4  CONCLUSION 
Geometric  segment  models  combined  with  a  non-
uniform density function enable a very accurate BSP 
estimation. If anthropometric dimensions defining the 
shapes  of  these  models are determined using three-
dimensional  body  scanning  technology,  the  overall 
parameter  estimation  process  can  be  performed  in 
some  minutes.  The  semi-automated  approach  as 
described  decreases  time  for  data  collection,  whilst 
maintaining body segment accuracy when compared 
to the manual method. 
REFERENCES 
Ackland,  T.,  Henson,  P.,  Bailey,  D.,  1988.  The  uniform 
density  assumption:  Its  effect  upon  the  estimation  of 
body  segment  inertial  parameters.  International 
Journal of Sports Biomechanics, 4, 146-155.  
Baca,  A.,  1996.  Precise  determination  of  anthropometric 
dimensions by means of image processing methods for 
estimating  human  body  segment  parameter  values. 
Journal of Biomechanics, 29(4), 563-567.  
Cheng, C.-K., Chen, H.-H., Chen, C.-S., Lee, C.-L., Chen, 
C.-Y,  2000.  Segment  inertial  properties  of  Chinese 
adults  determined  from  magnetic  resonance  imaging. 
Clinical Biomechanics, 15(8), 559-566.  
Cizgin,  P.,  2013.  Automatisierte Bestimmung 
anthropometrischer Segmentparameter des 
Hominoidmodells von Hatze mittels 3D-
Laserscantechnologie.  Master  thesis,  Medical 
University Vienna, 2013. 
Clarkson,  S.,  Choppin,  S.,  Hart,  J.,  Heller,  B.,  Wheat,  J., 
2012.  Calculating  body  segment  inertia  parameters 
from a single rapid scan using the Microsoft Kinect. In 
Proc 3
rd
 International Conference on 3D Body 
Scanning Technologies,  Lugano,  Switzerland,  16.-17 
October 2012.  
Clauser,  C.  E.,  McConville,  J.  T.,  Young,  J.  W.,  1969. 
Weight, volume and center of mass of segments of the 
human body.  AMRL  Technical.  Report,  Wright-
Patterson Air Force Base, Ohio. 
Crosnier, P., Gautier, M., Gonzáles, A., Venture, G., 2016. 
Optimal  Exciting  Dance  for  Identifying  Inertial 
Parameters  of  an  Anthropomorphic  Structure.  IEEE 
Transactions on Robotics, 32(4), 823-836. 
Dempster, W.T.,  1955. Space requirements  for the seated 
operator.  Wright  Air  Development  Center.  Wright-
Patterson  Air  Force  Base,  Dayton,  OH,  WADC Tech. 
Rep. TR-55-159. 
Díaz-Rodríguez, M., Valera, A., Page, A., Besa, A., Mata, 
V., 2016. Dynamic Parameter Identification of Subject-
Specific  Body  Segment  Parameters  Using  Robotics 
Formalism:  Case  Study  Head  Complex.  ASME. 
Journal of Biomechanical Engineering, 
138(5):051009-051009-8.doi:10.1115/1.4032997.  
Drillis,  R.,  Contini,  R.,  1966.  Body Segment Parameters. 
New  York,  New  York:  Office  of  Vocational 
Rehabilitation, Report No.: No. 1166-03.  
Durkin,  J.  L.,  Dowling,  J.  J.,  Andrews  D.  M.,  2002.  The 
measurement of body segment inertial parameters using 
dual  energy  X-ray  absorptiometry.  Journal of 
Biomechanics, 35(12), 1575-1580. 
Erdmann, W. S., 1997. Geometric and inertial data of the 
trunk in adult  males. Journal of Biomechanics, 30(7), 
679-688. 
Erdmann,  W.  S.,  Kowalczyk,  R.,  2015.  A  personalized 
method  for  estimating  centre  of  mass  location  of  the 
whole  body  based  on  differentiation  of  tissues  of  a 
multi-divided  trunk.  Journal of Biomechanics,  48(1), 
65-72.  
Hanavan,  Jr.,  E.  P.,  1964.  A mathematical model of the 
human body  (No.  AFIT-GA-PHYS-64-3).  Air  Force 
Aerospace  Medical  Research  Lab  Wright-Patterson 
Afb Oh. 
Hatze, H., 1979. A model for the computational 
determination of parameter values of anthropomorphic 
segments. CSIR Techn. Report TWISK 79, Pretoria.  
Hatze, H., 1980. A mathematical model for the 
computational  determination  of  parameter  values  of 
anthropomorphic  segments. Journal of Biomechanics, 
13 (10), 833-843. 
Hatze,  H.,  1983.  Computerized  optimization  of  sports 
motions:  an  overview  of  possibilities,  methods  and 
recent developments. Journal of Sports Science, 1, 3-
12. 
Lu, J.-M., Wang, M.-J. J., 2008. Automated anthropometric 
data collection using 3D whole body scanners, Expert 
Systems with Applications, 35, 407-414. 
Nigg, B. M., Herzog, W. (Eds.), 1999. Biomechanics of the 
muskulo-skeletal system. 2nd Edition. Chichester: John 
Wiley & Sons.  
Peyer,  K.  E.,  Morris,  M.,  Sellers,  W.  I.,  2015.  Subject-
specific body segment parameter estimation using 3D 
photogrammetry  with  multiple  cameras, 
PeerJ:e381,DOI 10.7717/peerj.831. 
Rao,  G.,  Amarantini,  D.,  Berton,  E.,  Favier,  D.,  2006. 
Influence  of  body  segments’  parameters  estimation 
models  on  inverse  dynamics  solutions  during  gait, 
Journal of Biomechanics, 39 (8), 1531-1536. 
Rossi,  M.,  Lyttle,  A.,  El-Sallam,  A.,  Benjanuvatra,  N., 
Blanksby, B., 2013. Body segment inertial parameters 
of  elite  swimmers  using  DXA  and  indirect  methods. 
Journal of Sports Science and Medicine,  12(4),  761-
775.  
Schiffl, K., 2011. Bestimmung von Hominoidsegmenten aus 
3D-Bodyscannerdaten.  Master  thesis,  Technical 
University Vienna, 2011.  
Sheets,  A.L.,  Corazza,  S.,  Andriacchi,  T.  P.,  2010.  An 
automated image-based method of 3D subject-specific 
body segment parameter estimation for kinetic analyses 
of  rapid  movements.  Journal of Biomechanical 
Engineering, 132 (1), 011004. 
Son, J., Ryu, J., Kim, J., Kim, Y., 2014. Determination of 
inertial parameters using a dynamometer. Bio-Medical 
Materials and Engineering 24, 2447-2455.