
Should We Place the License Plate Tracking System in the Cloud? 

Razib Iqbal, Matthew Kenney and Jamil Saquer 
Department of Computer Science, Missouri State University, Springfield, Missouri, U.S.A. 

 

Keywords: Video Surveillance, Parallel Processing, Apache Storm, Microsoft Azure, Google Cloud, HDInsight. 

Abstract: We developed a software system to extract and track vehicle license plate numbers from real-time 
surveillance cameras and crowd sourced video streams. The system can also calculate the probable routes of 
a vehicle over a range of dates based on the geographical coordinates. In this paper, we present both of our 
linear and parallel processing implementation schemes and analyze the performance based on evaluation 
results. Our results show that while cloud based parallel processing can address the scalability needs, 
performance outweighs the cost only when the real-time streaming data becomes increasingly large. 

1 INTRODUCTION 

The ubiquitous nature of Internet of Things (IoT) 
and crowd sourcing provide a greater opportunity to 
city authorities and law enforcement agencies to 
monitor the state of the urban environment in real-
time (Khan, 2015). However, increased data volume 
and real-time monitoring requirements also increases 
the data processing and visualization cost and 
complexity. In this respect, we present a license 
plate tracking system (LPTS) and compare its 
performance in various scenarios like linear and 
parallel processing in local and cloud platforms to 
analyze the rational of using cloud platforms for 
real-time processing of big data. 

From our literature review, it is evident that 
license plate detection and recognition has attracted 
lots of research interests recently. In (Li, 2016), a 
combination of deep learning and recurrent neural 
networks are used to recognize the plate and plate 
characters. Support vector machines is another class 
of machine learning technique that has been applied 
(Parasuraman, 2010) to address the problem of real 
time plate detection by skipping the character 
segmentation stage. Other recent research initiatives 
include a detection scheme in low resolution images 
(Kumar, 2016), license plate localization with 
Marckov Chain Monte Carlo process (Cao, 2014), 
and a deep convolutional neural network based 
method (Jain, 2016). Irrespective of the schemes, 
improvements in accuracy and speed come with a 
trade-off in computation power. While lots of data 
are available to initially train the systems, 

computationally complex systems might be 
expensive to deploy and maintain. Our motivation 
for LPTS is based on the initiatives for human 
identification and tagging in a multi-camera video 
surveillance system (Moctezuma, 2015). LPTS not 
only detects the plate numbers but also can track 
them in non-overlapping cameras including crowd 
sourced videos. It extracts the plate numbers from 
static/crowd sourced video feeds and stores them in 
a database. LPTS can generate the routes of vehicles 
on demand and plot them on a visible map based on 
the previously acquired coordinates.  

LPTS uses both classes of big data processing, 
static and streaming (Eskandari, 2016), where live 
video streams pass through license plate detection 
and number extraction module, and then it enables 
the users to query the license plates and generate 
their routes over a range of dates. In order to process 
high volume of static data offline, Hadoop 
(hadoop.apache.org), an open source 
implementation of MapReduce was introduced 
(Dean, 2004). However, Hadoop is not suitable for 
real-time streaming data where batch processing 
approaches cannot be used. To address this 
drawback, a number of new frameworks have been 
proposed (Heinze, 2014). Apache Spark 
(spark.apache.org) implements stream processing as 
a chain of batch processing at an interval of one 
second. Therefore, the processing of Spark is slower 
than pure stream processing. Apache Storm 
(storm.apache.org) was introduced for real-time, 
distributed, scalable and reliable framework for 
stream processing. An application in the Storm is 
called a topology, which consists of a number of 
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tasks. We initially implemented the LPTS system to 
be run linearly at a local server, however, the 
aforementioned features of LPTS along with 
heterogeneous video adaptation, data bursts, 
fluctuating data transfer rates make resource 
allocation critical. Therefore, we explored the cloud 
platforms and adapted LPTS to utilize the Apache 
Storm framework for on-the-fly resource scalability. 
We deployed our system in both Microsoft Azure 
and Google Cloud platforms. Based on our 
evaluation results, we conclude that cloud based 
parallel processing is only beneficial when the 
scalability needs and performance outweighs the 
cost of the deployment. 

2 LICENSE PLATE TRACKING 
SYSTEM (LPTS) 

Our LPTS consists of two subsystems - License 
plate recognition and License plate search. All the 
operations involved in these subsystems are 
performed in a pipelined synchronous manner. We 
utilized OpenCV (opencv.org) for frame 
preprocessing and Openalpr (github.com/openalpr) 
to detect the license plate characters. LPTS accepts 
video feeds from stationary cameras as well as 
crowd sourced videos, and adapts it for 
preprocessing in the license stream module. To 
reduce the overall computation load, we perform 
temporal homogeneous video adaptation to achieve 
a lower frame rate, e.g. 5fps. License plate detection 
module also processes the frames (resizing and gray 
scaling) and passes it to a function to find all of the 
contours in a given frame. Contours can be 
explained as a set of points bounding a region that 
has the same color or intensity. We eliminate the bad 
contours by drawing a rectangle bounding every 
contour and matching it against a range of expected 
width and height ratio. For character recognition, we 
rely on the Openalpr function. We finally save the 
character outputs (if any), in a database along with 
its timestamp, coordinates, and picture id of the 
frame.  

In response to a search query, LPTS returns the 
waypoint objects sorted by the timestamps. The 
program is written in JavaScript and uses Google 
API to generate a map of all the routes that a vehicle 
has taken over a specified time period. The creation 
of the visual map is broken into four stages: 
Waypoint object creation, Route creation and 
addition to wrapper object, Map route creation, and 
Listener event creation. A waypoint object of a 

license plate number found in the database consists 
of a timestamp, latitude and longitude information 
and a video frame. An array of waypoint objects is 
then used to create the routes. Route end points are 
determined based on the difference between a 
waypoint’s time stamp and the time stamp of the 
waypoint ahead of it. If the difference is greater than 
a specified amount, e.g. 30minutes, then the current 
waypoint becomes the last waypoint in that route’s 
array. Therefore, each route is an array of JSON 
objects and is stored in a wrapper JSON object 
which holds all of the routes. The routes in the map 
are represented by colored lines connecting similar 
colored nodes showing the coordinates and the 
routes. Each route is given its own separate 
directions renderer object on the map so that it can 
be toggled on and off. The renderer object sets the 
line color and also puts the route on the map. For the 
markers, since a stop point is seen as the start point 
of the next route and shares a marker with that route, 
if an earlier route is toggled off then the next route 
keeps that marker visible on the map until it is 
toggled off as well. Stop points are shown in red 
while the rest of the markers match the route’s 
polyline color. The node may be “clicked” by the 
user which creates a Bootstrap modal containing a 
snapshot of the vehicle at the time of video capture. 
A map is shown in Figure 1 for illustration purpose.  

 

Figure 1: Map generated by LPTS for a vehicle. 

3 TOPOLOGY FOR PARALLEL 
PROCESSING 

In this section, we present our scheme for scheduling 
the executors across the nodes in a Storm cluster. 
We utilized HDInsight (2016), which is a cloud 
distribution on Microsoft Azure for big data 
analysis. HDInsight has provisions to create a storm 
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cluster in order to implement a topology and submit 
it to the cluster. 

An Apache Storm cluster consists of three 
distinct types of nodes. The Nimbus node performs 
many responsibilities that are expected from a 
master node, e.g. distributing the code, assigning 
tasks, and monitoring failures. Usually, a Storm 
cluster will have two Nimbus nodes to provide fault 
tolerance. The Zookeeper nodes simply pass 
messages between the worker nodes and the 
Nimbus. Zookeeper nodes monitor the health of 
worker nodes and communicate failures to the 
Nimbus. The worker nodes run a daemon called, 
Supervisor, which starts and stops tasks while 
waiting for assignments from the Zookeepers. 

 

Figure 2: Storm topology for LPTS. 

In order to utilize a Storm cluster, we 
implemented a Storm topology. We used Java for 
our implementation and applied the Maven build 
automation to help us with the packaging 
dependencies. A topology consists of three 
components - stream, spout, and bolts. Stream is an 
abstraction of the input to be processed by the 
cluster. Our stream consists of the video frames that 
are being stored on a public file server. Stream is 
then transformed using spout and bolts. Spout starts 
by performing the initial preparation of the stream 
by packaging it into separate tuples and emitting the 
tuples so that they can be processed by the bolts. The 
spout in our topology repeatedly produces and emits 
the next frame to be processed by the bolts. Each 
bolt has specific processes that are to be performed 
on the tuples they receive. The topology specifies in 
what order the bolt processes should be performed 
on the tuples. In our experimental setup, topology 
has three bolts. First, the greyscale bolt downloads 
the image using the frame address from the spout. 
The bolt uses a method provided by OpenCV to 

produce a greyscaled version of the frame and emits 
it as a byte array. Next, the byte array is received by 
the License Plate Recognition (LPR) bolt and the 
modified Openalpr recognize function is used to 
retrieve the license plate number from the frame. 
Finally, if a license plate is detected in the frame, 
then the results are emitted to the save bolt. The save 
bolt connects to a cloud Microsoft SQL Server and 
inserts a record containing the results it received 
from the LPR bolt. Figure 2 models our specific 
implementation of the topology. 

4 EXPERIMENTAL RESULTS 

For parallel processing, we used HDInsight 3.5 with 
Apache Storm 1.0.1 installed on Ubuntu 16.04. We 
performed our experiments on a Storm cluster with 
two Nimbus nodes, three ZooKeeper nodes and a 
varying number of Supervisor nodes, where each 
node has four cores (Intel Xeon E5 2.2 Ghz, 8GB 
ram). When a Supervisor node is created, a script is 
ran that installs OpenALPR and its dependencies. 
We compare our Storm cluster with a linear 
implementation of the LPTS running on two 
different systems: a local four core machine running 
Ubuntu 14.04 (Intel i7 3Ghz, 8GB ram), and a cloud 
four core virtual machine running Ubuntu 16.04 
(Intel Xeon E5 2.6 Ghz, 8GB ram) created using the 
Google Compute Engine (GCE) platform. We 
analyze the performance based on the average 
frames processed per second and cost per hour of 
each cloud deployment. 

Table 1: Different platform performance comparison. 

Platforms Time per frame FPS 

Local Linear 145.6 ms 6.88 

GCE Linear 167.35 ms 5.97 

Azure HDInsight 209.2 ms 19.16 

In the test video inputs, around 30% frames had 
a license plate. In Table 1, we show the average 
processing time per frame to perform license plate 
recognition (using single core) along with the total 
frames per second (FPS) the system achieved (using 
all four cores for Azure) over a two-hour period. 
From the results, we can see that the local machine 
achieved the fastest processing time utilizing a 
single core but it had a slower overall FPS than the 
Storm cluster (i.e. Azure HDInsight). The GCE 
Linear deployment with a single core utilization had 
a slightly slower processing speed than the Local 
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Linear deployment which also resulted in a lower 
FPS. The Azure Storm cluster’s single core had the 
slowest processing time yet had the highest FPS due 
to our parallel processing scheme. These results 
demonstrate that given a linear implementation, the 
processing speed will have a direct impact on the 
overall speed of the LPTS. However, we can get a 
higher FPS with parallel processing even though 
each core might exhibit a slower processing power. 

In the previous experiment, a GCE virtual 
machine costs $0.19 per hour whereas the cost of the 
Storm cluster with a single Supervisor node is $2.22 
per hour. In our next experiment, we looked at the 
cost of scaling the Storm cluster versus adding more 
Google cloud virtual machines. We used data points 
gathered from performing tests on a four node Storm 
cluster while scaling it by a single node at a time up 
to seven nodes in the cluster. Similarly, in GCE 
Linear implementation, we manually added new 
virtual machines to handle the increased loads. From 
Figure 3, we can see that at 55 FPS and above, the 
Storm cluster is a more cost-efficient option than the 
GCE linear implementation. Therefore, we can 
conclude that scalability and performance only 
outweighs the cost when the number of real-time 
streaming data becomes increasingly large. 
Otherwise, a local linear implementation and 
deployment might be sufficient. 

 

Figure 3: Cost per hour vs Performance comparison of 
Azure HDInsight and Google Compute Engine. 

5 CONCLUSIONS 

In this paper, we presented a linear and parallel 
implementation of our license plate tracking system, 
and the respective performance results. From the 
experimental results, we found that – a) Local linear 
deployment offers the fastest computation time 
however it is not dynamically scalable compared to 
the cloud deployment; b) Storm cluster running on 

the Microsoft Azure platform becomes more cost 
efficient than the linear implementation on the 
Google Compute Engine platform only when the 
work load exceeds a certain threshold. Therefore, 
parallel computing scheme in Azure makes it the 
best choice for scalability and higher workloads.  

As future work, we plan to parallelize the 
license plate recognition steps as well as improve the 
routes prediction process. 
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