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Abstract: Analytical data management applications, affected by the explosion of the amount of generated data in the
context of Big Data, are shifting away their analytical databases towards a vast landscape of architectural
solutions combining storage techniques, programming models, languages, and tools. To support users in the
hard task of deciding which Big Data solution is the most appropriate according to their specific requirements,
we propose a generic architecture to classify analytical approaches. We also establish a classification of the
existing query languages, based on the facilities provided to access the Big Data architectures. Moreover, to
evaluate different solutions, we propose a set of criteria of comparison, such as OLAP support, scalability, and
fault tolerance support. We classify different existing Big Data analytics solutions according to our proposed
generic architecture and qualitatively evaluate them in terms of the criteria of comparison. We illustrate how
our proposed generic architecture can be used to decide which Big Data analytic approach is suitable in the
context of several use cases.

1 INTRODUCTION

The term Big Data has been coined for represent-
ing the challenge to support a continuous increase
on the computational power that produces an over-
whelming flow of data (Kune et al., 2016). Big
Data databases have become important NoSQL data
repositories (being non-relational, distributed, open-
source, and horizontally scalable) in enterprises as the
center for data analytics, while enterprise data ware-
houses (EDWs) continue to support critical business
analytics. This scenario induced a paradigm shift in
the large scale data processing and data mining, com-
puting architecture, and data analysis mechanisms.
This new paradigm has spurred the development of
novel solutions from both industry (e.g., analysis of
web-data, clickstream) and science (e.g., analysis of
data produced by massive-scale simulations, sensor
deployments, genome sequencers) (Chen et al., 2014;
Philip Chen and Zhang, 2014).

In this sense, modern data analysis faces a conflu-
ence of growing challenges. First, data volumes are
expanding dramatically, creating the need to scale out
across clusters of hundreds of commodity machines.
Second, different sources of data producers (i.e., re-
lational databases, NoSQL) make the heterogeneity
a strong characteristic that has to be overcome. Fi-

nally, despite these increases in scale and complexity,
users still expect to be able to query data at interac-
tive speeds. In this context, several enterprises such
as Internet companies and Social Network associa-
tions have proposed their own analytical approaches,
considering not only new programming models, but
also medium and high-level tools, such as frame-
works/systems and parallel database extensions.

This imposes the trend of the moment ’the Big
Data boom’: many models, frameworks, languages,
and distributions are available. A non expert user who
has to decide which analytical solution is the most ap-
propriate for particular constraints in a Big Data con-
text, is today lost, faced with a panoply of disparate
and diverse solutions. Some of them, are well-known
as MapReduce, but they have been overtaken by oth-
ers more efficient and effective, like Spark system1

and Nephele/PACT (Warneke and Kao, 2009).
We propose a generic architecture for analytical

approaches which focuses on the data storage layer,
the parallel programming model, the type of database,
and the query language that can be used. These as-
pects represent the main features that allow to distin-
guish classical EDWs from analytical Big Data ap-
proaches. We aim in this paper to clarify the concepts

1http://spark.apache.org/
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dealing with analytical approaches on Big Data and
classify them in order to provide a global vision of
the different existing flavors.

Based on our proposed architecture, the contribu-
tion of this paper is threefold: (i) establish a clas-
sification of the existing query languages, based on
the facilities provided to access the big data architec-
tures; this classification allows to evaluate the level of
programming expertise needed to create new queries;
(ii) propose a classification of the Big Data architec-
tures, allowing to consider the underlined framework
structure to implement the data warehouse; and (iii)
propose a set of criteria of comparison, such as On-
Line Analytical Processing (OLAP) support, scalabil-
ity, and fault tolerance support. We classify different
existing Big Data analytics solutions according to our
proposed generic architecture and qualitatively eval-
uate them in terms of the criteria of comparison, as
well as in terms of type of query language and parallel
programming model that they use. We highlight their
differences and underline their fair employment. We
also illustrate how to use our proposed architecture
in the context of several use cases. This work repre-
sents a first step towards the construction of a Deci-
sion Support System that will help non-expert users
in selecting appropriate components.

Section 2 presents a review of Big Data program-
ming models. Section 3 proposes a classification of
Big Data query languages. Our proposed architec-
ture and classification for analytic approaches are pre-
sented in Section 4. In Section 5, diverse solutions for
analytic Big Data are studied. Section 6 presents the
related work. We finally conclude in Section 7.

2 BIG DATA PROGRAMMING
MODELS

The large-scale parallel Big Data processing scenario
has brought new challenges in the programming mod-
els in order to process and analyze such huge amount
of data. It is necessary a new model of cluster com-
puting, able to adapt the constant data growing with-
out affecting the performance, in which data-parallel
computations can be executed on clusters of unre-
liable machines by systems that automatically pro-
vide locality-aware scheduling, fault tolerance, and
load balancing. Classical parallel programming mod-
els, such as master-slave with Message Passing In-
terface (MPI) and multithreading with Open Multi-
Processing (OpenMP), are not adequate for Big Data
scenarios due to the high network bandwidth de-
manded to move data to processing nodes and the
need to manually deal with fault tolerance and load

balancing (Chen et al., 2014). However, inspired on
them there have been deployments of cluster comput-
ing models, which aggregate computational power,
main memory, and I/O bandwidth of shared-nothing
commodity machines, combined with new parallel
programming models (Leskovec et al., 2014; Pavlo
et al., 2009). They improve the performance of
NoSQL sources and reduce the performance gap to re-
lational databases. The main difference between clas-
sical parallel models and the new ones is that, instead
of moving data, the processing functions are taken to
the data.

The most popular model of data parallel program-
ming in the context of Big Data is MapReduce (Dean
and Ghemawat, 2008). Along with it, Hadoop2 is
its most popular core framework implementation for
carrying out analytic on Big Data. With simple dis-
tributed functions (based on Lisp primitives), the idea
of this parallel programming model is to combine map
and reduce operations with an associated implemen-
tation given by users and executed on a set of n nodes,
each with data. Hadoop framework is in charge of
splitting input data into small chunks, designated as
key/value pairs, storing them on different compute
nodes, and invoking map tasks to execute the user-
defined functions (UDF); the map tasks generate inter-
mediate key/value pairs according to the UDF. Sub-
sequently, the framework initiates a Sort and Shuf-
fle phase to combine all the intermediate values re-
lated to the same key and channelizes data to parallel
executing reduce tasks for aggregation; the reduce
tasks are applied to the set of data with a common
key from the intermediate key/value pairs generated
by map. MapReduce has inspired other models that
extend it to cater different and specific needs of appli-
cations, as we explain in the following.

In (Battré et al., 2010), it is proposed another
programming model, which extends the MapReduce
model with Parallelization Contracts (PACT) and
additional second-order functions. Nephele frame-
work (Warneke and Kao, 2009), is a distributed ex-
ecution engine that supports PACT programs exe-
cution, which are represented by Directed Acyclic
Graphs (DAGs). Edges in the DAG represent commu-
nication channels that transfer data between different
subprograms. Vertices of the DAG are sequential ex-
ecutable programs that process the data that they get
from input channels and write it to output channels.
The main differences between MapReduce and PACT
programming models are: (i) besides map and reduce,
PACT allows additional functions that fit more com-
plex data processing tasks, which are not naturally
and efficiently expressible as map or reduce functions,

2http://hadoop.apache.org
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as they occur in fields like relational query process-
ing or data mining; (ii) while MapReduce systems
tie the programming model and the execution model
(conducting sub-optimal solutions), with PACT, it is
possible to generate several parallelization strategies,
hence offering optimization opportunities; and (iii)
MapReduce loses all semantic information from the
application, except the information that a function is
either a map or a reduce, while the PACT model pre-
serves more semantic information through a larger set
of functions and annotations.

The Spark system (Zaharia et al., 2012; Zaharia
et al., 2010) proposes a programming model that un-
like acyclic data flows problems (such those treated
with MapReduce and Nephele/PACT), it focuses on
applications that reuse a working set of data across
multiple parallel operations. Spark provides two main
abstractions for parallel programming: Resilient Dis-
tributed Datasets (RDDs) and parallel operations on
these datasets (invoked by passing a function to ap-
ply on a dataset). The RDD is a read-only collection
of objects partitioned across a set of machines that
can be rebuilt if a partition is lost. Therefore, users
can explicitly cache a RDD in memory across ma-
chines and reuse it in multiple MapReduce-like paral-
lel operations. RDDs do not need to be materialized
at all times. Beside programming model, which al-
low iterative algorithms (i.e., cyclic data flows), Spark
overcomes MapReduce and Nephele/PACT because
it handles most of its operations ”in memory”, copy-
ing data sets from distributed physical storage into far
faster logical RAM memory. By contrast, MapRe-
duce writes and reads from hard drives.

In general, the underlying system that implements
the programming model, also manages the automatic
scheduling, load balancing, and fault tolerance with-
out user intervention. While programming models
are most focused on supporting the implementation
of complex parallel algorithms and on the efficient
distribution of tasks, there exists another axis related
to querying and analyzing that huge amount of data.
Several languages have been proposed with the inten-
tion of improving the programming efficiency for task
description and dataset analysis. Section 3 presents
a classification of the different query languages that
have been proposed in the context of Big Data.

3 CLASSIFICATION OF QUERY
LANGUAGES

The wide diversification of data store interfaces has
led the loss of a common programming paradigm
for querying multistore and heterogeneous reposito-

ries and has created the need for a new generation
of special federation between Hadoop-like Big Data
platforms, NoSQL data stores, and EDWs. Mostly,
the idea of all query languages is to execute different
queries to multiple, heterogeneous data stores through
a single query engine. We classify these query lan-
guages in Procedural Languages, Language Exten-
sions, and SQL-like Languages (Chattopadhyay et al.,
2011).
Procedural Languages are built on top of frame-
works that do not provide transparent functions (e.g.,
map and reduce) and cannot cover all the common
operations. Therefore, programmers have to spend
time on programming the basic functions, which are
typically hard to maintain and reuse. Hence, sim-
pler procedural language have been proposed. The
most popular of this kind of languages are Sawzall of
Google (Pike et al., 2005), PIG Latin of Yahoo! (Ol-
ston et al., 2008), and more recently Jaql (Beyer et al.,
2011). They are domain-specific, statically-typed,
and script-like programming language used on top of
MapReduce. These procedural languages have lim-
ited optimizations built in and are more suitable for
reasonably experienced analysts, who are comfort-
able with a procedural programming style, but need
the ability to iterate quickly over massive volumes of
data.
Language Extensions are proposed to provide sim-
ple operations for parallel and pipeline computations,
as extensions of classical languages, usually with spe-
cial purpose optimizers, to be used on top of the core
frameworks. The most representatives in this category
are FlumeJava proposed by Google (Chambers et al.,
2010) and LINQ (Language INtegrated Query) (Mei-
jer et al., 2006). FlumeJava is a Java library for de-
veloping and running data-parallel pipelines on top
of MapReduce, as a regular single-process Java pro-
gram. LINQ embeds a statically typed query lan-
guage in a host programming language, such as C#,
providing SQL-like construct and allowing a hybrid
of declarative and imperative programming.
In the Declarative Query Languages category, we
classify those languages also built on top of the
core frameworks with intermediate to advanced op-
timizations, which compile declarative queries into
MapReduce-style jobs. The most popular focused
on this use-case are HiveQL of Facebook (Thusoo
et al., 2010), Tenzing of Google (Chattopadhyay
et al., 2011), SCOPE of Microsoft (Zhou et al., 2012;
Chaiken et al., 2008), Spark SQL (Xin et al., 2013) on
top of Spark framework, and Cheetah (Chen, 2010).
These languages are suitable for reporting and analy-
sis functionalities. However, since they are built on,
it is hard to achieve interactive query response times,
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with them. Besides, they can be considered unnatu-
ral and restrictive by programmers who prefer writing
imperative scripts or code to perform data analysis.

4 GENERIC ARCHITECTURE
FOR ANALYTICAL
APPROACHES

Basically, a Big Data analytical approach architec-
ture is composed of four main components: Data
Sources, ETL (Extract, Transform, and Load) mod-
ule, Analytic Processing module, and Analytical Re-
quests module. A generic representation of this archi-
tecture is shown in Fig. 1 and described as follows:
Data Sources: They constitute the inputs of an
analytical system and often consider heterogeneous
(i.e., structured, semi-structured, and unstructured)
and sparse data (e.g., measures of sensors, log files
streaming, mails and documents, social media con-
tent, transactional data, XML files).
ETL Module: It has as main functionality retriev-
ing data from sources, transforming data for inte-
gration constraints, and loading data to the receiving
end. Other functionalities include data cleaning and
integration, through tools like Kettle3, Talend4, and
Scribe (Lee et al., 2012).
Analytic Processing Module: It constitutes the hard
core studied within this paper and can be defined as
the chosen approach for the analysis phase implemen-
tation in terms of data storage (i.e., disk or memory)
and the data model used (e.g., relational, NoSQL).
Then, several criteria, such as parallel programming
model (e.g., MapReduce, PACT) and scalability al-
low comparing approaches in the same class.
Analytical Requests: This module considers Visu-
alization, Reporting, and BI (Business Intelligent)
Dashboards Generation functionalities. Based on the
analytic data and through different query languages
(e.g., procedural, SQL-like), this module can generate
outputs in several formats with pictorial or graphical
representation (dashboards, graphics, reports, etc),
which enables decision makers to see analytics pre-
sented visually. We focus in the Analytics Processing
module to classify the different Big Data analytic
approaches.

Analytic Processing Classification

Concerning the Analytic Processing component, sev-
eral architectures in Big Data context exist. We clas-

3http://kettle.pentaho.org
4http://www.talend.com

sify the approaches according to their data storage
support: (i) those based on disk data storage, which
we divide into two groups according the data model,
NoSQL databases (class A in Fig. 1) and relational
databases (class B in Fig. 1); and (ii) those that sup-
port in-memory databases (class C in Fig. 1), in which
the data is kept in RAM reducing the I/O operations.
We detail each class as follows:
A- NoSQL based Architecture: It is based on

NoSQL databases as storage model, relying or not
on DFS (Distributed File System). It relies also
on a parallel-processing models such as MapRe-
duce, in which the processing workload is spread
across many CPUs on commodity compute nodes.
The data is partitioned among the compute nodes
at run time and the underlined framework handles
inter-machine communication and machine fail-
ures. The most famous embodiment of a MapRe-
duce cluster is Hadoop. It was designed to run on
many machines that do not share memory or disks
(the shared-nothing model). This kind of architec-
ture is designed by A in Fig. 1.

B- Relational Parallel Database based Architec-
ture: It is based, as classical databases, on re-
lational tables stored on disk. It implements
features like indexing, compression, materialized
views, I/O sharing, caching results. Among these
architectures there are: shared-nothing (multiple
autonomous nodes, each owning its own persis-
tent storage devices and running separate copies
of the DBMS), shared-memory or shared anything
(a global memory address space is shared and
one DBMS is present), and shared-disk (based on
multiple loosely coupled processing nodes similar
to shared-nothing, but a global disk subsystem is
accessible to the DBMS of any processing node).
However, most of current analytical DBMS sys-
tems deploy a shared-nothing architecture paral-
lel database. In this architecture, the analytical
solution is based on the conjunction of the par-
allel (sharing-nothing) databases with a parallel
programming model. We can see this type of ar-
chitecture designed by B in Fig. 1.

C- The in-memory Structures based Architecture:
This type of architecture attempts to satisfy com-
mercial demand on real-time and scalable data
warehousing criteria, based on a distributed mul-
tidimensional in-memory DBMS and the support
of OLAP operations over a large volume of data
for some of the systems. In-memory analytics of-
fer new possibilities resulting from the huge per-
formance gained by the in-memory placement.
Those possibilities exceed the query speed, even
more important, in simplifying models for analyz-
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Figure 1: Generic Architecture for a Big Data Analytical Approach.

ing data, making more interactive the interfaces,
and lowing overall solution latency. This kind of
architecture is described by C in Fig. 1.

Criteria of Comparison

To compare the different approaches on each class,
we establish a set of criteria related to the interaction
facilities (e.g., OLAP-like support, query languages
used, Cloud services support) , as well as implementa-
tion criteria related to performance aspects (e.g., scal-
ability, programming model, fault tolerance support).
OLAP Support: Some analytical solutions integrate
OLAP in their system allowing OLAP operators for
mining and analyzing data directly over the data ware-
house support (i.e., without extraction from it). Since
most solutions classified in our C class are charac-
terized by in-memory databases support, they satisfy
this criterion. However solutions implementing the
architectures A or B can optionally consider an OLAP
phase to support queries from the Analytical Requests
module (for Visualization, Reporting, and Analysis).
Thus, this property is fixed to integrated when it is
the case or not-integrated otherwise.
Query Languages: This criterion specifies the lan-
guage on which the user relies on for querying
the system. It could be procedural, language
extension, or declarative (see Section 3).
Cloud Services Support: The three types of archi-
tectures described above can be offered as a product
(with no cloud support) or as a service deployed in the
cloud. In the case of cloud support, it can be done par-
tially, such as Infrastructure as a Service (IaaS, which
provides the hardware support and basic storage and
computing services) and Data Warehouse as a Service
(DWaaS), or as a whole analytical solution in the cloud,
i.e., Platform as a Service (PaaS), which provides the

whole computing platform to develop Big Data ana-
lytical applications.
Scalability: This criterion measures the availabil-
ity on demand of compute and storage capacity, ac-
cording to the volume of data and business needs.
For this property we fix the values large-scale or
medium-scale (for the case where systems do not
scale to thousands of nodes).
Fault Tolerance: This criterion establishes the capa-
bility of the system of providing recovery from fail-
ures in a transparent way. In the context of analyti-
cal workloads, we consider the following fault toler-
ance techniques: the classical Log-based (i.e., write-
ahead log), which is used for almost every database
management system and Hadoop-based techniques,
which provides data replication for fault tolerance. In
the latter, we consider two types of recovery tech-
niques: Hadoop-file, where the data replication re-
covery control is implemented at the HDFS level
(i.e., on the worked nodes allowing re-execute only
the part of systems containing the failed data) and
Hadoop-programming, where the recovery control is
implemented at the model program level.
Programming Model: It precises for each item
which programming model is adopted. We consider
MapReduce, PACT, RDD-Spark models and we men-
tion ad-hoc for specific implementations.

5 WHICH APPROACH SHOULD I
ADOPT?

In this section we describe some well-known frame-
works/systems for analytic processing on the three
classes of architectures.
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NoSQL based Architectures

Several tools which are NoSQL based architecture ex-
ist. We cite as examples:

• Avatara: It leverages an offline elastic comput-
ing infrastructure, such as Hadoop, to precompute
its cubes and perform joins outside of the serving
system (Wu et al., 2012). These cubes are bulk
loaded into a serving system periodically (e.g., ev-
ery couple of hours). It uses Hadoop as its batch
computing infrastructure and Voldemort (Sum-
baly et al., 2012), a key-value storage, as its cube
analytical service. The Hadoop batch engine can
handle terabytes of input data with a turnaround
time of hours. While Voldemort, as the key-value
store behind the query engine, responds to client
queries in real-time. Avatara works well while
cubes are small, for far bigger cubes, there will be
significant network overhead in moving the cubes
from Voldemort for each query.

• Apache Kylin5: It is a distributed analytics en-
gine supporting definition of cubes, dimensions,
and metrics. It provides SQL interface and
OLAP capability based on Hadoop Ecosystem
and HDFS environment. It is based on Hive
data warehouse to answer mid-latency analytic
queries and on materialized OLAP views stored
on a HBase cluster to answer low-latency queries.

• Hive: It is an open-source project that aims at
providing data warehouse solutions and has been
built by the Facebook Data Infrastructure Team
on top of the Hadoop environment. It supports
ad-hoc queries with a SQL-like query language
called HiveQL (Thusoo et al., 2009; Thusoo et al.,
2010). These queries are compiled into MapRe-
duce jobs that are executed using Hadoop. The
HiveQL includes its own system type and Data
Definition Language (DDL) which can be used to
create, drop, and alter tables in a database. It also
contains a system catalog which stores metadata
about the underlying table, containing schema in-
formation and statistics, much like DBMS en-
gines. Hive currently provides only a simple,
naive rule-based optimizer.

• Cloudera Impala6: It is a parallel query engine
that runs on Apache Hadoop. It enables users
to issue low-latency SQL queries to data stored
in HDFS and Apache HBase without requiring
data movement or transformation. Impala uses

5http://kylin.apache.org
6https://www.cloudera.com/products/open-source/apache-
hadoop/impala.html

the same file and data formats, metadata, secu-
rity, and resource management frameworks used
by MapReduce, Apache Hive, Apache Pig, and
other Hadoop software. Impala allows to perform
analytics on data stored in Hadoop via SQL or
business intelligence tools. It gives a good perfor-
mance while retaining a familiar user experience.
By using Impala, a large-scale data processing
and interactive queries can be done on the same
system using the same data and metadata without
the need to migrate data sets into specialized sys-
tems or proprietary formats.

• Mesa: Google Mesa (Gupta et al., 2014)
leverages common Google infrastructure and
services, such as Colossus (the successor of
Google File System) (Ghemawat et al., 2003),
BigTable (Chang et al., 2008), and MapReduce.
To achieve storage scalability and availability,
data is horizontally partitioned and replicated.
Updates may be applied at the granularity of a
single table or across many tables. To ensure con-
sistent and repeatable queries during updates, the
underlying data is multi-versioned. To achieve
update scalability, data updates are batched, as-
signed a new version number, and periodically
(e.g., every few minutes) incorporated into Mesa.
To achieve update consistency across multiple
data centers, Mesa uses a distributed synchroniza-
tion protocol based on Paxos (Lamport, 2001).

Discussion and Comparison: NoSQL-based sys-
tems have shown to have superior performance than
other systems (such as parallel databases) in minimiz-
ing the amount of work that is lost when a hardware
failure occurs (Pavlo et al., 2009; Stonebraker et al.,
2010). In addition, Hadoop (which is the open source
implementations of MapReduce) represents a very
cheap solution. However, for certain cases, MapRe-
duce is not a suitable choice, specially when interme-
diate processes need to interact, when lot of data is
required in a processing, and in real time scenarios, in
which other architectures are more appropriate.

Relational Parallel Databases based Architectures

Several projects aim to provide low-latency engines,
whose architectures resemble shared-nothing parallel
databases, such as projects which embed MapReduce
and related concepts into traditional parallel DBMSs.
We cite as examples the following projects:

• Google’s Dremel: It is a system that supports
interactive analysis of very large datasets over
shared clusters of commodity machines (Mel-
nik et al., 2011). Dremel is based on a nested
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column-oriented storage that is designed to com-
plement MapReduce. It is used in conjunction
with MapReduce to analyze outputs of MapRe-
duce pipelines or rapidly prototype larger compu-
tations. It has the capability of running aggrega-
tion queries over trillion-row tables in seconds by
combining multi-level execution trees and colum-
nar data layout. The system scales to thousands of
CPUs and petabytes of data and has thousands of
users at Google.

• PowerDrill: It is a system which combines the
advantages of columnar data layout with other
known techniques (such as using composite range
partitions) and extensive algorithmic engineering
on key data structures (Hall et al., 2012). Com-
pared to Google’s Dremel that uses streaming
from DFS, PowerDrill relies on having as much
data in memory as possible. Consequently, Pow-
erDrill is faster than Dremel, but it supports only a
limited set of selected data sources, while Dremel
supports thousands of different data sets. Pow-
erDrill uses two dictionaries as basic data struc-
tures for representing a data column. Since it re-
lies on memory storage, several optimizations are
proposed to keep small the memory footprint of
these structures. PowerDrill is constrained by the
available memory for maintaining the necessary
data structures.

• Amazon Redshift: It is an SQL-compliant,
massively-parallel, query processing, and
database management system designed to support
analytics workload (Gupta et al., 2015). Redshift
has a query execution engine based on ParAccel7,
a parallel relational database system using a
shared-nothing architecture with a columnar ori-
entation, adaptive compression, memory-centric
design. However, it is mostly PostgreSQL-like,
which means it has rich connectivity via both
JDBC and ODBC and hence Business Intelli-
gence tools. Based on EC2, Amazon Redshift
solution competes with traditional data warehouse
solutions by offering DWaaS, that it is translated
on easy deployment and hardware procurement,
the automated patching provisioning, scaling,
backup, and security.

• Teradata: It is a system which tightly integrates
Hadoop and a parallel data warehouse, allowing
a query to access data in both stores by mov-
ing (or storing) data (i.e., the working set of a
query) between each store as needed (Xu et al.,
2010). These approaches are based on having cor-
responding data partitions in each store co-located

7http://www.actian.com

on the same physical node. The purpose of co-
locating data partitions is to reduce network trans-
fers and improve locality for data access and load-
ing between the stores. However, this requires
a mechanism whereby each system is aware of
the other systems partitioning strategy; the par-
titioning is fixed and determined up-front. Even
though these projects offer solutions by providing
a simple SQL query interface and hiding the com-
plexity of the physical cluster, they can be pro-
hibitively expensive at web scale.

• AsterData System: It is a nCluster shared-
nothing relational database8, that uses
SQL/MapReduce (SQL/MR) UDF frame-
work, which is designed to facilitate parallel
computation of procedural functions across
hundreds of servers working together as a single
relational database (Friedman et al., 2009). The
framework leverages ideas from the MapReduce
programming paradigm to provide users with
a straightforward API through which they can
implement a UDF in the language of their choice.
Moreover, it allows maximum flexibility, since
the output schema of the UDF is specified by the
function itself at query plan-time.

• Microsoft Polybase: It is a feature of Microsoft
SQL Server Parallel Data Warehouse (PDW),
which allows directly reading HDFS data into
databases using SQL (DeWitt et al., 2013). It al-
lows HDFS data to be referenced through exter-
nal PDW tables and joined with native PDW ta-
bles using SQL queries. Polybase employs a split
query processing paradigm in which SQL oper-
ators on HDFS-resident data are translated into
MapReduce jobs by the PDW query optimizer and
then executed on the Hadoop cluster.

• Vertica: It is a distributed relational DBMS
that commercializes the ideas of the C-Store
project (Lamb et al., 2012). The Vertica model
uses data as tables of columns (attributes), though
the data is not physically arranged in this manner.
It supports the full range of standard INSERT, UP-
DATE, DELETE constructs for logically inserting
and modifying data as well as a bulk loader and
full SQL support for querying. Vertica supports
both dynamic updates and real-time querying of
transactional data.

• Microsoft Azure9: It is a solution provided by
Microsoft for developing scalable applications for
the cloud. It uses Windows Azure Hypervisor
(WAH) as the underlying cloud infrastructure and

8http://www.asterdata.com/
9http://www.microsoft.com/azure
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.NET as the application container. It also offers
services including Binary Large OBject (BLOB)
storage and SQL service based on SQL Azure
relational storage. The analytics related services
provide distributed analytics and storage, as well
as real-time analytics, big data analytics, data
lakes, machine learning, and data warehousing.

Discussion and Comparison: Although these
parallel database systems serve some of the Big Data
analysis needs and are highly optimized for storing
and querying relational data, they are expensive,
difficult to administer, and lack fault-tolerance for
long-running queries (Pavlo et al., 2009; Stonebraker
et al., 2010). None of these systems have been
designed to manage replicated data across multiple
datacenters (they are mostly centralized and do not
scale to thousands of nodes). While more nodes are
added into the system, hardware failures become
more common and frequent, causing a limited
scalability. In contrast, most relational databases
assume that hardware failure is a rare event. They
employ a coarser-grained recovery model, where an
entire query has to be resubmitted if a machine fails.
This works well for short queries where a retry is
inexpensive, but faces significant challenges in long
queries as clusters scale up (Abouzeid et al., 2009).
Hence, these systems do not support fine-grained
fault tolerance. Also, it is difficult for these systems
to process non-relational data.

In-memory Structure based Architectures

Some type of architectures are designed to support
complex, multi-dimensional, and multi-level on-line
analysis of large volumes of data stored in RAM. We
present the following ones:

• Cubrick: It is a new architecture that en-
ables real-time data analysis of large dynamic
datasets (Pedro et al., 2015). It is an in-memory
distributed multidimensional database that can ex-
ecute OLAP operations such as slice and dice, roll
up and drill down over terabytes of data. Data in a
Cubrick cube is range partitioned in every dimen-
sion, composing a set of data containers called
bricks where data is stored sparsely and in an un-
ordered and append-only fashion, providing high
data ingestion ratios and indexed access through
every dimension. Unlike traditional data cubes,
Cubrick does not rely on any pre-calculations,
rather it distributes the data and executes queries
on-the-fly leveraging MPP architectures. Cubrick
is implemented at Facebook from the ground up.
A good result is obtained in a first Cubrick de-

ployment inside Facebook.

• Druid: It is a distributed and column-oriented
database designed for efficiently support OLAP
queries over real-time data (Yang et al., 2014).
It supports streaming data ingestion and fault-
tolerance. Druid cluster is composed of dif-
ferent types of nodes, each type having a spe-
cific role (real-time node, historical nodes, bro-
ker nodes, and coordinator nodes) that operate in-
dependently. Real-time nodes ingest and query
event streams using an in-memory index to buffer
events. The in-memory index is regularly per-
sisted to disk. Persisted indexes are then merged
together periodically before getting handed off.
Both, in-memory and persisted indexes are hit by
the queries. Historical nodes are the main work-
ers of a Druid cluster, they load and serve the
immutable blocks of data (segments) created by
the real-time nodes. Broker nodes route queries
to real-time and historical nodes and merge par-
tial results returned from the two types of nodes.
Coordinator nodes are essentially responsible for
management and distribution of data on historical
nodes: loading new data, dropping outdated data,
replicating. A query API is provided in Druid,
with a new proposed query language based on
JSON Objects in input and output.

• SAP HANA10: SAP HANA is an in-memory and
column-oriented relational DBMS. It provides
both transactional and real-time analytics process-
ing on a single system with one copy of the data.
The SAP HANA in-memory DBMS provides
interfaces to relational data (through SQL and
Multidimensional expressions, or MDX), as well
as interfaces to column-based relational DBMS,
which allows to support geospatial, graph, stream-
ing, and textual/unstructured data. The approach
offers multiple in-memory stores: row-based,
column-wise, and also object graph store.

• Shark: It is a data analysis system that leverages
distributed shared memory to support data analyt-
ics at scale and focuses on in-memory processing
of analysis queries (Xin et al., 2013). It supports
both SQL query processing and machine learn-
ing functions. It is built on the distributed shared
memory abstraction (RDD) implementation from
Spark, which provides efficient mechanisms for
fault recovery. If one node fails, Shark gener-
ates deterministic operations necessary for build-
ing lost data partitions in the other nodes, paral-
lelizing the process across the cluster. Shark is

10https://help.sap.com/viewer/product/SAP HANA PLA-
TFORM/2.0.00/en-US
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compatible with Apache Hive, thus it can be used
to query an existing Hive data warehouse and to
query data in systems that support the Hadoop
storage API, including HDFS and Amazon S3.

• Nanocubes11: It is an in-memory data cube en-
gine offering efficient storage and querying over
spatio-temporal multidimensional datasets. It en-
ables real-time exploratory visualization of those
datasets. The approach is based on the construc-
tion of a data cube (i.e., a nanocube), which fits in
a modern laptop’s main memory, and then com-
putes queries over that nanocube using OLAP op-
erations like roll up and drill down.

• Stratosphere: It is a data analytics stack allow-
ing in situ data analysis by connecting to exter-
nal data sources going from structured relational
data to unstructured text data and semi-structured
data (Alexandrov et al., 2014). It executes the an-
alytic process directly from the data source (i.e.,
data is not stored before the analytical process-
ing), by converting data to binary formats after the
initial scans. Stratosphere provides a support for
iterative programs that make repeated passes over
a data set updating a model until they converge
to a solution. It contains an execution engine
which includes query processing algorithms in ex-
ternal memory and the PACT programming model
together with its associated framework Nephele.
Through Nephele/PACT, it is possible to treat low
level programming abstractions consisting of a set
of parallelization primitives and schema-less data
interpreted by the UDFs written in Java.

Discussion and Comparison: Druid and SAP
HANA are both in-memory column-oriented
relational DBMS. Additionally SAP-HANA si-
multaneously allows transactional and real-time
analytics processing. Cubricks, Druid, Nanocubes,
and Stratosphere have in common the support for
OLAP operations. Cubricks and Stratosphere are
distinguished by the execution on the fly, without
pre-calculations, supporting ad-hoc query, which is
not provided for most current OLAP DBMSs and
multidimensional indexing techniques.

General Discussion

We summarize our classification in Table 1 and com-
pare the revised approaches according to the es-
tablished criteria: used query language, scalability,
OLAP support, fault tolerance support, cloud support,
and programming model. Generally, solutions in the

11http://nanocubes.net

class A offer materialized views stored on NoSQL
databases and updated in short period of times to offer
OLAP facilities, meanwhile for in-memory structures
based architectures (class C), the OLAP facility is em-
bedded in the system. Approaches based on parallel
databases do not scale to huge amount of nodes, how-
ever they have generally, best performance than the
other architectures. Most languages used are declara-
tive SQL-compliant. Regarding fault tolerance, most
Big Data approaches leverage on Hadoop facilities,
instead of the classical log-based mechanism. Cur-
rently, Big Data analytical solutions trend to move to
the cloud, either partially or as whole solution (PaaS).
Concerning the parallel programming model, most
solutions described in this work implement MapRe-
duce programming model native with Hadoop as the
underline support or were extended in order to con-
sider this programming model. Other solutions have
extended the MapReduce programming model such
Cubrick and Shark that also support Spark modeling
with RDD.

We are aware of the existence of other data
models, such graph databases, that are normally
used together with the ones we consider in our
architecture. Those complementary data models are
currently treated by some analytic approaches. In the
future, we will extend our architecture to explicitly in-
tegrate other data models and refine our classification.

Three Use Cases for Big Data Analytics

In order to show how our generic architecture can be
used to decide which approach and architecture are
suitable, in this section we illustrate the analysis of
three use cases. They are uses cases that can be scaled
into the petabyte range and beyond with appropriate
business assumptions, hence they cannot be satisfied
with scalar numeric data and cannot be properly ana-
lyzed by simple SQL statements (Kimball, 2012).

• In-flight Aircraft Status. This use case is repre-
sentative of many other use cases that are emerg-
ing as responses of the increased introduction of
sensor technology everywhere. In aircraft sys-
tems, in-flight status of hundreds of variables on
engines, fuel systems, hydraulics, and electrical
systems are measured and transmitted every few
milliseconds, as well as information regarding the
passengers comfort. All this information can be
analyzed in some future time (e.g., for preven-
tive maintenance planning, to improve personal-
ized services for passengers) and also be analyzed
in real time to drive real-time adaptive control,
fuel usage, part failure prediction, and pilot no-
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tification (e.g., smarter flights)12. In this scenario
there are several sources of data to consider, there
is a need for predictive and on-line queries, scala-
bility is a must, and fault tolerance has to be pro-
vided at fine grain. Hence, a solution of class A
with OLAP support addresses these requirements.

• Genomics Analysis. This use case involves the
industry that is being formed to address genomics
analysis broadly to identify, measure, or compare
genomic features such as DNA sequence, struc-
tural variation, gene expression, or regulatory and
functional element annotations. This allows to
conduct various analyses including family-based
analysis or case-control analysis. This kind of
use case manages mostly structured data and it
demands high performance computing13. Thus,
a solution with large-scale and procedural query
language of class B addresses its requirements.

• Location and Proximity Tracking. GPS loca-
tion tracking and frequent updates are necessary
in operational applications, security analysis, nav-
igation, and social media contexts14. This use
case represents applications that precise location
tracking, which produce a huge amount of data
about other locations nearby the GPS measure-
ment. These other locations may represent oppor-
tunities for sales or services in real-time. In this
case, an in-memory based architecture (class C)
or a solution of class A with OLAP support are
suitable.

6 RELATED WORK

Some recent studies present comparative analyses of
some aspects in the context of Big Data (Madhuri
and Sowjanya, 2016; Gandhi and Kumbharana, 2013;
Pkknen and Pakkala, 2015; Khalifa et al., 2016). Au-
thors in (Madhuri and Sowjanya, 2016) and (Gandhi
and Kumbharana, 2013) present a comparative study
between two cloud architectures: Microsoft Azure
and Amazon AWS Cloud services. They consider
price, administration, support, and specification crite-
ria to compare them. The work presented in (Pkknen
and Pakkala, 2015) proposes a classification of tech-
nologies, products, and services for Big Data Sys-
tems. Authors first present a reference architecture

12https://www.digitaldoughnut.com/articles/2017/march/
how-airlines-are-using-big-data

13http://www.nature.com/news/genome-researchers-raise-
alarm-over-big-data-1.17912

14http://www.techrepublic.com/article/gps-serves-a-
pivotal-role-in-big-data-stickiness/

representing data stores, functionality, and data flows.
After that, for each considered solution, they present a
mapping between the solution’s use case and the ref-
erence architecture. The paper studies data analytics
infrastructures at Facebook, LinkedIn, Twitter, Net-
flix, and also consider a high performance streaming
analytics platform, BlockMon. However, these works
are specific systems-concentrated and do not provide
a general vision of existing approaches.

The work in (Khalifa et al., 2016) is most re-
lated to our paper. It aims to define the six pillars
(namely Storage, Processing, Orchestration, Assis-
tance, Interfacing, and Development) on which Big
Data analytics ecosystem is built. For each pillar, dif-
ferent approaches and popular systems implementing
them are detailed. Based on that, a set of person-
alized ecosystem recommendations is presented for
different business use cases. Even though authors
argue that the paper assists practitioners in building
more optimized ecosystems, we think that proposing
solutions for each pillar does not necessarily imply
a global coherent Big Data analytic system. Even
though our proposed classification considers build-
ing blocks on which Big Data analytics Ecosystem is
built (presented as layers in the generic architecture),
our aim is to provide the whole view of the analytical
approaches. In that way, practitioners can determine
which analytical solution, instead of a set of building
blocks, is the most appropriate according to their par-
ticular needs.

7 CONCLUSIONS

In this paper, we present a generic architecture for Big
Data analytical approaches allowing to classify them
according to the data storage layer, the distributed par-
allel model, and the type of database used. We focus
on the three most recently used architectures, as far
as we know: MapReduce-based, Parallel databases
based, and in-memory based architectures. We com-
pare several implementations based on criteria such
as: OLAP support, scalability as the capacity to adapt
the volume of data and business needs, type of lan-
guage supported, and fault tolerance in terms of the
need of restarting a query if one of the node involved
in the query processing fails. Besides the proposed
classification, the main aim of this paper is to clar-
ify the concepts dealing with analytical approaches
on Big Data, thus allowing non-expert users to de-
cide which technology is better depending on their
requirements and on the type of workload. This work
represents a first step towards the implementation of
a Decision Support System, which will recommend
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Table 1: Comparative table of the studied analytic Big Data approaches.

Architecture Tool Query Scalability OLAP Fault On Programming
Language Tolerance the cloud model

NoSQL Avatara Language extensions Large-scale integrated Hadoop-programming no MapReduce
based Hive Declarative (HiveQL) Large-scale not-integrated Hadoop-programming DWaaS MapReduce

Architectures Cloudera Impala Declarative (HiveQL) and Large-scale not-integrated Hadoop-programming DWaaS MapReduce
(Class A) Procedural (PIG Latin)

Apache Kylin Language extensions Large-scale integrated Hadoop-programming no MapReduce
Mesa Language extension Large-scale not-integrated Hadoop-file DWaaS MapReduce

PowerDrill Procedural Medium-scale not-integrated Log-based no ad-hoc
Relational Teradata Procedural Medium-scale not-integrated Hadoop-file DWaaS MapReduce
database Microsoft Azure Declarative Large-scale not-integrated Hadoop-file and IaaS MapReduce

based (SQL Azure) Hadoop-programming PaaS
eArchitectures AsterData Declarative Medium-scale not-integrated Hadoop-file IaaS MapReduce

(Class B) Google’s Dremel Procedural Large-scale not-integrated Log-based IaaS (BigQuery) MapReduce
Amazon Redshift Declarative Large-scale not integrated Hadoop-file PaaS, DWaaS MapReduce

Vertica Declarative Medium-scale not-integrated Hadoop-file no MapReduce

in-memory Cubrick Declarative Large-scale integrated Log-based no ad-hoc
structures Druid Procedural Large-scale integrated Log-based no ad-hoc

based (based on JSON)
Architectures SAP HANA Declarative Large-scale not-integrated Log-based PaaS ad-hoc

(Class C) Shark Declarative Large-scale not-integrated Hadoop-file no RDD-Spark
(HiveQL) (RDD properties on Spark)

Nanocubes Declarative Large-scale integrated Log-based no ad-hoc
Stratosphere Declarative (Meteor) Large-scale not-integrated Log-based IaaS Nephele/PACT

the appropriate analytical approach according to the
user needs. We will also extend our classification by
considering other architectures and data models (e.g.,
graph databases, document databases).
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Warneke, D. (2014). The stratosphere platform for big
data analytics. The VLDB Journal, 23(6):939–964.
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