes the benefit of
using RDF in building the trace links taxonomy.
Section 0 shows our design decisions and the
taxonomy implementation using the RDF technique
on a case study. Section 7 concludes the paper.

2 A SIMPLE, MOTIVATING
EXAMPLE

The heterogeneity of artifacts that are involved in
the development of a complex system requires
various types of trace links. The variations between
RE, MDE, and SE domains require different types of
trace links to relate their artifacts. There are
situations in which ambiguity exists in capturing
traceability information among artifacts as a result of
the absence of a reference model that describes the
various types of trace links and their exact purposes.
We discuss the example for relating the i*
metamodel artifacts, which capture early-phase
requirements, and the UML Class metamodel which

Employing Linked Data in Building a Trace Links Taxonomy

187

captures late-phase requirements (Filho, G. C., et
al., 2003). It involves different types of artifacts that
require certain types of trace links. The i*
metamodel contains the meta-classes: Actor,
Resource, softGoal, HardGoal, and Task. The UML-
Class metamodel has the meta-classes: Class,
Attribute, and Operation. Actor and Resource in the
i* metamodel are mapped to the Class metaclass in
the UML metamodel. Also, the SoftGoal and
HardGoal in the i* metamodel are mapped to the
Attribute in the UML metamodel. Finally, a Task in
the i* metamodel is mapped to the Operation in the
UML metamodel. Determining the relationship
between instances from the two metamodels
depends on users’ needs: two different users might
need two different types of trace links. For instance,
a user might use the Consistent-with trace link
between instances of the Actor class and the Class
class since each Actor instance in the i* model must
have a corresponding Class instance in the UML
model. A second user might be interested in a high
level view for the two metamodel instances, so the
generic model-to-model or static trace links can be
used. In this example, different users require trace
links at different levels of granularity. This scenario
and others encouraged us to build a trace links
taxonomy that combines all trace links across
different domains and shows their relationships.

3 RELATED WORK

This section elucidates important aspects about our
review of traceability in RE, MDE, and SE. Section
3.1 discusses traceability and trace links definitions
while section 0 discusses existing trace links
classifications in RE, MDE, and SE. The review in
this section is extensive since it will be used as a
core for our work in order to collect all trace links
types for building the taxonomy.

3.1 Traceability Definitions

Traceability is defined by the IEEE (IEEE, 1990) as
“the degree to which a relationship can be
established between two or more products of the
development process, especially products having a
predecessor-successor or master-subordinate rela-
tionship to one another”. This definition applies to
traceability in RE, MDE, and SE as well. The IEEE
definition is extended to include other types and
subtypes of relationships. Cleland-Huang and
colleagues (2014) describe trace link semantics and
types. A trace link semantics refers to the purpose or

meaning of the relationship between associated
artifacts. A trace link type refers to the
characterization of all trace links that have a similar
structure (syntax) and/or purpose (semantics). The
description of a trace link type encapsulates the
definition of a trace link semantics since it is
explained based on the link’s semantic role, and may
include other properties such as the rationale for
creating a trace link. For instance, all trace links that
relate two artifacts where one artifact is derived
from another have the trace link type “derived
from”. The derived represents the meaning of the
relation between such artifacts. Therefore, we might
have similar or extended types of trace links among
the RE, MDE, and SE domains. Readers should note
that we use a trace link and relation interchangeably,
however, there is a difference between both terms
since the latter refers to all trace links created
between two sets of trace artifact types (Cleland-
Huang, J., 2014).

In RE, several types of trace links are introduced
as a result of traceability definitions. Gotel and
colleagues (1994) defined traceability as the ability
to describe and follow the life of a requirement in
both forward and backward directions. In this
context, a pre-requirement specification refers to the
aspects of a requirement's life prior to its inclusion in
the requirement specification, and a post-
requirement specification refers to the aspects of a
requirement’s life that result from its inclusion in the
requirement specification (Gotel, O., et al., 2012).
Also, there are the notions of vertical and horizontal
traceability (Spanoudakis, G. and A. Zisman, 2005;
Cleland-Huang, J., 2014; Ramesh, B. and M.
Edwards, 1993; LindVall, M. and K. Sandahl, 1996).
Horizontal traceability refers to tracing artifacts
created in the same system lifecycle phase, or at the
same level of abstraction. For instance, tracing two
requirements based on the ‘derived from’
relationship is horizontal. Vertical traceability refers
to tracing artifacts created in different phases or at
different levels of abstraction, such as tracing a
requirement in the requirement specification phase
to a test case in the testing phase.

In MDE, Aizenbud-Reshef and colleagues
(2006) defined traceability as “any relationship that
exists between artifacts involved in the software-
engineering life cycle”. This definition is broader
than the RE definition since it assumes other types
of trace links such as explicit links which can be
generated during model transformation, implicit
links which are computed based on existing
information, and statistical links that can be inferred
based on history.

ICSOFT 2017 - 12th International Conference on Software Technologies

188

In SE, Mason (Mason, P., et al., 2003) extended
the notions of vertical and horizontal traceability by
introducing the terms: Micro, Macro, Inter, and
Intra. The Micro and Macro terms are introduced to
differentiate traceability within and across
decomposition levels. The Intra and Inter terms are
introduced to differentiate traceability within and
across system descriptions (i.e., interactions between
systems). For instance, the Inter-Micro-Horizontal
traceability refers to the ability to describe and
navigate relationships across system descriptions,
within a decomposition level, between development
or assessment artifacts of the same type.

3.2 Traceability Classifications

In general, relations between artifacts are classified
based on the development phase or the abstraction
level (i.e., horizontal and vertical). However, other
classifications are introduced to fit the RE, MDE,
and SE needs. The trace links classifications which
we found are either problem oriented, i.e., tailored to
special cases and are not applicable within a general
context (e.g., between requirement and source code),
or target one domain only (e.g., RE or MDE). This
section summarizes our effort in collecting and
organizing these classifications in order to build a
trace links taxonomy.

In RE, relationship between artifacts are
discussed extensively (Ramesh, B. and M. Jarke,
2011; Spanoudakis, G. and A. Zisman, 2005; Gotel,
O. and A. Finkelstein, 1994; Spanoudakis, G., et al.,
2004; Xu, P. and B. Ramesh, 2002; Pohl, K., 1996;
Alexander, I., 2003; Riebisch, M. and I. Philippow,
2001; Cleland-Huang, J., et al., 2014; Gotel, O., et
al., , 2012; Paige, F., et al., 2008; Mohan, K. and B.
Ramesh, 2002; Maletic, J. I., et al., 2003; Gotel, O.
and A. Finkelstein, 1995; Constantopoulos P., et al.,
1993; Pinheiro, F. A. C. and J. A. Goguen, 1996;
Kozlenkov, A. and A. Zisman, 2002); among these
papers, we found two papers that discuss trace links
classifications (Ramesh, B. and M. Jarke, 2011;
Spanoudakis, G. and A. Zisman, 2005). Spanoudakis
and Zisman classified requirement traceability links
into eight categories which include various link
types based on their support to certain software
activities such as analysis, validation, or supporting
stakeholders decisions. These links include the
following types:

 The dependency links which relate artifacts in
which the existence of one artifact relies on the
existence of the other. This type can be used to
relate requirements to each other, or
requirements and design elements (artifacts)

such as decision objects. Dependency relations
are one of the most widely used in RE and have
different uses and forms (Spanoudakis, G. and
A. Zisman, 2005). For instance, Xu and
Ramesh (Xu, P. and B. Ramesh, 2002) use
dependency relations in workflow management
systems between business process objects,
decision objects, and workflow system objects.
Dependency relations are used in product and
service families (Mohan, K. and B. Ramesh,
2002) to support the management of
variability, i.e., ensuring that the changed
artifacts reflect the intended system
functionality. Knethen and colleagues
(Knethen, 2002) suggested their use between
documentation entities such as requirements
and use cases, and logical entities such as
functions for fine grained impact analysis. Pohl
and Alexander (Pohl, K., 1996; Alexander, I.,
2003) use them to link requirement scenarios
and code, and Riebisch and Philippow (2001)
use them to support the design and
implementation of product lines. Other forms
of dependency links are suggested in the
literature. For instance, Spanoudakis and
colleagues (Spanoudakis, G., et al., 2004) refer
to them as requires-feature-in relations, as they
link parts of use case specifications to customer
requirements specifications. Also, they are
called causal conformance by Maletic et al.
(Maletic, J. I., et al., 2003) who use them to
link documents that represent an implied
ordering (e.g., bug reports cannot be produced
before implementation report). Gotel and
colleagues (Gotel, O. and A. Finkelstein, 1995)
referred to them as developmental relations
which are used to trace requirements to other
artifacts in another phase of the development
lifecycle. Finally, they are referred by
Constantopoulos et al. (1993) as
correspondence relations which link
requirements, design, and code artifacts.

 The evolutionary relations are used to link
requirements in which one requirement
replaces another. This category contains the
replace, based-on, formalize, and elaborate
trace links. Pinheiro (Pinheiro, F. A. C. and J.
A. Goguen, 1996) showed the use of replace
and abandon trace links during requirements
evolution. A requirement is replaced by
another if a mistake is discovered, the original
requirement will be abandoned. Gotel (Gotel,
O. and A. Finkelstein, 1995) called the
evolution relations temporal relations which

Employing Linked Data in Building a Trace Links Taxonomy

189

Table 1: Trace links classifications in RE, MDE, and SE.

Ref. Requirement Engineering Classifications

Ramesh, B.
and M. Jarke,

2011

Product- related Process –related

Evolution Rationale Dependency Satisfaction

Derive,
Elaborate,
Depend-on

Select,
Affect

Is-a, Part-of,
Contain, Used-
by, Performed-

by

Define, Allocate-to, Depend-on, Created-by, Verify, Generate

Spanoudakis,
G. and A.

Zisman, 2005
 Dependency

Evolution G
eneralize/
R

efine

S
atisfaction

O
verlap

Conflict R
ationale

C
ontribution

Replace, Based-on,
Formalize, Elaborate

Based-on, Affect,
Resolve, Generate

Other RE References (using the same name or a different names)

Gotel, O. and
A. Finkelstein,

1994
 X

Spanoudakis,
G., et al.,

2004

Requires-
feature-in

 X

Xu, P. and B.
Ramesh,

2002
 X X

Pohl, K.,
1996

 X

Alexander, I.,
2003

 X

Riebisch, M.
and I.

Philippow,
2001

 X

Maletic, J. I.,
et al., 2003

Causal-

dependency
conformance

Non-causal conformance

Pinheiro, F.
A. C. and J.
A. Goguen,

1996

Satisfy

D
erive

R
efine

Gotel, O. and
A. Finkelstein,

1995
 Developmental

Temporal

C
ontainm

ent

A
dopt

Constanto-
poulos P.,
et al., 1996

 Correspondence

Letelier, P.,
2002

 X

Dick, J., 2002

Satisfy

E
stablish

C
ontribute

Knethen,
2002

 Inconsistency

Filho, G. C.,
et al., 2003

 X

ICSOFT 2017 - 12th International Conference on Software Technologies

190

Table 1: Trace links classifications in RE, MDE, and SE (cont.).

Ref. Model Driven Engineering Classifications

Paige, F.,
et al., 2008

Implicit Explicit

Model-to-model Model-to-artifact

Static Dynamic

Satisfy, Allocated-to, Explain, Perform,
Support

Consistent-with Dependency

Call, Notify,
Generate

Export, Usage,
Is-a, has-a, Part-
of, Import Refine

Systems Engineering Classifications

Mason, P.,
et al., 2003

Temporal Directional

 Vertical Horizontal

Micro Macro Micro Macro

Inter
Intra

Inter
Intra

Inter
Intra

Inter
Intra

which refer to linking requirements in terms of
their historical order. Maleic and colleagues
(Maletic, J. I., et al., 2003) called the
evolution relations as non-causal conformance
relations to link documents which conform to
each other.

 The generalization/refinement relations show
how complex system components can be
divided into other artifacts, or how one artifact
can be refined by another. In Ramesh and
Jarke’s classification (Ramesh, B. and M.
Jarke, 2011) generalization/refinement is
considered a dependency abstraction link.
Gotel (Gotel, O. and A. Finkelstein, 1995)
refers to them as containment relations since
they are used to link composite artifacts and
their components.

 The satisfiability relations link artifacts that
are constrained by each other, e.g., a
requirement that complies with the conditions
of another requirement. This type is classified
as a product-related trace link to relate
requirements to design artifacts (Ramesh, B.
and M. Jarke, 2011). Satisfiability has sub-
types such as the establish (cardinality 1-1
between two artifacts) and contribute
(cardinality 1-m between artifacts) relations
(Dick, J., 2002). Pinheiro (1996) defined
satisfiability based on derivation, e.g., if a
requirement is satisfied then its derivation is
satisfied, and refinement, i.e., if a requirement
refines another requirement, then satisfying
the first requirement, implies satisfying the
second. between artifacts of common features
(e.g., linking a goal specification in an i*
model and a use case in a UML model) (Filho,
G. C., et al., 2003). Spanoudakis et al.,
(Spanoudakis, G., et al., 2004) use the overlap

relations in an analysis model between use
cases and classes. Gotel and Finkelstein
(1995) called them adopts relations; they are
used between artifacts in which a target
artifact embeds information of the source
artifact.

 The conflict relations link two artifacts that
have a conflict, such as two requirements that
are conflicting with each other (Ramesh, B.
and M. Jarke, 2011). Special types of conflict
relations such as based-on, affect, resolve, and
generate are used to provide conflicts
resolution between conflicting artifacts.
Kozlenkov and Zisman (2002) referred to
conflict relations as inconsistency relations.
For instance, inconsistency relations are
established when two similar goals in a
specification or different specifications cannot
be achieved.

 The rationalization relations link two artifacts
in which one of them captures the rationale
behind the creation or evolution of the other.
Letelier (2002) used this type to relate
rationale specification artifacts (e.g.,
decisions, assumptions) to software
specifications at different levels of granularity
(e.g., document or part of a document,
diagram, or a model). Rationalization relations
are used also to relate design rationales to
design artifacts (Xu, P. and B. Ramesh, 2002).

 The Contribution relations relate requirements
and their stakeholders (Gotel, O. and A.
Finkelstein, 1994), for instance to link
requirements to the stakeholders who
contributed them.

Another classification for trace links in RE is
introduced by Ramesh and Jarke (2011). Their

Employing Linked Data in Building a Trace Links Taxonomy

191

classification is based on a study about the use of
trace links by different organizations that involve
high-end and low-end users with respect to their
traceability practices. They classified traceability
links into two main categories: process-related and
product-related links. The process-related links can
be discovered by observing the history of operations
performed in a process. The product-related links
describe the relationships between artifacts
independent of their creation. Furthermore, the
authors identified sub-categories of these two main
categories. The process-related category is divided
further into evolution links and rationale links,
which we described earlier. On the other hand, the
product-related links are decomposed into two main
types: satisfaction links and dependency links, which
we described earlier. The authors deduced other
types of relations from the abovementioned
categories based on the use of low-end and high-end
users. For instance, with respect to low-end users’,
the original or derived requirements can be
allocated-to system components that interface-with
external systems. Also, requirements can be
developed-for compliance-verification-procedures
(e.g., test, simulation, and prototype). Compliance-
verification-procedures generate change proposal or
used-by resources. With respect to high-end users,
traceable artifacts (e.g., requirements, components,
designs) are based-on a rationale. Decisions
depends-on assumptions, or select or evaluate
alternatives. Also, decisions may affect
requirements, and arguments oppose or support
alternatives.

In MDE trace links are generated explicitly by
adding additional code into the transformation, or
implicitly through the transformation tool (Olsen, G.
K. and J. Oldevik, 2007). Paige and colleagues
(2008) classified MDE trace links into implicit and
explicit trace links. The implicit trace links are
classified based on query, transformation,
composition (merging), update, deletion and
creation, model-to-text, and sequences operations.
The explicit trace links are classified as model-to-
model links which relate MDE artifacts with each
other, and model-to-artifact which relate MDE
artifacts with non-MDE artifacts such as linking a
UML model to its requirement(s). The model-to-
model links are further classified into static and
dynamic links. A static link represents a relationship
that stays the same over time between models
elements such as consistent-with (e.g., two models
remain consistent with each other), and dependency
in which the structure and meaning of one model
depend on another model. This type is further

classified into the following trace links is-a (sub-
typing), has-a (e.g., references), part-of, import,
export, usage, and refinement. A dynamic link
represents a relationship that might evolve over
time. This category has several types of links such as
calls (e.g., a model calls the behaviors provided by
another), notifies (e.g., changed artifacts that need
intervention), and generates (e.g., links two models
where one model produces the other).

The model-to-artifact category contains the
satisfies trace link which indicate that an artifact
such as a requirement is satisfied by a model,
allocated-to which relates information in a non-
model artifact to a model that represents that
information, performs which relates a task to a
model that carries the task, explains and supports
trace links which are used when a model is
explained by a non-model artifact. In SE, Mason et
al. (2003) introduced a traceability taxonomy that
includes the directional and temporal traceability.
They extended the definitions of vertical and
horizontal traceability by introducing the terms
micro, macro, inter, and intra. Micro and macro
differentiate traceability within and across
decomposition levels. Intra and inter differentiate
traceability within and across system descriptions
(i.e., interactions between systems). For instance, the
inter-micro-horizontal traceability refers to the
ability to describe and navigate relationships across
system descriptions, within a decomposition level,
between development or assessment artifacts of the
same type. Temporal traceability represents the links
between synchronized artifacts, for instance, linking
an artifact and its subsequent revised one in a model
that based on an event. We summarize the trace
links classifications in Table 1.

As evidenced by the above discussion, existing
classifications of trace links have the following
drawbacks:

 Each classification is either problem specific
or domain specific.

 Classifications are inconsistent with respect to
their interpretations of link semantics. They
often refer to the same semantics with
different names. We conjecture this is a side
effect of the first drawback. For instance,
Spanoudakis and Zisman (2005) classified is-a
as an evolution link, while Paige and
colleagues (2008) classify it as dependency
link.

 Classifications are redundant, which we
conjecture is also a side effect of the first
drawback. For instance, the rationale trace

ICSOFT 2017 - 12th International Conference on Software Technologies

192

links appear in RE, MDE, and SE
classifications.

 Classifications don’t integrate all usages of a
trace link across different domains. In other
words, the purpose of a certain trace link does
not necessarily appear in all classifications to
be used in all domains.

 There is no tool support for these
classifications that would allow a user to
navigate or to query about certain links across
different domains.

4 TAXONOMY REQUIREMENTS

The abovementioned limitations encouraged us to
think about a new method for integrating all trace
links classifications into a taxonomy that would
provide the relationship between different trace
links. In the light of the previous discussion, the new
taxonomy shall have the following characteristics, or
taxonomy requirements (TRQ):

TRQ 1: the taxonomy shall provide semantic
specifications for trace links that relate various
artifact types in different domains and at different
levels of granularity.

TRQ 2: the taxonomy shall catch the need for
different types of users (e.g., analysts, designers,
programmers, testers), and therefore different
domains.

TRQ 3: the taxonomy shall allow the
specification of a trace link only once and relate it to
different domains without duplications.

TRQ 4: the taxonomy shall be flexible to allow
users to add new properties of trace links without
changing the existing structure of the taxonomy.

TRQ 5: the taxonomy shall be portable enough
to allow easy access for local users (i.e., connected
to a private network) or global users (i.e., connected
to the Internet). (This will facilitate tool integration.)

TRQ 6: the taxonomy shall have a universal
format that is not tailored to a specific environment
or application.

5 EMPLOYING THE RDF IN
BUILDING THE TAXONOMY

We propose a trace link taxonomy that integrates all
existing trace link classifications into a structure to

satisfy the requirements proposed in Section 0. The
taxonomy utilizes the OSLC and the RDF (W3C,
2016(a)) for relating all trace links. This idea is
borrowed from the semantic web technology in
which arbitrary data are linked in a flat structure
using the RDF, and referenced by the Uniform
Resource Identifier (URI). The proposed structure is
a non-hierarchical network of identifiable resources
that can be referenced or browsed using the URI. A
URI can reference any resource or element such as
documents, images, services, a UML diagram, or a
group of other resources by assigning it a unique
reference.

The RDF has three components: the subject
(resource), the predicate (property), and the object
(property value). The subject is the element that
needs to be described with an assigned unique
identifier, the predicate represents the characteristic
or feature of that element, and an object is the value
of that feature. The object in turns can be a subject
that has other properties, which form nested
subjects. RDF files are written using the RDF/XML
format which is a common format on the web.

The rationale for employing RDF in creating a
trace links taxonomy is manifold:

 The RDF eliminates trace links redundancy
among different domains, which means
resources can be described only once and
referenced as many times as we need.

 The RDF supports multiple inheritance in
situations in which a trace link is classified
under more than one category.

 The RDF data is portable, it can be
transformed into many formats such as XML,
HTML, and OWL.

 The RDF data can be visualized graphically as
a directed graph, an undirected graph, or a
tree.

 Using the RDF, the taxonomy can be built by
referencing trace links from local repositories
or external resources such as the Internet.

 The RDF provides the reusability of the same
data by different users, which adheres to the
principle of open linked data.

 The use of the non-hierarchical RDF structure
can provide an easy navigation; a user can
reference any trace link in the hierarchy
without having any knowledge about its
parent(s) or siblings.

• Using the RDF is a step toward
standardization and providing semantics for
trace links in Software Engineering and
Systems Engineering.

Employing Linked Data in Building a Trace Links Taxonomy

193

Figure 1: The trace links taxonomy (excerpt).

• The RDF data provides simplicity of access
since it is machine-readable data that can be
shared with others.

• Using the RDF, it is easy to reason (e.g., what,
who) about any trace link in the taxonomy.

• Using the RDF, it is easy to query a taxonomy
using query services such as SPARQL (W3C,
2016(c)); the query can be customized based
on a user’s needs.

6 TAXONOMY DESIGN AND
IMPLEMENTATION

There are two essential components that should exist
in order to build our trace links taxonomy: (a)
provide a set of controlled vocabulary (Metadata),
the controlled vocabulary is a collection of terms
that have well-defined descriptions across contexts,
and (b) identify the relationships between these
terms, which constitute the taxonomy. A taxonomy
or Ontology in a broader context is the knowledge
domain which is represented by the collection of
terms and the relationships between them. An
Ontology can be defined using the Web Ontology
Language (OWL) (W3C, 2016(b)) which is an
extension of RDF. Many organizations standardized

their controlled vocabulary and made it available
freely for use on the net such as the Friend of a
Friend (FOAF) (Miller, L. and D. Brickley, 2016)
which has standard vocabulary/Ontology for social
networks across the web, and the Description of a
Project (DOAP) (Dumbill, E., 2016) for describing
open source software projects.

6.1 Taxonomy Design

Our design method relies on our systematic literature
review to collect all the terms that refer to trace links
types and process them according to the followings:

 Identify all articles that discuss trace links
classification in RE, MDE, and SE.

 Identify the terms that describe general types
of trace links. Usually, these are nouns or
adjectives that describe the relationship
between artifacts such as dependency,
evolution, and vertical.

 Identify all terms that describe the relationship
between specific types of artifacts. These
relationships are identified by the role name of
the association between artifacts. They are
usually represented as verbs such as perform,
generate, and depend-on.

ICSOFT 2017 - 12th International Conference on Software Technologies

194

Figure 2: Traceability Example: I* (excerpt) model (left), UML (excerpt) class diagram (right), traceability links (greyed
dashed lines) (Ramesh, B. and M. Jarke, , 2001).

 We consider the terms that represent general
types as classes, and the terms that represent
relationships between specific artifacts as
instances or leaves in our taxonomy. For
instance, evolution is a class that represents a
general type of a relationship; derive,
elaborate, and depend-on are instances of this
class.

 Provide a naming convention for the general
types and the relationships. We have done that
by screening all the conjugations that refer to
the same type or a relation and give it a unique
name. For instance, we considered the
evolution and evolutionary terms as identical
terms that refer to a general type (i.e., class),
we choose to call it evolution. Moreover, we
considered the terms perform, performs, and
performed as identical terms that refer to a
specific relationship (i.e., instance) and we
call it to perform.

 We also provide a set of properties for
instances. Each instance must have unique
values that differentiate it from other
instances. We limit the properties to include:
Id, name, usage, type, and definition, however,
other properties can be added. The name
represents the instance name, and the type
represents the Class name.

6.2 Taxonomy Implementation

We build the taxonomy by following the previous
steps and employing the RDF. We used the Fluent
editor application (Cognitum, 2015) for coding the
rules of the taxonomy. The editor provides features
for authoring complex ontologies that use controlled

English as a language for knowledge modeling. It
allows users to import and export the knowledge
model into different formats such as RDF, XML,
and OWL. In addition, it supports building and
visualizing ontologies as interactive diagrams or
trees. Finally, the application allows for integrating
ontologies with the R Language (R. Foundation,
2017), in which quantitative and qualitative analysis
can be performed.

The taxonomy provides a global view for all
trace links across the RE, MDE, and SE domains. It
shows the relationships between all trace links in
these domains. The diagram in Figure 1 depicts an
excerpt of the taxonomy, it shows partial
classification of the RE and MDE trace links; we
could not provide the complete taxonomy here since
it occupies a big space and it is very hard to
visualize all the trace links connections. On the top
centre of the diagram, we can see the root of all
elements in the taxonomy which is represented by
the word “thing” which in turn is connected to a
trace-link Class. A trace-link is a general type that
has three sub-types i.e., re-link, mde-link, and se-link
for the respective RE, MDE and SE domains.
Following the path of any type, we reach the leaves
which represent the links between artifacts. Each
trace link has a set of values, not shown, that define
its semantic.

We should mention that any trace link is defined
once in the taxonomy but it might belong to two or
more classes or domains. For instance, at the top left
corner of the diagram, the Allocate-to trace link
belongs to model-to-artifact and to evolution
categories. This design eliminates trace links
redundancy.

Employing Linked Data in Building a Trace Links Taxonomy

195

6.3 Taxonomy Validation

The taxonomy can be validated by (a) ensuring that
it satisfies the taxonomy requirements that we
proposed in section 0 in order to resolve the issues
about existing classifications, and (b) it can
accommodate any traceability problem.

Regarding part (a) we proposed the following
validation criteria in order to ensure that all
requirements can be met:

 TaxCr 1. Trace Links redundancy. This
criterion validates whether a trace link exists
more than once in the taxonomy. It should
only appear once.

 TaxCr 2. The capability of the taxonomy to
accommodate the classification of trace links
related to RE, MDE, and SE.

 TaxCr 3. Consistency. This Criterion validates
whether a trace link has only one definition.
This can be validated also by

 TaxCr 1.
 TaxCr 4. Extensibility and maintainability.

This criterion validates how easy a trace link
or a property can be added to the taxonomy
without changing the existing design.

 TaxCr 5. Tool Support. This criterion
validates whether the taxonomy data can be
saved, exported to other formats or
applications, or performing queries about it.
We found out that all requirements are
satisfied.

With respect to part (b), we validate the taxonomy
using the example stated in section 0 and depicted in
Figure 2. However, the validation will not be
complete since the purpose of the taxonomy is to be
configured with a traceability model, for instance
(Nasser Mustafa and Yvan Labiche, 2015). The links
between the instances of i* and UML-Class
metamodels can have different semantics based on
the type of the traced artifacts, consequently, the
trace links can have different classifications based
on the following scenarios:

1) Identify the instances (artifacts) in the two
metamodels that relate early-phase requirements
to late-phase requirements.

2) Identify the instances in the i* metamodel that
capture the (why) and relate them to the
corresponding instances in the UML-Class
metamodel.

3) Identify the instances of the two metamodels
that must have identical names.

4) Identify the instances of the i* metamodel that
must be mapped to Classes in the UML-Class
metamodel.

5) Identify the Tasks in the i* metamodel that must
have a correspondence method in the UML-
Class metamodel.

6) Identify the instances of the i* metamodel that
are satisfied by the instances of the UML-Class
metamodel.

We have shown in Table 2 some instances from both
metamodels. Based on the generated artifacts, we
have shown the trace link type as configured by our
taxonomy.

Table 2: Configuring trace links between instances of the
i* Actor and UML Class Metaclasses.

No i* artifacts
(source)

UML artifacts
(target)

Trace link

1 i* model UML-Class
model

re-link

2 Actor :Dispatcher Class: Dispatcher rationale
3 Actor: Customer Class: Customer Consistent-

with
4 Resource:

PickupLocation
Class:
PickupLocation

Consistent-
with

5 Task: BookCab Method:
bookCab

Realize

6 HardGoal:
PeopleWithDisab
ility

Attribute:
Disability

Satisfy

7 CONCLUSION AND FUTURE
WORK

We have proposed a trace link taxonomy that can be
used as part of a traceability framework to capture
traceability information among artifacts. The
taxonomy is built be linking local and external
resources (taxonomy elements) to form a flat
hierarchical structure. We implemented the
taxonomy using the RDF technique, which allows
for referencing elements using their URI. This
technique provides many advantages over other
classical techniques such as relational or hierarchical
structures. It offers interoperability and portability of
data among different platforms. Moreover, data are
readable by human and machines as well, and it can
be transformed into several textual and graphical
formats.

As a future work, this taxonomy can be extended
by adding more trace link properties and trace links
types, though we believe that thanks to our

ICSOFT 2017 - 12th International Conference on Software Technologies

196

systematic literature review, we likely have collected
and integrated most of that information. Researchers
in software engineering and traceability are invited
to build upon this taxonomy. Trace links data then
can be filtered and edited. We believe this taxonomy
can be used as a base for standardizing trace links
semantics. Future work should, of course, consider
using our taxonomy so increase our confidence that
it addresses needs as planned.

REFERENCES

Ramesh, B. and M. Jarke, Toward Reference Models for
Requirements Traceability. IEEE Trans. Softw. Eng.,
2011. 27(1): p. 58-93.

Spanoudakis, G. and A. Zisman, Software Traceability:
A road map, in Handbook of Software Engineering
and Knowledge Engineering, S.K. Chang, Editor.
2005. p. 395-428.

Gotel, O. and A. Finkelstein. An Analysis of the
Requirements Traceability Problem. in 1st
International Conference on Requirements
Engineering. 1994. Utrecht, The Netherlands.

Spanoudakis, G., et al., Rule-Based Generation of
Requirements Traceability Relations Systems and
Software, 2004. 72(2): p. 105-127.

Xu, P. and B. Ramesh, Supporting Workflow Management
Systems with traceability. in 35th Annual Hawaii
International Conference on System Sciences. 2002.
Hawaii: IEEE.

Pohl, K. PRO-ART: Enabling Requirements Pre-
Traceability. in 2nd IEEE International. Conference
on Requirements Engineering 1996: IEEE Computer
Society.

Alexander, I., Semi Automatic Tracing of Requirement
Versions to Use Cases – Experience and Challenges.
in 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering 2003.
Canada.

Nasser Mustafa, Yvan Labiche, “The Need for
Traceability in Heterogeneous Systems: A systematic
literature review”. (Accepted), IEEE COMPSAC,
Italy, 2017.

Riebisch, M. and I. Philippow, Evolution of Product Lines
Using Traceability. in Workshop on Engineering
Complex Object-Oriented Systems for Evolution.
2001. Florida.

Nasser Mustafa, Yvan Labiche, “Modeling Traceability
for Heterogeneous Systems”, ICSOFT. 10
international joint conference on Software
Technologies. Colmar, Alsace, France, 2015.

Mason, P., et al., Meta-Modelling Approach to
Traceability for Avionics: A Framework for Managing
the Engineering of Computer Based Aerospace
Systems. in 10th IEEE International Conference on
Engineering of Computer-Based Systems 2003.
Huntsville, AL, USA: IEEE.

IEEE, IEEE Standard Glossary of Software Engineering
Terminology, in IEEE Standard Glossary of Software
Engineering Terminology, I.s. board, Editor. 1990:
New York.

Cleland-Huang, J., O. Gotel, and A. Zisman, eds. Software
and Systems Traceability. ed. Z. A. 2014, Springer.

Gotel, O., et al., Traceability Fundamentals. Software and
Systems Traceability 2012.

Ramesh, B. and M. Edwards, Issues in the Development of
a Requirements Traceability Model. in IEEE
International Symposium on Requirements
Engineering. 1993.

Aizenbud-Reshef, N., et al., Model traceability. IBM
Systems Journal - Model-driven software
development, 2006. 45(3): p. 515-526.

Nasser Mustafa, Yvan Labiche, “Towards Traceability
Modeling for the Engineering of Heterogeneous
Systems”, Model-Driven Engineering and Software
Development (MODELSWARD), France, 2015.

Paige, F., et al., Building Model-Driven Engineering
Traceability Classifications. in European Conference
on Model Driven Architecture - Traceability
Workshop 2008. Berlin, Germany.

Mohan, K. and B. Ramesh, Managing Variability with
Traceability in Product and Service Families. in 35th
Annual Hawaii International Conference on System
Sciences 2002. Hawaii: IEEE.

Maletic, J. I., et al. Using a Hypertext Model for
Traceability Link Conformance Analysis in 2nd
International Workshop on Traceability for Emerging
Forms of Software Engineering 2003. Canada.

Gotel, O. and A. Finkelstein, Contribution Structures. in
2nd International Symposium on Requirements
Engineering. 1995: IEEE.

Constantopoulos P, J. M., Mylopoulos Y., Vassiliou Y., "
The Software Information Base: A Server for Reuse.
The International Journal on Very Large Data Bases,
1993. 4(1): p. 1-43.

Pinheiro, F. A. C. and J. A. Goguen, An Object-Oriented
Tool for Tracing Requirements. IEEE Software 1996.
13(2): p. 52-64.

Grammel, B., Automatic Generation of Trace Links in
Model-driven Software Development, in Fakultät
Informatik. 2014, Technische Universität Dresden.

Olsen, G. K. and J. Oldevik, Scenarios of Traceability in
Model to Text Transformations. in 3rd European
conference on Model driven architecture-foundations
and applications. 2007. Haifa-Israel: Springer-Verlag.

Paige, R. F., et al., Rigorous identification and encoding of
trace-links in model-driven engineering. Software &
Systems Modeling, 2011. 10(4): p. 469-487.

Letelier, P., A Framework for Requirements Traceability
in UML-based Projects. in 1st Intl. Workshop on
Traceability in Emerging Forms of Softw. Eng. 2002.

Dick, J., Rich Traceability in 1st International Workshop
on Traceability for Emerging forms of Software
Engineering 2002.

Lucia, A. D., F. Fasano, and R. Oliveto, Recovering
Traceability Links in Software Artifact Management
Systems using Information Retrieval Methods. ACM

Employing Linked Data in Building a Trace Links Taxonomy

197

Transactions on Software Engineering and
Methodology, 2007. 16(4).

Rummler, A., B. Grammel, and C. Pohl, Improving
Traceability in Model-Driven Development of
Business Applications in European Conference on
Model Driven Architecture - Traceability Workshop
2007.

OMG, O.M.G. Open Services for Lifecycle Collaboration.
2017 [cited 2017 Feb 20]; Available from:
https://open-services.net/.

W3C, Resource Description Framework. 2016 (a)
[cited 2016 Oct 15]; Available from:
https://www.w3.org/RDF/.

Knethen, A.v. Automatic Change Support Based on a
Trace Model. in 1st International Workshop on
Traceability in Emerging Forms of Software
Engineering . 2002. Edinburgh.

Filho, G. C., A. Zisman, and G. Spanoudakis,
Traceability approach for i* and UML models. in
International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems. 2003. Portland.

LindVall, M. and K. Sandahl, Practical Implications of
Traceability. Software Practice & Experience, 1996.
26(10): p. 1161-1180.

Kozlenkov, A. and A. Zisman, Are their Design
Specifications Consistent with our Requirements? in
IEEE Joint International Conference on Requirements
Engineering. 2002: IEEE.

W3C, Web Ontology Language. 2016 (b) [cited 2016 Nov
3rd]; Available from: https://www.w3.org/TR/owl-
features/.

W3C, SPARQL Query Language for RDF. 2016 (c) [cited
2016 Nov 3rd]; Available from: https://www.w3.org/
2001/sw/DataAccess/rq23/.

Miller, L. and D. Brickley, FOAF. 2016 [cited 2016 Nov
3rd]; Available from: http://www.foaf-project.org/.

Dumbill, E., Description of a Project. 2016 [cited 2016
Nov 3rd]; Available from: http://lov.okfn.org/dataset/
lov/vocabs/doap.

Cognitum, Fluent Editor 2015. 2017 [cited 2017 Feb 2];
Available from: http://www.cognitum.eu/semantics
FluentEditor/.

R. Foundation, The R project for statistical computing.
2017 [cited 2017 Feb 2]; Available from:
https://www.r-project.org/.

ICSOFT 2017 - 12th International Conference on Software Technologies

198

