
WebRTC Testing: State of the Art

Boni García, Micael Gallego, Francisco Gortázar and Eduardo Jiménez
Universidad Rey Juan Carlos, Calle Tulipán S/N, 28933 Móstoles, Spain

Keywords: WebRTC, Software Testing, Software Quality.

Abstract: WebRTC is the umbrella term for a number of emerging technologies that extends the web browsing model
to exchange real-time media (Voice over IP, VoIP) with other browsers. The mechanisms to provide quality
assurance for WebRTC are key to release this kind of applications to production environments.
Nevertheless, testing WebRTC based application, consistently automated fashion is a challenging problem.
The aim of this piece of research is to provide a comprehensive summary of the current trends in the domain
of WebRTC testing. For the sake of completeness, we have carried out this survey by aggregating the results
from three different sources of information: i) Scientific and academia research papers; ii) WebRTC testing
tools (both commercial and open source); iii) "Grey literature”, that is, materials produced by organizations
outside of the traditional commercial or academic publishing and distribution channels.

1 INTRODUCTION

Multimedia applications and services are becoming
the main force of the Internet. A recent forecast by
Cisco (Index, 2016) shows that IP video traffic will
be 82 percent of all consumer Internet traffic by
2020.

Among the diversity and multiplicity of
multimedia technologies, in this paper we focus on
Web Real-Time Communications (WebRTC),
whichis a set of emerging technologies and APIs
having the ambition of bringing high-quality RTC to
the Web (Loreto and Romano, 2014). WebRTC is a
joint standardization effort between the World Wide
Web Consortium1 (W3C) and the Internet
Engineering Task Force2 (IETF). On the one hand,
W3C is defining the JavaScript APIs in so-called
WebRTC 1.0 and the standard HTML5 tags to
enable peer-to-peer (P2P) connections between web-
enabled devices. The WebRTC APIs are
getUserMedia: which gain access to camera,
microphone, or screen device; RTCPeerConnection:
encoding and decoding media, sends it over the
network, NAT (Network Address Translation)
traversal; and RTCDataChannel: send arbitrary data
directly between browser with low latency. On the

1 http://www.w3.org/TR/webrtc/
2 http://tools.ietf.org/wg/rtcweb/

other hand, IETF is defining the underlying
communication protocols, such as SRTP (Secure
Real-time Transport Protocol), SDP (Session
Description Protocol), or ICE (Interactive
Connectivity Establishment), for the setup and
management of a reliable communication channel
between browsers.

WebRTC has come a long way since its
inception in May 2011. Among its highlights, we
can point out the interoperability between Chrome
and Firefox browsers in 2013, and the support for
Android mobile in 2014 (Kaul, 2015). Moreover,
market momentum is expected to continue growing.
A recent analysts report predicts that with Apple and
Microsoft supporting WebRTC in their browsers,
there might be 7 billion devices compliant WebRTC
by 2020 (Sal and Rebbeck, 2014).

Since the beginning of 2014, a new initiative has
seen the light in the W3C: the ORTC (Object Real-
time Communications) Community Group, which
has initially been identified as a clear opponent to
WebRTC. Nowadays, ORTC and WebRTC are
converging in the so-called “Next Version” of
WebRTC (sometimes called WebRTC 1.1 or
WebRTC-NV).

Due to this strong growth rate of WebRTC, it is
imperative for software engineers and testers to have
a strategy in place in order to assess WebRTC
applications efficiently. Nevertheless, testing
WebRTC based application in a consistently

García, B., Gallego, M., Gortázar, F. and Jiménez, E.
WebRTC Testing: State of the Art.
DOI: 10.5220/0006442003630371
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 363-371
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

363

automated fashion is a challenging problem. When
developers use WebRTC for integrating audio and
video communications into their web applications,
they usually consume a complex media pipeline
transporting multimedia information, and therefore
this kind of applications cannot be tested using the
usual simple comparison-based oracles. For
example, validating the functional correctness of a
WebRTC application requires the ability of
evaluating aspects such as media connectivity (e.g.
whether the media bits are being sent end-to-end) or
media continuity (e.g. whether the media is
decodable).

This paper presents a survey of the state of the
art in the domain of testing for WebRTC-based
applications. The aim of this piece of research is to
provide a comprehensive summary of the current
trends in this domain for researchers, engineers, and
practitioners. For the shake of completeness, we
have carried out this survey by aggregating the
results from three different sources of information.
First, we study the most remarkable scientific papers
and articles in peer-reviewed journals, magazine,
and international conferences. Second, we analyze
the features of public available WebRTC testing
tools, both commercial and open source. Third, we
summarize several contributions available in the so-
called “grey literature”, that is, materials produced
by organizations outside of the traditional
commercial or academic publishing and distribution
channels. We find examples of grey literature on
technical reports, white papers, newsletters, blogs,
among others.

The remainder of this paper is structured as
follows. Section 2 provides a brief overview of the
background of this work (i.e. software testing and
WebRTC). Section 3 presents a collection of
scientific and academic contributions on WebRTC
testing. Section 4 summarizes the main features of
several tools on this domain. Section 5 details
several publications of the grey literature. Finally,
section 6 concludes the paper summarizing the most
remarkable findings as conclusions of this survey.

2 BACKGROUND

Verification and Validation (V&V) is the set of
techniques that assess software products and
services. Software testing is the most commonly
performed activity within V&V. Given a piece of
code, software testing consists of observing a sample
of executions (test cases), and giving a verdict over
them (Bertolino, 2007).

Testing of web applications shares the same
objectives of traditional application testing, i.e. to
ensure quality and finding defects in the required
functionality and services. Due to its heterogeneity,
web applications present important challenges for
their quality assurance and testing (Li et al., 2014).
In order to perform a complete assessment
procedure, it is required to evaluate web applications
from functional and non-functional perspectives.
According to Di Lucca and Fasolino, the most
important non-functional requirements for web
applications are performance, load, stress,
compatibility, accessibility, usability, and security
(Di Lucca and Fasolino, 2006).

WebRTC applications and services enable
human-to-human communication. The real-time
nature of WebRTC traffic makes QoS (Quality of
Service) parameters such as network latency,
network jitter or packet loss to affect significantly,
and in non-trivial ways, the end-user's QoE (Quality
of Experience). The most widely accepted way to
classify QoE metrics is based on subjective or
objective methods (Jain and Scheirer, 2014).
Subjective methods are conducted to obtain
information on the quality of multimedia services
using opinion scores, while objective methods are
used to estimate the network performance using
models that approximate the results of subjective
quality evaluation. Subjective QoE measurement is
time consuming, and is not particularly applicable in
a production environment. Instead of directly
collecting quality information, objective methods
can be used, namely:

 Traditional point-based metrics. For example,
peak signal-to-noise ratio (PSNR), which is
the proportion between the maximum signal
power and the corruption noise power
(Huynh-Thu and Ghanbari, 2008).

 Natural visual characteristics oriented metrics.
For example, structural similarity (SSIM),
which is a method for predicting the perceived
quality of images and videos based on its
similarity (Wang et al., 2004).

 Perceptual oriented metrics. In these metrics,
is predicted using Mean Opinion Score (MOS)
ratings. The typical MOS scale has five-
points: 1 = bad, 2 = poor, 3 = fair, 4 = good
and 5 = excellent. For example, perceptual
evaluation of speech quality (PESQ) for audio,
and perceptual evaluation of video quality
(PEVQ) for video (Viswanathan and
Viswanathan, 2005).

ICSOFT 2017 - 12th International Conference on Software Technologies

364

3 SCIENTIFIC AND ACADEMIC
RESEARCH

This section provides a summary of the main
contributions found concerning testing of WebRTC
applications in peer reviewed contributions in
journals, magazines, and international conferences.
In order to carry out this study, the following search
engines for scientific and academic have been used:

 Google Scholar3 is a free academic search
engine that indexes academic information
from various online web resources.

 CiteSeerx4 is a digital library and an online
academic journal that offer information within
the field of computer science.

 Microsoft Academic Research5 is yet another
top search engine for academic resources.

 ScienceDirect6 is a full-text scientific database
offering journal articles and books.

Table 1 summarizes the selection of papers.
(Sandholm et al., 2013) presents a solution for
tunneling WebRTC traffic using JavaScript Session
Establishment Protocol (JSEP). Then, the authors
carried out some experimentation in order to show
the evolution of several QoS parameters such as
round-trip-time (RTT) or jitter in different network
configurations (WiFi and Ethernet) and number of
users.

 (Cinar and Melvin, 2014) uses a black-box
testing technique to evaluate, via PESQ, the voice
quality of WebRTC sessions under varying network
delay and jitter. In this paper, network emulators are
employed to implement the delay and jitter
variations. The results highlight the dangers of
black-box testing, whereby test-bed issues can result
in very misleading results.

(Vucic and Skorin-Kapov, 2015) study QoE for
mobile video conferencing focusing on the impact of
different smartphone configurations (CPU, display
size, and resolution). They conduct subjective
studies involving interactive three-party audiovisual
conversations based on WebRTC technology in a
natural environment over a Wi-Fi network with
symmetric and asymmetric bandwidths. The finding
of this work shows that different device factors
impact clearly on user QoE.

3 http://scholar.google.com/
4 http://citeseerx.ist.psu.edu/
5 http://academic.research.microsoft.com/
6 http://www.sciencedirect.com/

(Amirante et al., 2016) present Jattack, a general-
purpose WebRTC stressing tool capable to simulate
the activities of multiple WebRTC sessions. This
tool is based on the Janus media server, which is
able to create a big number of WebRTC
PeerConnection to stress the SUT. Jattack monitors
de physical parameter of the SUT (CPU. Memory)
and gather the number of negative acknowledgments
(NACKs) to estimate the QoE of the system.

(Taheri et al., 2015) introduces WebRTCBench,
an open source tool for performance assessment of
WebRTC implementations which allows testing
applications making use of video and audio through
WebRTC standards and collects performance
indicators. It consists of a Node.js application with a
HTML5 client, supporting Chrome and Firefox
browsers.

(Spoiala et al., 2016) compares the performance
of the WebRTC media server Kurento hosted in two
different platforms: virtual machines and Docker
containers. The authors of this work concluded that
the Docker performance is better than Kernel-based
Virtual Machine (KVM), especially for latency,
which is critical metric for real-time applications.

(García et al., 2016a) presents the Kurento
Testing Framework (KTF), a high-level framework
aimed to carry out different kind of testing activities
for WebRTC services. KTF provides several
mechanisms for assessing the functional parameters
(media communication events, detection of color),
performance (monitor system latency measurement
based on the color comparison means sent and
received), and QoE (evaluation audio quality
through PESQ). KTF uses Selenium
WebDriver/Grid for automatic interaction with
WebRTC applications. This work is continued in
(García et al., 2016a), in which the framework is
extended QoE indicators for video, concretely
structural similarity (SSIM) and peak signal-to-noise
ratio (PSNR). Moreover, the framework proposed in
this work is able to calculate the end-to-end latency
in a WebRTC connection using an Optical Character
Recognition (OCR) applied to the media sent by a
browser and received by other one. Finally, the
framework proposed is completed by adding the
capability of creating fake browsers in order to
generate a huge load of WebRTC traffic in the SUT
(García et al., 2017). Moreover, KTF supports the
use of Docker7 containers in order to configure
complex networking scenarios where NAT traversal,
firewalls or different traffic loss, latency, and
bandwidths are enforced.

7 https://www.docker.com/

WebRTC Testing: State of the Art

365

Table 1: Selection of WebRTC testing research papers.

Title Keywords Reference
On-Demand WebRTC Tunneling in Restricted Networks Black-box testing, QoS,

networking
(Sandholm et al., 2013)

WebRTC quality assessment: Dangers of black-box testing Black-box testing, QoS,
objective QoE

(Cinar and Melvin,
2014)

The impact of mobile device factors on QoE for multi-
party video conferencing via WebRTC

Subjective QoE (Vucic and Skorin-
Kapov, 2015)

WebRTCbench: a benchmark for performance assessment
of WebRTC implementations

Performance testing, framework,
open source

(Taheri et al., 2015)

Jattack: a WebRTC load testing tool Load testing, QoS, framework (Amirante et al., 2016)
Performance comparison of a WebRTC server on Docker
versus virtual machine

Load testing, QoS (Spoiala et al., 2016)

Testing Framework for WebRTC Services Black-box testing, QoE, QoS,
framework, open source

(García et al., 2016a)

Analysis of Video Quality and End-to-End Latency in
WebRTC

Load testing, QoS, objective
QoE, framework, open source

(García et al., 2016b)

WebRTC Testing: Challenges and Practical Solutions Load testing, QoS, objective
QoE, framework, networking

(García et al., 2017)

4 WebRTC TESTING TOOLS

Traditionally, tools such as Apache JMeter8 have
been used to analyze and measure the performance
of a variety of services, with a focus on Web
applications (Halili, 2008). Nevertheless, these kinds
of tools are not valid to test WebRTC applications
because it is required to use browsers implementing
the WebRTC stack.

In order to perform tests for WebRTC
applications, it is a must to be able to automate test
execution using real web browsers (Chrome,
Firefox, and so on). The well-known open source
testing framework Selenium9 is capable of drive a
browser automatically using different programming
languages (Java, C#, Python, Ruby, PHP, Perl, or
JavaScript). To that aim, the following Selenium
projects are very useful (Avasarala, 2014):

 Selenium Remote Control (RC): This piece of
software injected a JavaScript library (called
Selenium Core) in the SUT. This library was
controlled with an intermediate component
called Selenium RC Server which receives
requests from the test code (see Figure 1-i).
Selenium RC had important security problems
due to Same-Origin Policy. For that reason, it
was deprecated on 2016 in favor of Selenium
WebDriver.

8 http://jmeter.apache.org/
9 http://www.seleniumhq.org/

 Selenium WebDriver makes direct calls to the
browser using each browser’s native support
for automation. The language bindings
provided by Selenium WebDriver (labeled as
Test in Figure 1-ii) communicates with and a
browser-specific binary which acts as a bridge
between real browser (Liang and Collins,
2016). For instance, this binary is called
chromedriver10 for Chrome and geckodriver11
for Firefox. The communication between the
Test and the driver is done with JSON
messages over HTTP using the so-called
JSON Wire Protocol. This mechanism,
originally proposed by the WebDriver team is
standardized in the W3C WebDriver12 API.

 Selenium Grid: It allows distributing browser
execution on remote machines. There are a
number of Nodes, each running on different
operating systems and with different browsers.
The Hub server keeps a track of the nodes and
proxies requests to them (Figure 1-iii).

The inconvenient of Selenium WebDriver is the
need of browser instances installed in the local
machine running the test. A common workaround to
solve this problem in operative systems without
graphical user interface is using Xvfb13 (X virtual

10 https://sites.google.com/a/chromium.org/chromedriver/
11 https://github.com/mozilla/geckodriver
12 https://www.w3.org/TR/webdriver/
13 https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

ICSOFT 2017 - 12th International Conference on Software Technologies

366

framebuffer) as display server implementing the
X11 server protocol or dockerized browsers (i.e.
browser running inside a Docker container).

Figure 1: i) Selenium RC; ii) Selenium WebDriver; iii)
Selenium Grid.

Moreover, nowadays there are several cloud
testing providers which allows to run Selenium Grid
tests in different browsers. These providers are:

 Saucelabs14 is a commercial PaaS (Platform as
a Service) cloud solution to support remote
testing based on supporting many
combinations of platform (Linux, Windows,
Mac OS X, Android, iOS), browser (Chrome,
Firefox, Opera, etc.), and browser versions
(including beta and development releases).

 BrowserStack15 is another commercial PaaS
which provides instant access to mobile and
desktop browsers for live and automated
testing across different browser (Chrome,
Firefox, Edge, Opera, etc.), operating systems
(Windows and Mac OS X) and mobile real
devices (iOS, Android, Windows Phone).

Another framework aimed to create automated
end-to-end tests for web applications is

14 https://saucelabs.com/
15 https://www.browserstack.com/

Nightwatch.js16. It has been written in Node.js and
use W3C WebDriver API to consume browsers. It
can be integrated with cloud services support such as
SauceLabs and BrowserStack. At the time of this
writing the Nightwatch.js is developing its own
cloud-based platform called Nightcloud17.

Finally, we find a commercial tool specifically
designed to carry out testing of WebRTC
applications called TestRTC18. It can be seen as an
integrated platform aimed to test, monitor and
analyze WebRTC-based communications. The main
features of TestRTC are:

 Use of real browsers. This is one the major
strategic decisions of TestRTC: support only
real web browsers as agents to assess the SUT
instead of building something on top of
WebRTC directly. At the time of this writing,
TestRTC supports Chrome and Firefox
browsers (stable, previous stable, beta,
unstable). Thanks to its own global cloud
infrastructure, TestRTC allows to choose
these browsers from different locations (east
US, west US, Europe, and Asia).

 JavaScript API. Developers using TestRTC
can write test scripts using an API built on the
top of Nightwatch.js. These tests can be
directly uploaded to the web dashboard.

 Network awareness. TestRTC allows to
configure the underlying network with custom
setups, including different firewall and NAT
configurations, different bitrates (static and
dynamic ones), and different packet loss. To
simplify this task, it provides preconfigured
scenarios of the typical access networks, such
as 3G, 4G, DSL, or WiFi among others.

 Signaling protocol agnostic. TestRTC can test
standards-based signaling protocols (such as
SIP over WebSocket, XMPP over WebSocket,
or BOSH) and proprietary (based on either
WebSocket or HTTP(S) and REST).

 WebRTC tests at scale. TestRTC allows to run
different media sessions at the same time. In
addition, it allows to leverage the number of
concurrent users per session

 TestRTC allows to monitor Key Performance
Indicators (KPIs) such as channel types,
bitrate, timing, packet loss, and jitter.

 WebRTC-internals analyzer. Chrome allows
to download the PeerConnection updates and

16 http://nightwatchjs.org/
17 https://nightcloud.io/
18 http://testrtc.com/

WebRTC Testing: State of the Art

367

Table 2: Selection of WebRTC testing grey literature.

Title Keywords Reference
WebRTC Audio Quality Testing Black-box testing, objective QoE (Höglund, 2013a)
Automated Video Quality Measurements Black-box testing, objective QoE (Höglund, 2013b)
Chrome-Firefox WebRTC Interop Test Interoperability testing (Höglund, 2014)
Audio Testing - Automatic Gain Control Black-box testing (Höglund, 2015)
The WebRTC Troubleshooter: test.webrtc.org Black-box testing, QoS (Pascual, 2015)
Overcoming the Challenges in Testing WebRTC Services Testing methodology (Levent-levi, 2015)
Quality Assurance for WebRTC Services Testing methodology (Levent-levi, 2016)

 stats data (as defined in the W3C WebRTC’s
statistic API19) in JSON notation. This data
can be uploaded with drag-and-drop to the
TestRTC web client and provided a detailed
report about the data.

 Live preview of the remote browser tests by
means of VNC (Virtual Network Computing)
connections.

 Use customizable user media for WebRTC
sessions, namely VGA, HD, Full-HD, only-
audio, among others.

 Reporting. The TestRTC dashboard shows
reports by collecting and calculating KPIs
related to the voice and video streams.

 Test history. TestRTC stores the full test
execution history, allowing developers to keep
tracking the evolution of the SUT in time.

 Layer of synchronization across browsers, so a
user can indicate in the script tasks that wait
for events to occur on other browsers that are
running in parallel.

5 WebRTC TESTING GREY
LITERATURE

Grey literature is an important source of information
for complete review syntheses. There are many
kinds of grey literature, such as dissertations,
technical reports, white papers, government
websites, newsletters, blogs and other social
networking sites are examples of grey literature.

In order to narrow the problem of seeking the
grey literature of WebRTC testing, in this work we
are going to limit the spectrum to a set of important
websites and initiatives focused on WebRTC and/or
testing, namely:

 Google Testing Blog20. Official Google blog
for testing activities.

19 https://www.w3.org/TR/webrtc-stats/
20 https://testing.googleblog.com/

 Google Test Automation Conference21
(GTAC). Annual test automation conference
hosted by Google.

 WebRTC Conference22. Global summit aimed
to bring together everyone in the WebRTC
ecosystem.

 BlogGeek.me23. Blog of Tsahi Levent-Levi,
independent analyst and consultant for
WebRTC and a co-founder at TestRTC.

 WebRtcHacks.com24. One of most remarkable
blogs in the WebRTC arena, maintained by
Chad Hart, Victor Pascual, Tsahi Levent-Levi,
and Philipp Hancke.

As a result, several contributions were selected
and summarized in Table 2.

(Höglund, 2013a) describes a test aimed to
analyze the audio quality of a WebRTC one-to-one
video call. The audio is recorded in the receiver side
directly recording what the audio system sends to
default audio out (like speakers or headphones). In
order to compare the sender audio to the audio
recorded in the receiver, the algorithm PESQ is
used. As a result, a MOS score is assessed (it should
be at least 4 out of 5).

(Höglund, 2013b) illustrates a test aimed to
measure the video degradation in a WebRTC
session. This test was run continuously with
regression monitoring in the Chromium testbed. In
order to synchronize the media sent and received by
a pair of browsers, each frame was identified single
a single barcode. Finally, two different algorithms
were used to evaluate the video quality: PSNR and
SSIM.

(Höglund, 2014) describes an interoperability
automated test between Chrome and Firefox. To
carry out the test, a Chromium browser is launched
as part of every Google Chromium browser test.

21 https://developers.google.com/google-test-automation-

conference/
22 https://webrtc-conference.com/
23 https://bloggeek.me/
24 https://webrtchacks.com/

ICSOFT 2017 - 12th International Conference on Software Technologies

368

Then, a Python library called mozrunner is used to
launch Firefox. In order to feed the WebRTC media
session, the test use the convenient Chrome --use-
fake-device-for-media-stream flag that
feeds the user media which is a spinning green ball
plus a timestamp. In order to establish the WebRTC
connection between peer, first it is needed to
exchange SDP signaling messages. Once the media
session is established, in order to verify that the
audio is playing, the WebRTC stats are read to
measure the audio track energy level. To assess
video, the test verifies the CSS opacity property of
the HTML5 video tag. Moreover, a built-in
JavaScript function is used to control the color
change ratio of the received media.

Automatic Gain Control (AGC) is a mechanism
provided out of the box by WebRTC aimed to adjust
the audio of a WebRTC stream in order to make it
louder and clearer for the receiver side. (Höglund,
2015) describes an automated end-to-end test to
verify AGC. This test uses the Chrome flag --use-
file-for-fake-audio-capture to inject a
custom audio file in the WebRTC stream. The audio
level difference is calculated as the subtraction of
the audio level in the receiver less the audio level in
the sender side. In order to avoid biases due to
packet loss and clock drifts (i.e. audio differences
due to sample clocks on the sending and receiving
sound cards are not perfectly synced) the reference
audio file had several small silences among the real
audio. The audio was trimmed using these silences
and the resulting parts are computed.

(Pascual, 2015) describes the WebRTC
Troubleshooter25, which is a website that provides a
set of tests that can be easily run by a user to help
diagnose WebRTC related issues. These tests are
focused on verify: i) Microphone: audio capture; ii)
Camera: check resolution; iii) Network: UDP/TCP
and IPv6 connectivity; iv) Connectivity: relay
(verifies connections can be established between
peers through a TURN server), reflexive (verifies
connections can be established between peers
through NAT), host (verifies connections can be
established between peers with the same IP address);
v) Throughput: throughput and video bandwidth

(Levent-levi, 2015) illustrates 5 challenges in
testing WebRTC services: i) browser version
changes: different versions of browsers (stable, beta,
dev, canary) should be consistently testes to avoid
regressions and service breaks; ii) NAT traversal:
WebRTC is not always P2P since between 5-50% of

25 https://test.webrtc.org/

WebRTC sessions are relayed via TURN servers,
and this should be properly tested by providing
browsers in remote locations; iii) test at scale should
be taking into account (in other words, the question
“is my SUT able to scale to thousands of user?”
should be properly addressed); iv) service uptime:
WebRTC involves heterogenous infrastructure that
should be constantly tested in order to verify that our
SUT is working every time; v) orchestration: test
scripts can be designed to be simple and should be
executed in parallel to simulate the real conditions of
the system.

(Levent-levi, 2015) provides 7 suggestions to
create an WebRTC testbed: i) use real browsers,
which can be easily driven by Selenium WebDriver;
ii) handle the media feed using the Chrome support
for faking media device and FFMPEG26 to create
custom video files in the required format by Chrome
(Y4M); iii) use heterogenous setup: with network
impairments (bitrate limitation, packet loss, jitter
and latency), firewall configuration, and multiple
browser locations; iv) handle synchronization of the
multiple possible use cases (caller/callee, meeting
point, conference, etc.); v) visualize the result: create
meaningful reports as a result of the test execution;
vi) establish the expectation: define how the test
outcome should be in a precise way; vii) collect
everything: chrome internal dump, browser console
logs, media recordings, machine performance.

6 CONCLUSIONS

WebRTC is a set of technologies aimed to provide
RTC media capabilities in an easy way to web
applications. Despite the fact that it is still in its
infancy, WebRTC services are more and more
demanded by practitioners. In order to release these
kinds of services to production, software engineers
and testers demand testing mechanisms to assess the
functional correctness of the SUT, but also the
stability, scalability, compatibility, and security of
these services. Moreover, WebRTC services involve
complex, distributed and heterogeneous network
topologies where failures or inefficiencies on any of
the comprising components may prevent the service
to operate offering a successful user experience.

This paper presents a comprehensive state of the
art on WebRTC testing. We have made this survey
by aggregating different sources of information: i)
academia research papers; ii) WebRTC testing tools;

26 https://ffmpeg.org/

WebRTC Testing: State of the Art

369

iii) other sources (the so-called “grey literature”).
Our findings show that there is an increasing interest
in the evaluation of WebRTC services, both in the
academic and research arena (integrating QoS and
QoE in WebRTC testbeds) and the commercial
domain (for example with complete WebRTC
testing platforms such as TestRTC).

ACKNOWLEDGEMENTS

This work has been supported by the European
Commission under project ElasTest (H2020-ICT-10-
2016, GA-731535); by the Regional Government of
Madrid (CM) under project Cloud4BigData
(S2013/ICE-2894) cofunded by FSE & FEDER; and
Spanish Government under project LERNIM (RTC-
2016-4674-7) cofunded by the Ministry of Economy
and Competitiveness, FEDER & AEI.

We would like to thank to Tsahi Levent-levi,
author of BlogGeek.me and cofounder of TestRTC,
for his valuable comments on this piece of research.

REFERENCES

Amirante, A., Castaldi, T., Miniero, L. and Romanoy, S.
Jattack: a WebRTC load testing tool. IEEE, 2016.

Avasarala, S., 2014. Selenium WebDriver practical guide.
Packt Publishing Ltd.

Bertolino, A., 2007, May. Software testing research:
Achievements, challenges, dreams. In 2007 Future of
Software Engineering (pp. 85-103). IEEE Computer
Society.

Cinar, Y. and Melvin, H. WebRTC quality assessment:
Dangers of black-box testing. Digital Technologies,
2014 10th Int. Conference on, 2014. IEEE, 32-35.

Di Lucca, G.A. and Fasolino, A.R., 2006. Testing Web-
based applications: The state of the art and future
trends. Information and Software Technology, 48(12),
pp.1172-1186.

García, B., López-Fernández, L., Gallego, M., and
Gortázar, F., 2016, Testing Framework for WebRTC
Services. In 9th EAI International Conference on
Mobile Multimedia Communications (pp. 40-47).

Garcia, B., López-Fernández, L., Gortázar, F., and
Gallego, M., 2016, Analysis of Video Quality and
End-to-End Latency in WebRTC. In Globecom
Workshops (GC Wkshps), 2016 IEEE (pp. 1-6). IEEE.

Garcia, B., Gortázar, F., López, L., Gallego, M., and París,
M., 2017, WebRTC Testing: Challenges and Practical
Solutions. IEEE Communication Standards. IEEE.

Halili, E.H., 2008. Apache JMeter: A practical beginner's
guide to automated testing and performance
measurement for your websites. Packt Publishing Ltd.

Höglund, P., 2013. WebRTC Audio Quality Testing.
Available at: https://testing.googleblog.com/2013/11/

webrtc-audio-quality-testing.html. Accessed on 23
March 2017

Höglund, P., 2013. Automated Video Quality
Measurements. Available at: https://www.youtube.
com/watch?v=IbLNm3LsMaw. Accessed on 23 March
2017

Höglund, P., 2014. Chrome-Firefox WebRTC Interop:
https://testing.googleblog.com/2014/08/chrome-
firefox-webrtc-interop-test-pt-1.html. Accessed on 23
March 2017.

Huynh-Thu, Q., and Ghanbari, M., 2008. Scope of validity
of PSNR in image/video quality assessment.
Electronics letters, 44(13), 800-801.

Index, C.V.N., 2016. Forecast and methodology, 2015-
2020 white paper. Technical Report, Cisco, Tech. Rep.

Jain, L.P., Scheirer, W.J. and Boult, T.E., 2004. Quality of
experience. In IEEE multimedia.

Kaul, N., 2015. WebRTC and Its Impact on Testing.
Available at: http://blog.smartbear.com/user-
experience/webrtc-and-its-impact-on-testing/.
Accessed on 23 March 2017

Levent-levi, T., 2015. Overcoming the Challenges in
Testing WebRTC Services. Available at:
https://www.slideshare.net/tsahil/overcoming-the-
challenges-in-testing-webrtc-services. Accessed on 23
March 2017

Loreto, S. and Romano, S. P., 2014. Real-Time
Communication with WebRTC: Peer-to-Peer in the
Browser. "O'Reilly Media, Inc.".

Li, Y.F., Das, P.K. and Dowe, D.L., 2014. Two decades of
Web application testing—A survey of recent
advances. Information Systems, 43, pp.20-54.

Pascual, V., 2015, The WebRTC Troubleshooter:
test.webrtc.org. Available at: https://webrtchacks.com/
webrtc-troubleshooter/. Accessed on 23 March 2017

Sal, S. and Rebbeck, and T., 2014. Operators need to
engage with WebRTC and the opportunities it
presents. In October 2014 Analysis Mason.

Sandholm, T., Magnusson, B., and Johnsson, B. A., 2013,
On-Demand WebRTC Tunneling in Restricted
Networks. arXiv preprint arXiv:1312.6501.

Spoiala, C. C., Calinciuc, A., Turcu, C. O., & Filote, C.,
2016, Performance comparison of a WebRTC server
on Docker versus virtual machine. In Development
and Application Systems (DAS), 2016 International
Conference on (pp. 295-298). IEEE.

Taheri, S., Beni, L.A., Veidenbaum, A.V., Nicolau, A.,
Cammarota, R., Qiu, J., Lu, Q. and Haghighat, M.R.,
2015, October. WebRTCbench: a benchmark for
performance assessment of webRTC implementations.
In Embedded Systems For Real-time Multimedia, 2015
13th IEEE Symposium on (pp. 1-7). IEEE.

Viswanathan, M., and Viswanathan, M., 2005. Measuring
speech quality for text-to-speech systems:
development and assessment of a modified mean
opinion score (MOS) scale. Computer Speech &
Language, 19(1), 55-83.

Vucic, D., and Skorin-Kapov, L., 2015. The impact of
mobile device factors on QoE for multi-party video
conferencing via WebRTC. In Telecommunications

ICSOFT 2017 - 12th International Conference on Software Technologies

370

(ConTEL), 2015 13th International Conference
on (pp. 1-8). IEEE.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E.
P., 2004. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on
image processing, 13(4), 600-612.

Liang, Y. and Collins A., 2016. Selenium WebDriver.
From Foundations to Framework. Leanpub.

WebRTC Testing: State of the Art

371

