
ChronoGraph
Versioning Support for OLTP TinkerPop Graphs

Martin Haeusler, Thomas Trojer, Johannes Kessler, Matthias Farwick, Emmanuel Nowakowski
and Ruth Breu

Institute for Computer Science, Technikerstraße 21a, 6020 Innsbruck, Austria

Keywords: Graph Databases, Versioning, TinkerPop, Gremlin.

Abstract: In recent years, techniques for system-time versioning of database content are becoming more sophisticated
and powerful, due to the demands of business-critical applications that require traceability of changes, auditing
capabilities or historical data analysis. The essence of these techniques was standardized in 2011 when it was
introduced as a part of the SQL standard. However, in NoSQL databases and in particular in the emerging
graph technologies, these aspects are so far being neglected by database providers. In this paper, we present
ChronoGrapha, the first TinkerPop graph database implementation that offers comprehensive support for
content versioning and analysis, designed for Online Transaction Processing (OLTP). This paper offers two key
contributions: the addition of our novel versioning concepts to the state of the art in graph databases, as well
as their implementation as an open-source project. We demonstrate the feasibility of our proposed solution
through controlled experiments.

aThis work was partially funded by the research project “txtureSA” (FWF-Project P 29022).

1 INTRODUCTION

Graph databases offer a powerful alternative to tradi-
tional relational databases, especially in cases where
most information value is found in relationships be-
tween elements, rather than their properties. Partic-
ularly with the popular and commercially succesful
graph database Neo4j1, the concept of graph databases
has reached a wider audience and has inspired many
other implementations, such as Titan DB2 and Orient
DB3.

Much like SQL for relational databases, the prop-
erty graph model (Rodriguez and Neubauer, 2011)
Apache TinkerPop4 (alongside the traversal language
Gremlin) is the de-facto standard interface for graph
databases, allowing to exchange the actual database
implementation without altering the application. As
these technologies mature over time, they are faced
with new demands for features. Among them is the
demand for system-time content versioning, primarily
for the purpose of maintaining traceability of changes,

1https://neo4j.com/
2http://titan.thinkaurelius.com/
3http://orientdb.com/
4https://tinkerpop.apache.org/

providing extensive auditing capabilities, legal compli-
ance or historical data analysis of the graph contents
(e.g. trend analysis).

The concept of versioning database content is
an old topic. Early work dates back to 1986 when
Richard Snodgrass published his article Temporal
Databases (Snodgrass, 1986). In the following years,
several different approaches were discussed (Easton,
1986; Lomet and Salzberg, 1989; Jensen et al., 1998;
Nascimento et al., 1996; Becker et al., 1996), with
many of them focusing on a relational environment
and SQL (e.g. Oracle’s Flashback technology (Hart
and Jesse, 2004), Temporal Tables in DB2 (Saracco
et al., 2012) or ImmortalDB for SQL Server (Lomet
et al., 2006; Lomet et al., 2008)).

Versioning for graph databases is a more recent
topic (Castelltort and Laurent, 2013; Taentzer et al.,
2014; Tanase et al., 2014). Castelltort et al. and
Taentzer et al. have shown clearly that achieving
full-featured graph versioning within a given non-
versioned general purpose graph database is a chal-
lenging task. It often leads to a sharp increase of
complexity in the graph structure and consequently
causes issues regarding scalability, comprehensibility
and performance of queries operating on the graph.

Haeusler, M., Nowakowski, E., Farwick, M., Breu, R., Kessler, J. and Trojer, T.
ChronoGraph - Versioning Support for OLTP TinkerPop Graphs.
DOI: 10.5220/0006465400870097
In Proceedings of the 6th International Conference on Data Science, Technology and Applications (DATA 2017), pages 87-97
ISBN: 978-989-758-255-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

87



With ChronoGraph5, the first versioned TinkerPop
implementation, we propose a novel solution that re-
tains the simplicity and ease of use of graph queries
on a non-versioned graph by handling the versioning
process in an entirely transparent way. We are also
going to showcase scenarios where versioning pro-
vides advantages in the execution of regular graph
database features. As our system is already being used
in practice, achieving a high performance alongside
new versioning features is important. We demonstrate
this through a controlled experiment.

The remainder of this paper is structured as follows:
In Section 2 we present the individual requirements
which we considered for our solution. In Section 3 we
focus on the solution details and architecture, which
is discussed in depth and compared with related work
in Section 4. Section 5 presents an evaluation of our
approach through experiments. Finally, Section 6 out-
lines our future work and Section 7 concludes the
paper with a summary.

2 REQUIREMENTS

Based on our previous work with graph databases (Tro-
jer et al., 2015) and versioning systems (Haeusler,
2016), as well as by translating versioning features
in SQL (Lomet et al., 2006; Lomet et al., 2008; Hart
and Jesse, 2004; Saracco et al., 2012) to their graph
counterparts, we synthesized the following key require-
ments for a versioned graph database:

• R1: Any Query on any Timestamp
In order to provide effective comparisons between
individual graph versions, the essential underlying
capability is to execute any given Gremlin query on
any desired timestamp, without altering the query.
In this way, comparisons between version a and b
can invoke query q on a and b separately, and the
query results can be compared directly.

• R2: Efficient “Time Travel”
The ability to request the graph state at a given
timestamp in the past is referred to as “Time
Travel”. This operation needs to be implemented
in an efficient way in order to support requirement
[R1]. Specifically, we demand that the query re-
sponse time is independent of the request times-
tamp. In other words, requests on timestamps far
in the past should not perform inherently worse
than requests on recent timestamps.

• R3: History Analysis for Vertices & Edges
The capability to list the timestamps at which a

5http://tinyurl.com/chronograph-github

Graph Structure Mgmt

Gremlin Processor
ChronoGraph

ChronoDB
Temporal Key-Value Store

Application
Ext. TinkerPop API

Time-Key-Value

time

keys

0 1 2 3 4 5 6 7 ...

a

b

c

d

e

f

..
.

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

ε ε ε ε εε
ε ε ε ε ε ε

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

ChronoDB Matrix Formalization

a) b)

Graph Transaction Mgmt

Figure 1: ChronoGraph Architecture.

given vertex or edge was changed is essential for
analyzing the history of the element. At these
timestamps, the analysis query in question can be
repeated for comparison purposes.

• R4: Listing Change Timestamps
A versioned graph database should be capable of
listing all changed elements in a given time range
and their corresponding change timestamps, e.g.
for calculating deltas. This list is not restricted to
any particular element, therefore this requirement
is orthogonal to requirement [R3].

3 PROPOSED SOLUTION

In this section, we present our novel versioning con-
cepts for TinkerPop Online Transaction Processing
(OLTP) graphs. We give an overview over the archi-
tecture of ChronoGraph, outline how graph data is
mapped to the underlying versioned key–value store,
and how the versioning concepts affect this process.

3.1 ChronoGraph Architecture

Our open-source project ChronoGraph provides a fully
TinkerPop-compliant graph database implementation
with additional versioning capabilities. In order to
achieve this goal, we employ a layered architecture
as outlined in Figure 1 a). In the remainder of this
section, we provide an overview of this architecture in
a bottom-up fashion.

The bottom layer of the architecture is a temporal
key-value store, i.e. a system capable of working with
time–key–value tuples as opposed to plain key–value
pairs in regular key-value stores. For the implementa-
tion of ChronoGraph, we have chosen to use our own
implementation called ChronoDB6. Figure 1 b) shows
the matrix formalization of the store, which we have
presented in our previous work (Haeusler, 2016). We
refer the interested reader to our previous work, where

6http://tinyurl.com/chronodb-github

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

88



we provide the details of all relevant operations and
data structures. In the context of this paper, it is suffi-
cient to know that ChronoDB is a versioned key-value
store that is based on a B+-Tree structure (Salzberg,
1988) that allows to perform temporal lookups effi-
ciently with time complexity O(logn) [R1, R2].

ChronoGraph itself consists of three major com-
ponents. The first component is the graph structure
managment. It is responsible for managing the indi-
vidual vertices and edges that form the graph, as well
as their referential integrity. As the underlying stor-
age mechanism is a key-value store, the graph struc-
ture management layer also performs the partitioning
of the graph into key-value pairs and the conversion
between the two formats. We present the technical
details of this format in Section 3.2. The second
component is the transaction management. The key
concept here is that each graph transaction is associ-
ated with a timestamp on which it operates. Inside
a transaction, any read request for graph content will
be executed on the underlying storage with the trans-
action timestamp. ChronoGraph supports full ACID
transactions with the highest possible isolation level
(“serializable”, also known as “snapshot isolation”,
as defined in the SQL Standard (ISO, 2011)). The
underlying versioning system acts as an enabling tech-
nology for this highest level of transaction isolation,
because any given version of the graph, once written
to disk, is effectively immutable. All mutating opera-
tions are stored in the transaction until it is committed,
which in turn produces a new version of the graph,
with a new timestamp associated to it. Due to this
mode of operation, we do not only achieve repeatable
reads, but also provide effective protection from phan-
tom reads, which is a common problem in concurrent
graph computing. As the graph transaction manage-
ment is heavily relying on the transactional capabilities
of ChronoDB, we refer the interested reader to our pre-
vious work (Haeusler, 2016) for further details. The
third and final component is the query processor itself
which accepts and executes Gremlin queries on the
graph system. As each graph transaction is bound to
a timestamp, the query language (Gremlin) remains
timestamp-agnostic, which allows the execution of any
query on any desired timestamp [R1].

The application communicates with ChronoGraph
by using the regular TinkerPop API, with additional
extensions specific to versioning. The versioning it-
self is entirely transparent to the application to the
extent where ChronoGraph can be used as a drop-in
replacement for any other TinkerPop 3.x compliant
implementation. The application is able to make use
of the versioning capabilities via additional methods
(c.f. Section 3.4), but their usage is entirely optional

Table 1: TinkerPop API to Record Mapping.
TinkerPop Record Record Contents

Vertex VertexRecord

id, label,
PropertyKey→ PropertyRecord
In: EdgeLabel→ EdgeTargetRecord
Out: EdgeLabel→ EdgeTargetRecord

Edge EdgeRecord
id, label,
PropertyKey→ PropertyRecord
id of InVertex, id of OutVertex

Property PropertyRecord PropertyKey, PropertyValue
— EdgeTargetRecord id of edge, id of other end Vertex

and not required during regular operation that does not
involve history analysis.

3.2 Data Layout

In order to store graph data in our versioned Key–Value
Store, we need to transform the graph structure into
the key–value format. For each vertex, we consider
the direct neighborhood, and replace neighboring ver-
tices by their IDs. This produces a graph fragment
centered around the vertex. In contrast to the mutable
TinkerPop API, these fragments need to be immutable
in order to be suitable for versioning. We call such
immutable representations Records, and there is one
record type for each TinkerPop element (see Table 1).
Since edges are duplicated in the lists of their incom-
ing and outgoing vertices, we introduce the additional
concept of a EdgeTargetRecord. It contains the ID of
the other-end vertex, but no edge properties. These
are stored in the EdgeRecord itself. This allows us
to perform navigations along edges with only one ID
resolution (i.e. disk access) per step. At the same time,
we minimize information duplication for the edges
while still allowing to iterate over all edges in a graph.
The drawback is that we need to perform two ID reso-
lutions in navigation queries that have a condition on
the edge properties (c.f. Figure 2).

3.3 Versioning Concept

When discussing the mapping from the TinkerPop
structure to the underlying key–value store in Sec-
tion 3.2, we did not touch the topic of versioning. This
is due to the fact that our key–value store ChronoDB
is performing the versioning on its own. The graph
structure does not need to be aware of this process.
We still achieve a fully versioned graph, an immutable
history and a very high degree of sharing of common
(unchanged) data between revisions. This is accom-
plished by attaching a fixed timestamp to every graph
transaction. This timestamp is always the same as in
the underlying ChronoDB transaction. When reading
graph data, at some point in the resolution process we
perform a get(. . . ) call in the underlying key–value
store, resolving an element (e.g. a vertex) by ID. At

ChronoGraph - Versioning Support for OLTP TinkerPop Graphs

89



version resolution stepedge / navigation step

v0 a b
p = xv1 v2

transaction at t = 1234

Figure 2: Example: Navigation in a Graph Version.

this point, ChronoDB uses the timestamp attached
to the transaction to perform the temporal resolution.
This will return the value of the given key, at the speci-
fied timestamp. We refer the interested reader to our
previous work for details (Haeusler, 2016).

In order to illustrate this process, we consider
the example in Figure 2. We open a transaction at
timestamp 1234 and execute the following Gremlin
query:

V(v0).out("a").outE("b").has("p","x").inV()

Starting from vertex v0, we navigate along the
outgoing edge labelled as a to the other-end vertex.
Since this edge is stored in the vertex as an EdgeTar-
getRecord, we resolve the target vertex v1 by ID from
the key–value store. At this moment, the resolution of
the correct version of v1 is taking place, requesting v1
at the transaction timestamp, which is 1234. Navigat-
ing from v1 to v2 via edge b requires two resolutions,
because we have an additional condition on a property
p of the edge. This forces us to first resolve the edge at
timestamp 1234, evaluate the condition on it, and then
resolve the target vertex if the condition matches the
edge. We would like to emphasize that similar loading
strategies are applied by most popular graph databases;
the essential difference is that the underlying storage
of ChronoGraph is in addition taking care of resolving
the correct version of the requested element.

The key observation here is that we automatically
receive the correct version of the element without im-
plementing any specific functionality in the mapping
process. Since ChronoDB provides a consistent view
on the entire database content for any given timestamp,
the temporal resolution logic not only applies when
loading a graph element by ID, but also when navi-
gating from one element to another. We will always
receive the element in the state it was at the times-
tamp attached to our transaction. This is a major step
towards fulfilling requirement [R1]. As ChronoDB
offers logarithmic access time to any key-value pair on
any version, this is also in line with requirement [R2].

3.4 TinkerPop Compatibility

The Apache TinkerPop API is the de-facto standard in-
terface between graph databases and applications built

on top of them. We therefore want ChronoGraph to
implement and be fully compliant to this interface as
well. However, in order to provide our additional func-
tionality, we need to extend the default API at several
points. There are two parts to this challenge. The first
part is compliance with the existing TinkerPop API,
the second part is the extension of this API in order
to allow access to new functionality. In the following
sections, we will discuss these points in more detail.

3.4.1 TinkerPop API Compliance

As we described in Sections 3.2 and 3.3, our version-
ing approach is entirely transparent to the user. This
eases the achievement of compliance to the default
TinkerPop API. The key aspect that we need to ensure
is that every transaction receives a proper timestamp
when the regular g.tx().open() method is invoked
(see Listing ??). In a non-versioned database, there is
no decision to make at this point, because there is only
one graph in a single state. The logical choice for a ver-
sioned graph database is to return a transaction on the
current head revision, i.e. the timestamp of the transac-
tion is set to the timestamp of the latest commit. This
aligns well with the default TinkerPop transaction se-
mantics — a new transaction t1 should see all changes
performed by other transactions that were committed
before t1 was opened. When a commit occurs, the
changes are always applied to the head revision, re-
gardless of the timestamp at hand, because history
states are immutable in our implementation in order to
preserve traceability of changes. As the remainder of
our graph database, in particular the implementation of
the query language Gremlin, is unaware of the version-
ing process, there is no need for further specialized
efforts to align versioning with the TinkerPop API.

We employ the TinkerPop Structure Standard Suite,
consisting of more than 700 automated JUnit tests, in
order to assert compliance with the TinkerPop API
itself. This test suite is set up to scan the declared
Graph Features (i.e. optional parts of the API), and
enable or disable individual tests based on these fea-
tures. With the exception of Multi-Properties7 and the
Graph Computer8, we currently support all optional
TinkerPop API features, which results in 533 tests to
be executed. We had to manually disable 8 of those
remaining test cases due to problems within the test
suite, primarily due to I/O errors related to illegal file
names on our Windows-based development system.

7We do not support multi-valued properties directly as in-
tended by TinkerPop. However, we do support regular
properties of List or Set types.

8The Graph Computer is the entry point to the Online Ana-
lytics Processing (OLAP) API. Support for this feature may
be added in future versions of ChronoGraph.

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

90



The remaining 525 tests all pass on our API implemen-
tation.

3.4.2 TinkerPop Extensions

Having asserted conformance to the TinkerPop API,
we created custom extensions that give access to the
features unique to ChronoGraph. As the query lan-
guage Gremlin itself remains completely untouched
in our case, and the graph structure (e.g. Vertex and
Edge classes) is unaware of the versioning process (as
indicated in Section 3.3), we are left with one possible
extension point, which is the Graph interface itself. In
order to fulfill requirements [R1] and [R2], we need to
add a method to open a transaction on a user-provided
timestamp. By default, a transaction in TinkerPop on
a Graph instance g is opened via one of the following
methods:

1 // Variant A: Thread -bound transaction
2 g.tx().open();
3 // Variant B: Unbound transaction
4 Graph txGraph = g.tx().createThreadedTx();

Listing 1: Opening TinkerPop Transactions.

We expanded the Transaction class by adding
two new overrides to the open(...) and
createThreadedTx(...) methods:

1 Date userDate = ... ; long userTime = ...;
2 // Variant A:
3 graph.tx().open(userDate);
4 graph.tx().open(userTime);
5 // Variant B:
6 Graph tx1 = g.tx().createThreadedTx(userDate);
7 Graph tx2 = g.tx().createThreadedTx(userTime);

Listing 2: Opening ChronoGraph Transactions.

Using these additional overrides, the user can de-
cide the java.util.Date or java.lang.Long times-
tamp on which the transaction should be based. This
small change of adding an additional time argument
is all it takes for the user to make full use of the time
travel feature, the entire remainder of the TinkerPop
API, including the structure elements and the Grem-
lin query language, behave as defined in the standard.
With these additional methods, together with the de-
tails presented in the previous sections, we fully cover
requirements [R1] and [R2].

We added the following methods to provide access
to the history of a single Vertex or Edge:

1 Vertex v = ... ; Edge e = ... ;
2 Iterator <Long > it1 = graph.getVertexHistory(v);
3 Iterator <Long > it2 = graph.getEdgeHistory(e);

Listing 3: Accessing Graph Element History.

These methods allow access to the history of any
given edge or vertex. The history is expressed by
an Iterator over the change timestamps of the el-
ement in question, i.e. whenever a commit changed
the element, its timestamp will appear in the values
returned by the iterator. The user of the API can
then use any of these timestamps as an argument to
g.tx().open(...) in order to retrieve the state of
the element at the desired point in time. The implemen-
tation of the history methods delegate the call directly
to the underlying ChronoDB, which retrieves the his-
tory of the key–value pair associated with the ID of the
given graph element. This history is extracted from the
primary index, which is first sorted by key (which is
known in both scenarios) and then by timestamp. This
ordering allows the two history operations to be very
efficient as only element ID requires a lookup in loga-
rithmic time, followed by backwards iteration over the
primary index (i.e. iteration over change timestamps)
until a different ID is encountered.

In order to meet requirement [R4], we added the
following methods:

1 long from = ...; long to = ...;
2 Iterator <TemporalKey > it1 = graph.

getVertexModificationsBetween(from , to);
3 Iterator <TemporalKey > it2 = graph.

getEdgeModificationsBetween(from , to);

Listing 4: Listing Changes within a Time Range.

These methods grant access to iterators that re-
turn TemporalKeys. These keys are pairs of actual
element identifiers and change timestamps. Just as
their element-specific counterparts, it is intended that
these timestamps are used for opening transactions on
them in order to inspect the graph state. Combined
calls to next() on it1 and it2 will yield the complete
list of changes upon iterator exhaustion, fulfilling re-
quirement [R4]. Analoguous to their element-specific
siblings, these methods redirect directly to the underly-
ing ChronoDB instance, where a secondary temporal
index is maintained that is first ordered by timestamp
and then by key. This secondary index is constructed
per keyspace. Since vertices and edges reside in dis-
joint keyspaces, these two operations do not require
further filtering and can make direct use of the sec-
ondary temporal index.

3.4.3 Transaction Semantics

When we implemented ChronoDB, we envisioned it
to be a system suitable for storing data for analysis
purposes, therefore the consistency of a view and the
contained data is paramount. As all stored versions
are effectively immutable, we chose to implement a
full ACID transaction model in ChronoDB with the

ChronoGraph - Versioning Support for OLTP TinkerPop Graphs

91



highest possible isolation level (“Serializable” (ISO,
2011)). As ChronoGraph is based on ChronoDB, it
follows the same transaction model. To the best of
our knowledge, ChronoGraph is currently the only im-
plementation of the TinkerPop API v3.x that is full
ACID in the strict sense, as many others opt for repeat-
able reads isolation (e.g. OrientDB, Titan Berkeley)
while ChronoGraph supports snapshot isolation. A
proposal for snapshot isolation for Neo4j was pub-
lished recently (Patiño Martı́nez et al., 2016), but it is
not part of the official version. Graph databases with-
out ACID transactions and snapshot isolation often
suffer from issues like Ghost Vertices9 or Half Edges10

which can cause inconsistent query results and are very
difficult to deal with as an application developer. These
artefacts are negative side-effects of improper transac-
tion isolation, and application developers have to em-
ploy techniques such as soft deletes (i.e. the addition
of “deleted” flags instead of true element deletions) in
order to avoid them. As ChronoGraph adheres to the
ACID properties, these inconsistencies can not appear
by design.

4 RELATED WORK

The idea to have a versioned graph database is
well-known. Several authors proposed different ap-
proaches (Castelltort and Laurent, 2013; Semertzidis
and Pitoura, 2016a; Semertzidis and Pitoura, 2016b)
which also highlights the importance of the problem.
However, our solution is different from existing solu-
tions in one key aspect: In contrast to other authors,
we do not propose to implement the versioning ca-
pabilities within a graph itself, but rather on a lower
level. This section is dedicated to a discussion of the
resulting advantages and disadvantages of this design
choice.

4.1 Functionality

Implementing versioning of a graph within an existing
graph database is a tempting idea, given that a con-
siderable implementation and quality assurance effort
has been put into modern graph databases like Neo4j.
Early works date back to 2013 when Castelltort and
Laurent published their work on this topic (Castelltort

9Vertices that have been deleted by transaction t1 while being
modified concurrently by transaction t2 do not disappear
from the graph; they remain as Ghosts.

10Half Edges refer to the situation where an edge is only
traversable and visible in one direction, i.e. the out-vertex
lists the edge as outgoing, but the in-vertex does not list it
as incoming, or vice versa.

and Laurent, 2013). Further work in the same vein was
published recently by Taentzer et al. (Taentzer et al.,
2014). However, as Castelltort’s and Laurent’s paper
clearly shows, the versioned “meta-graph” structure
can become very complex even for small examples.
Changes in vertex properties are easy to represent by
maintaining several copies of the vertex and linking
them together by “predecessor” edges, but structural
changes (addition or removal of edges) are difficult to
represent within a graph structure itself. Due to this
added complexity in structure, the resulting queries
need to become more sophisticated as well. This
can be mitigated by implementing a query transla-
tion mechanism that takes a regular graph query and
a timestamp as input and transforms it into a query
on the meta-graph. Aside from the inherent complex-
ity of this mapping, the performance of the resulting
transformed query will suffer inevitably, as the over-
all graph structure is much larger than a single graph
version would be. In the common case where a query
should be executed on one particular timestamp, the
amount of irrelevant data (i.e. the number of graph
elements that do not belong to the requested revision)
in the graph increases linearly with every commit. A
non-versioned general purpose graph database such as
Neo4j, being unaware of the semantics of versioning
by definition, has no access to any means for react-
ing to and/or devising a countermeasure against this
problem.

Other related approaches e.g. by Semertzidis and
Pitoura (Semertzidis and Pitoura, 2016b; Semertzidis
and Pitoura, 2016a) or by Han et al. (Han et al., 2014),
assume the existence of a series of graph snapshots as
input to their solutions. These approaches do not aim
for online transaction processing (OLTP) capabilities
and focus on the analysis of a series of static graphs.
A direct comparison to our work is therefore not fea-
sible. However, the data managed by ChronoGraph
may serve as an input to those tools, as each graph re-
vision can be extracted individually and consequently
be treated as a series of snapshots.

Our implementation is a stark contrast to existing
solutions. We implement the versioning process at
a lower level, in a generic versioned key–value store
called ChronoDB. This store is aware of the semantics
of the versioning process, and is capable of solving the
problem of long histories (Haeusler and Breu, 2017),
unlike the previously mentioned solutions.

To the end user, the versioning process is com-
pletely transparent, as our implementation is fully
compliant with the standard TinkerPop API for non-
versioned graphs. There is no need for translating one
graph query into another in order to run it on a different
graph version. A developer familiar with the TinkerPop

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

92



API can start using ChronoGraph without any par-
ticular knowledge about the versioned nature of the
graph. By offering additional methods, which are
very much in line with the intentions of the TinkerPop
API, we grant access to the temporal features. Addi-
tionally, ChronoGraph is fully ACID compliant with
snapshot isolation for concurrent transactions, prevent-
ing common artefacts that arise in other, non-ACID
graph databases, such as ghost vertices and half edges.
Our solution is strongly based on immutability of ex-
isting versions, which aids in preserving traceability
of changes and allows extensive sharing of data that
remained unchanged between revisions.

4.2 Limitations

Our approach is tailored towards the use case of having
a versioned graph (as opposed to a temporal graph),
which entails that queries on a single timestamp are
the prevalent form of read access. Even though we
support additional auxiliary methods for traversing
the history of a single vertex or edge, and listing all
changes within a given time range, our approach is
far less suitable for use cases with an emphasis on
temporal analysis that require time range queries, or
detection of patterns on the time axis (as in graph
stream analysis (McGregor, 2014; Pigné et al., 2008)).
For example, answering the question “Which elements
often change together?”, while possible in our solu-
tion, can not be implemented without linear scanning
through the commit logs. Another example would be
the query “List all vertices that have ever been adja-
cent to a given one”, which would again involve linear
iteration.

We are currently also not offering any means for
distributing the graph among multiple machines (see
Section 6 for details). This limits the scale of our graph
to sizes manageable within the physical memory and
computing resource restrictions of a single machine.
Currently, the largest ChronoGraph instance used in
practice that we are aware of has about 500.000 ele-
ments (vertices plus edges) in the head revision.

5 EVALUATION

Table 2 shows a very high-level look at the most rele-
vant TinkerPop implementations in practice and com-
pares them to ChronoGraph. Titan, Neo4j and Chrono-
Graph are supporting the new 3.x versions of Tinker-
Pop, while OrientDB is still using the 2.x version. The
remainder of the table can be divided into two parts.
On the one hand there are distributed systems that are
intended for deployment on multiple machines, and on

the other hand there are systems deployed locally on
one machine. In the distributed domain, the BASE11

approach is prevalent due to its weaker consistency
guarantees. For local deployments, all graph databases
in the list follow the ACID principles. However, they
all implement them in different ways. In particular
the Isolation property allows for a certain degree of
freedom in interpretation. Most local graph databases
listed in Table 2 have Read Committed isolation, which
is the second weakest of the four levels identified in
the SQL 2011 Standard (ISO, 2011).ChronoGraph is
the only implementation that provides true Snapshot
isolation, which is the highest possible isolation level.

We assert the conformance to the TinkerPop stan-
dard in ChronoGraph via the automated test suite pro-
vided by TinkerPop which encompasses around 700
test cases. We furthermore assert the correctness of our
additional functionality by adding another 1400 auto-
mated test cases, achieving a total statement coverage
of approximately 70%. In order to demonstrate that the
impact on performance of these new features does not
harm the overall applicability of our graph database,
we conducted a comparative experiment with the top
three major TinkerPop implementations, alongside a
second experiment that demonstrates the versioning
capabilities of ChronoGraph.

5.1 Controlled Experiments

This section presents two experiments with their re-
spective setups and results. The comparative per-
formance experiment evaluates ChronoGraph against
other popular graph databases, while the version his-
tory growth experiment focuses on the versioning capa-
bilities of ChronoGraph and demonstrates the impact
on performance as more revisions are being added.

All benchmarks were executed with 1.5GB (com-
parative experiment) or 3.0GB (history growth ex-
periment) of RAM available to the JVM on an Intel
Core i7-5820K processor with 3.30GHz and a Crucial
CT500MX200 SSD.

5.1.1 Comparative Performance

We generated a uniformly random graph with 100.000
vertices and 300.000 edges. We then selected a ran-
dom subset of 10.000 vertices. In order to assert the
reproducibility of the experiment, we persisted both
the adjacency list and the identifiers of the vertex sub-
set in a plain text file. Using the graph database under
test (GUT), we loaded the text file, created the corre-
sponding TinkerPop structure and persisted it as a new
graph in the GUT. In order to have a common baseline,

11Basically Available, Soft State, Eventual Consistency

ChronoGraph - Versioning Support for OLTP TinkerPop Graphs

93



Table 2: Comparison of TinkerPop Implementations.

Graph-Database TinkerPop Version Deployment Paradigm Max. Isolation Level
ChronoGraph 3.x Local ACID Snapshot
Titan on BerkeleyDB 3.x Local ACID Read Committed

on Cassandra 3.x Distributed BASE n/a
on HBase 3.x Distributed BASE n/a

Neo4j 3.x Distributed BASE / ACID Read Committed
OrientDB Local Mode 2.x Local ACID Repeatable Reads

Distributed Mode 2.x Distributed ACID Read Committed

(a) Graph Loading Times. (b) Query Response Times.

Figure 3: Performance of TinkerPop graph creation and querying.

we did not make use of vendor-specific batch-loading
capabilities. The time it takes to perform this task is
shown in Figure 3 a). The displayed box plot shows
the results over 10 runs.

After importing the graph, we loaded the list of
10.000 random vertex IDs from the text file. For each
vertex ID, we fetched the corresponding vertex from
the GUT and calculated its local cluster coefficient,
which is a two-step neighborhood query, as presented
by Ciglan et al. (Ciglan et al., 2012). This experi-
ment covers two of the primary capabilities of graph
databases, which are random access and neighborhood
navigation. Figure 3 b) shows the results of this bench-
mark, accumulated over 10 runs.

As Figure 3 clearly indicates, Neo4j is the fastest
competitor in both loading and querying the graph by
a wide margin. We would like to emphasize that we
included Neo4j in this benchmark for reference pur-
poses due to its popularity; its feature set is hardly
comparable to the other databases in the benchmark as
it primarily follows the BASE principle which allows
for a wide range of optimizations that would not be
possible in an ACID environment. Our ChronoGraph
implementation takes second place in loading speed.
OrientDB first needs to convert the graph elements into
its internal document representation, while Titan is lim-
ited by the insertion speed of the underlying Berkeley
DB. In terms of read access speed, ChronoGraph is the
middle ground between OrientDB and Titan Berkeley

in this benchmark. Here, we only deal with a sin-
gle graph version, therefore a comparable speed to
non-versioned graph databases is to be expected. We
still suffer from a slight overhead in calculation due
to the present versioning engine, which is the reason
why OrientDB performs better. The main use case of
Titan is in distributed environments, which explains
why restricting it to a single Berkeley DB instance
(the only officially supported ACID backend) causes a
degradation in performance.

5.1.2 Version History Growth

In a second experiment we analyze the performance
impact as an increasing amount of versions are added
to the system via regular commits. For this experi-
ment, we assume frequent small-scale changes. Even
though ChronoGraph supports versioning for vertex
and/or edge property values, in this experiment we
only consider changes that alter the graph topology.
We use the same local cluster coefficient calculation
query as in the previous experiment on a graph with
an increasing number of versions. To eliminate the
impact of an increase in graph size, we choose the
modifications randomly from a probability distribution
which is designed on the fly to increase the graph size
if too many deletions have occurred, and to reduce
it again if too many elements have been added. All
operations preserve the uniform randomness of the

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

94



Figure 4: Query Performance with increasing number of versions.

graph structure. The four distinct events are vertex ad-
dition, vertex removal, edge addition and edge removal.
The removal operations pick their target element at
random. When adding a vertex, we also connect it to
another, randomly chosen existing vertex via a new
edge. A commit can contain any combination of these
operations. In this experiment, each commit consists
of 50 such structural changes. As in the previous ex-
periment, the initial graph is uniformly random and
has 100.000 vertices and 300.000 edges. The modifi-
cations in the commits alter these values. We use the
random distribution of changes as a tool to keep the
graph from becoming too large or too small, as we
are only interested in the impact of a growing history
and want to eliminate the influence of a growing or
shrinking graph structure. Both the number of vertices
and the number of edges is bounded within ±5% of the
original numbers. The probability distribution for the
change events is recalculated after every modification.

The experiment algorithm operates in iterations. In
each iteration, it performs 300 commits, each of them
containing 50 operations as outlined above. Then, a
timestamp is picked on which a graph transaction is
opened, and the local cluster coefficient query from
the first experiment is calculated for 10.000 randomly
selected vertices. We measure the accumulated time of
these queries and repeat each measurement 10 times
(keeping the timestamp constant, but selecting a differ-
ent, random set of vertices each time). We would like
to emphasize that the time for opening a transaction is
independent of the chosen timestamp, i.e. opening a
transaction on the head revision is equally fast as open-
ing a transaction on the initial revision. The timestamp
selection is done in four different ways, which gives
rise to the four different graphs in Figure 4:

• INITIAL uses the timestamp of the initial commit.

• HEAD uses the timestamp of the latest commit.

• MIDWAY uses the timestamp at the arithmetic mean
of the initial and latest commit timestamps.

• RANDOM chooses a timestamp randomly between
the initial and latest commit (inclusive).

We granted 3GB of RAM to the JVM in this ex-
periment (even though the benchmark program can be
successfully executed with less memory) in order to
prevent excessive garbage collection overhead. Com-
pared to the first experiment, we are faced with much
larger volumes of data in this case, and the test code
itself has to manage a considerable amount of meta-
data, e.g. in order to assert the correct calculation of
the probability distributions.

Figure 4 showcases a number of interesting prop-
erties of ChronoGraph. Given a graph that retains an
almost constant size over time, the number of versions
has a very minor effect on the query performance if
the INITIAL or HEAD revisions are requested. The
present increase is due to the larger number of elements
in the underlying B+-Tree structure in ChronoDB. The
INITIAL version has a notably higher standard de-
viation than the HEAD version. This is due to the
experiment setup. As new changes are committed,
they are written through our versioning-aware cache.
The HEAD case can take full advantage of this fact.
However, for the INITIAL case, the write through
eliminates older entries from the Least-Recently-Used
cache which have to be fetched again to answer the
queries on the initial commit timestamp.

The MIDWAY version suffers from a similar prob-
lem as the INITIAL version, however to a lesser extent
because the request timestamp is closer to the latest
commit than in the INITIAL case. We would like to
emphasize that, while the underlying store offers the
same performance for any version, the temporal cache

ChronoGraph - Versioning Support for OLTP TinkerPop Graphs

95



is limited in size and cannot hold all entries in the
experiment. Therefore, choosing a timestamp that is
closer to the latest commit causes an improvement in
performance due to the write-through mechanics of
our commit operations.

Finally, the worst case scenario is the RANDOM
variant of our experiment. Here, each read batch
chooses a different timestamp at random from the
range of valid timestamps. This causes a consider-
able number of cache misses, increasing the standard
deviation and query response time. As the underlying
data structure in our store is a B+-Tree that contains
all revisions, which is the reason for the resulting loga-
rithmic curve in Figure 4.

At this point, it is important to note that the ver-
sioning engine is faced with considerable volumes of
changes in this experiment. After 50 iterations, the
version history consists of 15,001 individual graph re-
visions with 50 modifications each. This translates
into 750.000 high-level changes in addition to the ini-
tial version. Considering that a graph structure change
translates into several key-value pair changes (e.g. a
vertex delete cascades into the deletion of all connected
edges, which cascades into adjacency list changes in
the vertices at the other end), the number of atomic
changes is even higher. Each of these atomic changes
must be tracked in order to allow for per-element his-
tory queries. If we assume that each high-level graph
change on average entails 3 changes in the underlying
key–value store, this results in a store that has more
than five times the number of elements compared to the
initial graph. As Figure 4 shows, this increase in data
volume does not entail an equivalent increase query
response times, which demonstrates the scalability of
our approach with a high number of revisions [R2].

6 FUTURE WORK

The existing versioning capabilities are based on the
underlying assumption that the history of each element
is immutable, i.e. the past does not change. This prin-
ciple will considerably ease the distribution of the ver-
sioned graph data among multiple machines, as newly
incoming commits can only alter the database contents
in the head revision. These commits are furthermore
restricted to operate in an append-only fashion. This
allows for highly effective caching and data replication
without risking to ever encounter stale data. We plan
on implementing such capabilities in ChronoGraph in
the future.

Another feature which we intend to support in up-
coming releases is the TinkerPop GraphComputer in-
terface. It is a generalized interface for computation

on distributed graphs, geared towards online analytics
processing (OLAP) by utilizing map–reduce patterns
and message passing. Thanks to the abstraction layer
provided by Gremlin, this will also allow our users
to run queries in a variety of languages on our graph,
including SPARQL 12 (Barbieri et al., 2010).

Finally, we are also applying ChronoGraph in an
industrial context in the IT Landscape Documentation
tool Txture13. In this collaboration, we have success-
fully connected high-level modeling techniques with
our versioned graph database. Txture assists data cen-
ters in the management of their IT assets, and in par-
ticular their interdependencies. At its core, Txture is a
repository for these asset models, and ChronoGraph
acts as the database of this repository, providing the
required query evaluation, persistence and versioning
capabilities. Txture is currently in use by several indus-
trial customers, including the data center Allgemeines
Rechenzentrum (ARZ) and a globally operating semi-
conductor manufacturer. We will publish a case study
on the role of ChronoGraph within Txture in the near
future.

7 SUMMARY

In this paper, we presented our concepts for support-
ing transparent system time versioning in TinkerPop
OLTP graphs. We provided an overview over the core
concepts, the persistence format and the underlying
versioning engine of our open source proof-of-concept
implementation called ChronoGraph. We presented
our vendor-specific extensions to the TinkerPop API
that grant access to the versioning capabilities and
demonstrated that this design aligns very well with the
standard TinkerPop API. In the related work section,
we also presented a comparison to existing efforts and
technologies and outlined the underlying principles of
ChronoGraph as a novel approach to the graph ver-
sioning problem. This discussion and the following
evaluation section show that ChronoGraph improves
on the state-of-the-art as a new member of the Tinker-
Pop OLTP family by introducing new versioning and
querying capabilities, strict adherence to the ACID
principles, as well as providing snapshot-level transac-
tion isolation, without severely compromising perfor-
mance in comparison to other popular graph databases.

Overall, we made two key contributions in this
paper. The first contribution is the introduction of
our novel versioning concepts into the world of graph
databases, which additionally allow for snapshot-level

12https://www.w3.org/TR/sparql11-query/
13www.txture.io

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

96



transaction isolation and conformance to all ACID
properties. The second contribution is the Chrono-
Graph implementation itself, which is a full-featured
and thoroughly tested TinkerPop 3.x implementation
that is freely available under an open source license.
Our experiments have shown the competitive perfor-
mance of this implementation.

REFERENCES

Barbieri, D. F., Braga, D., Ceri, S., Valle, E. D., and Gross-
niklaus, M. (2010). C-SPARQL: a continuous query
language for RDF data streams. Int. J. Semantic Com-
puting, 4(1):3–25.

Becker, B., Gschwind, S., Ohler, T., Seeger, B., and Wid-
mayer, P. (1996). An asymptotically optimal multiver-
sion b-tree. The VLDB Journal, 5(4):264–275.

Castelltort, A. and Laurent, A. (2013). Representing history
in graph-oriented NoSQL databases: A versioning sys-
tem. In Eighth International Conference on Digital
Information Management (ICDIM 2013), Islamabad,
Pakistan, September 10-12, 2013, pages 228–234.

Ciglan, M., Averbuch, A., and Hluchy, L. (2012). Bench-
marking traversal operations over graph databases. In
Data Engineering Workshops (ICDEW), 2012 IEEE
28th International Conference on, pages 186–189.
IEEE.

Easton, M. C. (1986). Key-sequence data sets on indelible
storage. IBM Journal of Research and Development,
30(3):230–241.

Haeusler, M. (2016). Scalable versioning for key-value
stores. In DATA 2016 - Proceedings of 5th Interna-
tional Conference on Data Management Technologies
and Applications, Lisbon, Portugal, 24-26 July, 2016.,
pages 79–86.

Haeusler, M. and Breu, R. (2017). Sustainable management
of versioned data. In Proceedings of the 24th PhD
Mini-Symposium. Budapest University of Technology
and Economics.

Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prab-
hakaran, V., Chen, W., and Chen, E. (2014). Chronos:
a graph engine for temporal graph analysis. In Proceed-
ings of the Ninth European Conference on Computer
Systems, page 1. ACM.

Hart, M. and Jesse, S. (2004). Oracle Database 10G
High Availability with RAC, Flashback & Data Guard.
McGraw-Hill, Inc., New York, NY, USA, 1 edition.

ISO (2011). SQL Standard 2011 (ISO/IEC 9075:2011).
Jensen, C. S., Dyreson, C. E., Böhlen, M., Clifford, J.,

Elmasri, R., Gadia, S. K., et al. (1998). Tempo-
ral Databases: Research and Practice, chapter The
consensus glossary of temporal database concepts —
February 1998 version, pages 367–405. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Lomet, D., Barga, R., Mokbel, M., and Shegalov, G. (2006).
Transaction time support inside a database engine. In
Proceedings of the 22nd ICDE, pages 35–35.

Lomet, D., Hong, M., Nehme, R., and Zhang, R. (2008).
Transaction time indexing with version compression.
Proceedings of the VLDB Endowment, 1(1):870–881.

Lomet, D. and Salzberg, B. (1989). Access Methods for
Multiversion Data. SIGMOD Rec., 18(2):315–324.

McGregor, A. (2014). Graph stream algorithms: a survey.
SIGMOD Record, 43(1):9–20.

Nascimento, M., Dunham, M., and Elmasri, R. (1996). M-
IVTT: An index for bitemporal databases. In Wagner,
R. and Thoma, H., editors, Database and Expert Sys-
tems Applications, volume 1134 of Lecture Notes in
Computer Science, pages 779–790. Springer Berlin
Heidelberg.

Patiño Martı́nez, M., Sancho, D., Jiménez Peris, R.,
Brondino, I., Vianello, V., and Dhamane, R. (2016).
Snapshot isolation for neo4j. In Advances in Database
Technology (EDBT). OpenProceedings. org.

Pigné, Y., Dutot, A., Guinand, F., and Olivier, D. (2008).
GraphStream: A tool for bridging the gap between
Complex Systems and Dynamic Graphs. In Emer-
gent Properties in Natural and Artificial Complex Sys-
tems. Satellite Conference within the 4th European
Conference on Complex Systems (ECCS’2007), vol-
ume abs/0803.2.

Rodriguez, M. A. and Neubauer, P. (2011). The graph traver-
sal pattern. In Graph Data Management: Techniques
and Applications., pages 29–46.

Salzberg, B. (1988). File Structures: An Analytic Approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Saracco, C., Nicola, M., and Gandhi, L. (2012). A matter
of time: Temporal data management in DB2 10. IBM
developerWorks.

Semertzidis, K. and Pitoura, E. (2016a). Durable graph
pattern queries on historical graphs. In Proc. IEEE
ICDE.

Semertzidis, K. and Pitoura, E. (2016b). Time Traveling in
Graphs using a Graph Database. In Proceedings of the
Workshops of the (EDBT/ICDT).

Snodgrass, R. T. (1986). Temporal databases. IEEE Com-
puter, 19:35–42.

Taentzer, G., Ermel, C., Langer, P., and Wimmer, M. (2014).
A fundamental approach to model versioning based on
graph modifications: from theory to implementation.
Software and System Modeling, 13(1):239–272.

Tanase, I., Xia, Y., et al. (2014). A highly efficient runtime
and graph library for large scale graph analytics. In
Proceedings of Workshop on GRAph Data Manage-
ment Experiences and Systems, GRADES’14, pages
10:1–10:6, New York, NY, USA. ACM.

Trojer, T., Farwick, M., Häusler, M., and Breu, R. (2015).
Living Models of IT Architectures: Challenges and
Solutions. Software, Services and Systems, 8950:458–
474.

ChronoGraph - Versioning Support for OLTP TinkerPop Graphs

97


