
Should We Place the License Plate Tracking System in the Cloud?

Razib Iqbal, Matthew Kenney and Jamil Saquer
Department of Computer Science, Missouri State University, Springfield, Missouri, U.S.A.

Keywords: Video Surveillance, Parallel Processing, Apache Storm, Microsoft Azure, Google Cloud, HDInsight.

Abstract: We developed a software system to extract and track vehicle license plate numbers from real-time
surveillance cameras and crowd sourced video streams. The system can also calculate the probable routes of
a vehicle over a range of dates based on the geographical coordinates. In this paper, we present both of our
linear and parallel processing implementation schemes and analyze the performance based on evaluation
results. Our results show that while cloud based parallel processing can address the scalability needs,
performance outweighs the cost only when the real-time streaming data becomes increasingly large.

1 INTRODUCTION

The ubiquitous nature of Internet of Things (IoT)
and crowd sourcing provide a greater opportunity to
city authorities and law enforcement agencies to
monitor the state of the urban environment in real-
time (Khan, 2015). However, increased data volume
and real-time monitoring requirements also increases
the data processing and visualization cost and
complexity. In this respect, we present a license
plate tracking system (LPTS) and compare its
performance in various scenarios like linear and
parallel processing in local and cloud platforms to
analyze the rational of using cloud platforms for
real-time processing of big data.

From our literature review, it is evident that
license plate detection and recognition has attracted
lots of research interests recently. In (Li, 2016), a
combination of deep learning and recurrent neural
networks are used to recognize the plate and plate
characters. Support vector machines is another class
of machine learning technique that has been applied
(Parasuraman, 2010) to address the problem of real
time plate detection by skipping the character
segmentation stage. Other recent research initiatives
include a detection scheme in low resolution images
(Kumar, 2016), license plate localization with
Marckov Chain Monte Carlo process (Cao, 2014),
and a deep convolutional neural network based
method (Jain, 2016). Irrespective of the schemes,
improvements in accuracy and speed come with a
trade-off in computation power. While lots of data
are available to initially train the systems,

computationally complex systems might be
expensive to deploy and maintain. Our motivation
for LPTS is based on the initiatives for human
identification and tagging in a multi-camera video
surveillance system (Moctezuma, 2015). LPTS not
only detects the plate numbers but also can track
them in non-overlapping cameras including crowd
sourced videos. It extracts the plate numbers from
static/crowd sourced video feeds and stores them in
a database. LPTS can generate the routes of vehicles
on demand and plot them on a visible map based on
the previously acquired coordinates.

LPTS uses both classes of big data processing,
static and streaming (Eskandari, 2016), where live
video streams pass through license plate detection
and number extraction module, and then it enables
the users to query the license plates and generate
their routes over a range of dates. In order to process
high volume of static data offline, Hadoop
(hadoop.apache.org), an open source
implementation of MapReduce was introduced
(Dean, 2004). However, Hadoop is not suitable for
real-time streaming data where batch processing
approaches cannot be used. To address this
drawback, a number of new frameworks have been
proposed (Heinze, 2014). Apache Spark
(spark.apache.org) implements stream processing as
a chain of batch processing at an interval of one
second. Therefore, the processing of Spark is slower
than pure stream processing. Apache Storm
(storm.apache.org) was introduced for real-time,
distributed, scalable and reliable framework for
stream processing. An application in the Storm is
called a topology, which consists of a number of

Iqbal, R., Kenney, M. and Saquer, J.
Should We Place the License Plate Tracking System in the Cloud?.
DOI: 10.5220/0006470000770080
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 5: SIGMAP, pages 77-80
ISBN: 978-989-758-260-8
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

77

tasks. We initially implemented the LPTS system to
be run linearly at a local server, however, the
aforementioned features of LPTS along with
heterogeneous video adaptation, data bursts,
fluctuating data transfer rates make resource
allocation critical. Therefore, we explored the cloud
platforms and adapted LPTS to utilize the Apache
Storm framework for on-the-fly resource scalability.
We deployed our system in both Microsoft Azure
and Google Cloud platforms. Based on our
evaluation results, we conclude that cloud based
parallel processing is only beneficial when the
scalability needs and performance outweighs the
cost of the deployment.

2 LICENSE PLATE TRACKING
SYSTEM (LPTS)

Our LPTS consists of two subsystems - License
plate recognition and License plate search. All the
operations involved in these subsystems are
performed in a pipelined synchronous manner. We
utilized OpenCV (opencv.org) for frame
preprocessing and Openalpr (github.com/openalpr)
to detect the license plate characters. LPTS accepts
video feeds from stationary cameras as well as
crowd sourced videos, and adapts it for
preprocessing in the license stream module. To
reduce the overall computation load, we perform
temporal homogeneous video adaptation to achieve
a lower frame rate, e.g. 5fps. License plate detection
module also processes the frames (resizing and gray
scaling) and passes it to a function to find all of the
contours in a given frame. Contours can be
explained as a set of points bounding a region that
has the same color or intensity. We eliminate the bad
contours by drawing a rectangle bounding every
contour and matching it against a range of expected
width and height ratio. For character recognition, we
rely on the Openalpr function. We finally save the
character outputs (if any), in a database along with
its timestamp, coordinates, and picture id of the
frame.

In response to a search query, LPTS returns the
waypoint objects sorted by the timestamps. The
program is written in JavaScript and uses Google
API to generate a map of all the routes that a vehicle
has taken over a specified time period. The creation
of the visual map is broken into four stages:
Waypoint object creation, Route creation and
addition to wrapper object, Map route creation, and
Listener event creation. A waypoint object of a

license plate number found in the database consists
of a timestamp, latitude and longitude information
and a video frame. An array of waypoint objects is
then used to create the routes. Route end points are
determined based on the difference between a
waypoint’s time stamp and the time stamp of the
waypoint ahead of it. If the difference is greater than
a specified amount, e.g. 30minutes, then the current
waypoint becomes the last waypoint in that route’s
array. Therefore, each route is an array of JSON
objects and is stored in a wrapper JSON object
which holds all of the routes. The routes in the map
are represented by colored lines connecting similar
colored nodes showing the coordinates and the
routes. Each route is given its own separate
directions renderer object on the map so that it can
be toggled on and off. The renderer object sets the
line color and also puts the route on the map. For the
markers, since a stop point is seen as the start point
of the next route and shares a marker with that route,
if an earlier route is toggled off then the next route
keeps that marker visible on the map until it is
toggled off as well. Stop points are shown in red
while the rest of the markers match the route’s
polyline color. The node may be “clicked” by the
user which creates a Bootstrap modal containing a
snapshot of the vehicle at the time of video capture.
A map is shown in Figure 1 for illustration purpose.

Figure 1: Map generated by LPTS for a vehicle.

3 TOPOLOGY FOR PARALLEL
PROCESSING

In this section, we present our scheme for scheduling
the executors across the nodes in a Storm cluster.
We utilized HDInsight (2016), which is a cloud
distribution on Microsoft Azure for big data
analysis. HDInsight has provisions to create a storm

SIGMAP 2017 - 14th International Conference on Signal Processing and Multimedia Applications

78

cluster in order to implement a topology and submit
it to the cluster.

An Apache Storm cluster consists of three
distinct types of nodes. The Nimbus node performs
many responsibilities that are expected from a
master node, e.g. distributing the code, assigning
tasks, and monitoring failures. Usually, a Storm
cluster will have two Nimbus nodes to provide fault
tolerance. The Zookeeper nodes simply pass
messages between the worker nodes and the
Nimbus. Zookeeper nodes monitor the health of
worker nodes and communicate failures to the
Nimbus. The worker nodes run a daemon called,
Supervisor, which starts and stops tasks while
waiting for assignments from the Zookeepers.

Figure 2: Storm topology for LPTS.

In order to utilize a Storm cluster, we
implemented a Storm topology. We used Java for
our implementation and applied the Maven build
automation to help us with the packaging
dependencies. A topology consists of three
components - stream, spout, and bolts. Stream is an
abstraction of the input to be processed by the
cluster. Our stream consists of the video frames that
are being stored on a public file server. Stream is
then transformed using spout and bolts. Spout starts
by performing the initial preparation of the stream
by packaging it into separate tuples and emitting the
tuples so that they can be processed by the bolts. The
spout in our topology repeatedly produces and emits
the next frame to be processed by the bolts. Each
bolt has specific processes that are to be performed
on the tuples they receive. The topology specifies in
what order the bolt processes should be performed
on the tuples. In our experimental setup, topology
has three bolts. First, the greyscale bolt downloads
the image using the frame address from the spout.
The bolt uses a method provided by OpenCV to

produce a greyscaled version of the frame and emits
it as a byte array. Next, the byte array is received by
the License Plate Recognition (LPR) bolt and the
modified Openalpr recognize function is used to
retrieve the license plate number from the frame.
Finally, if a license plate is detected in the frame,
then the results are emitted to the save bolt. The save
bolt connects to a cloud Microsoft SQL Server and
inserts a record containing the results it received
from the LPR bolt. Figure 2 models our specific
implementation of the topology.

4 EXPERIMENTAL RESULTS

For parallel processing, we used HDInsight 3.5 with
Apache Storm 1.0.1 installed on Ubuntu 16.04. We
performed our experiments on a Storm cluster with
two Nimbus nodes, three ZooKeeper nodes and a
varying number of Supervisor nodes, where each
node has four cores (Intel Xeon E5 2.2 Ghz, 8GB
ram). When a Supervisor node is created, a script is
ran that installs OpenALPR and its dependencies.
We compare our Storm cluster with a linear
implementation of the LPTS running on two
different systems: a local four core machine running
Ubuntu 14.04 (Intel i7 3Ghz, 8GB ram), and a cloud
four core virtual machine running Ubuntu 16.04
(Intel Xeon E5 2.6 Ghz, 8GB ram) created using the
Google Compute Engine (GCE) platform. We
analyze the performance based on the average
frames processed per second and cost per hour of
each cloud deployment.

Table 1: Different platform performance comparison.

Platforms Time per frame FPS

Local Linear 145.6 ms 6.88

GCE Linear 167.35 ms 5.97

Azure HDInsight 209.2 ms 19.16

In the test video inputs, around 30% frames had
a license plate. In Table 1, we show the average
processing time per frame to perform license plate
recognition (using single core) along with the total
frames per second (FPS) the system achieved (using
all four cores for Azure) over a two-hour period.
From the results, we can see that the local machine
achieved the fastest processing time utilizing a
single core but it had a slower overall FPS than the
Storm cluster (i.e. Azure HDInsight). The GCE
Linear deployment with a single core utilization had
a slightly slower processing speed than the Local

Should We Place the License Plate Tracking System in the Cloud?

79

Linear deployment which also resulted in a lower
FPS. The Azure Storm cluster’s single core had the
slowest processing time yet had the highest FPS due
to our parallel processing scheme. These results
demonstrate that given a linear implementation, the
processing speed will have a direct impact on the
overall speed of the LPTS. However, we can get a
higher FPS with parallel processing even though
each core might exhibit a slower processing power.

In the previous experiment, a GCE virtual
machine costs $0.19 per hour whereas the cost of the
Storm cluster with a single Supervisor node is $2.22
per hour. In our next experiment, we looked at the
cost of scaling the Storm cluster versus adding more
Google cloud virtual machines. We used data points
gathered from performing tests on a four node Storm
cluster while scaling it by a single node at a time up
to seven nodes in the cluster. Similarly, in GCE
Linear implementation, we manually added new
virtual machines to handle the increased loads. From
Figure 3, we can see that at 55 FPS and above, the
Storm cluster is a more cost-efficient option than the
GCE linear implementation. Therefore, we can
conclude that scalability and performance only
outweighs the cost when the number of real-time
streaming data becomes increasingly large.
Otherwise, a local linear implementation and
deployment might be sufficient.

Figure 3: Cost per hour vs Performance comparison of
Azure HDInsight and Google Compute Engine.

5 CONCLUSIONS

In this paper, we presented a linear and parallel
implementation of our license plate tracking system,
and the respective performance results. From the
experimental results, we found that – a) Local linear
deployment offers the fastest computation time
however it is not dynamically scalable compared to
the cloud deployment; b) Storm cluster running on

the Microsoft Azure platform becomes more cost
efficient than the linear implementation on the
Google Compute Engine platform only when the
work load exceeds a certain threshold. Therefore,
parallel computing scheme in Azure makes it the
best choice for scalability and higher workloads.

As future work, we plan to parallelize the
license plate recognition steps as well as improve the
routes prediction process.

REFERENCES

Khan, Z., Anjum, A., Soomro, K. and Tahir, M. A., 2015.
Towards cloud based big data analytics for smart
future cities. In Journal of Cloud Computing, 4(1).

Moctezuma, D., Conde, C., de Diego, I. M., and Cabello,
E., 2015. Soft-biometrics evaluation for people re-
identification in uncontrolled multi-camera
environments. In EURASIP Journal of Image and
Video Processing, 2015:28.

Eskandari, L., Huang, Z., and Eyers, D. 2016. P-
Scheduler: adaptive hierarchical scheduling in apache
storm. In Proceedings of Australasian Computer
Science Week Multiconference (ACSW '16).

Dean, J. and Ghemawat, S. 2004. MapReduce: simplified
data processing on large clusters. In Proceedings of
6th conference on Symposium on Operating Systems
Design & Implementation (OSDI'04).

Heinze, T., Aniello, L., Querzoni, L., and Jerzak, Z., 2014.
Cloud-based data stream processing. In Proceedings of
8th ACM International Conference on Distributed
Event-Based Systems (DEBS '14).

Kumar, T., Gupta, S., and Kushwaha, D. S., 2016. An
Efficient Approach for Automatic Number Plate
Recognition for Low Resolution Images. In
Proceedings of 5th International Conference on
Network, Communication & Computing (ICNCC '16).

Cao, L., Zhang, X., Chen, W., and Huang, K., 2014.
License Plate Localization with Efficient Markov
Chain Monte Carlo. In Proceedings of International
Conference on Internet Multimedia Computing and
Service (ICIMCS '14).

Jain, V., et al., 2016. Deep automatic license plate
recognition system. In Proceedings of 10th Indian
Conference on Computer Vision, Graphics and Image
Processing (ICVGIP '16).

Li, H. and Shen, C., 2016. Reading Car License Plates
Using Deep Convolutional Neural Networks and
LSTMs. arXiv preprint arXiv:1601.05610.

Parasuraman, K. and Subin, P.S., 2010. SVM based
license plate recognition system. In Proceedings of the
IEEE International Conference on Computational
Intelligence and Computing Research.

2016, An introduction to the Hadoop ecosystem on Azure
HDInsight, viewed 23 April 2017, < https://docs.
microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop
-introduction >

0

2

4

6

8

10

12

14

15 25 35 45 55 65 75 85 95

Azure HDInsight GCE Linear

Frames per Second

C
os

t p
er

 H
ou

r i
n

$

SIGMAP 2017 - 14th International Conference on Signal Processing and Multimedia Applications

80

