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Abstract: In general, systems are formed by the composition of several modules, and may exhibit a large number of
states. The growth of the global system model with the number of components leads to a high computational
cost for diagnosis techniques. In order to circumvent this problem, in a recent work, a diagnosis scheme based
on the observation of the nonfailure behavior model of the system components, and their synchronization
due to observable events, is proposed. Although the computation of the global system model for diagnosis is
avoided, the estimated observed nonfailure language in this scheme can be a larger set than the actual observed
nonfailure language of the system, which leads to the notion of synchronous diagnosability. This scheme is
implemented using a diagnoser, called synchronized Petri net diagnoser (SPND). In this work, we propose the
addition of conditions for the observable transitions of the SPND, leading to a conditional synchronized Petri
net diagnoser (CSPND). We show that the addition of such conditions can cause a decrease in the observed
nonfailure language, and systems that are not synchronously diagnosable can be conditionally synchronously
diagnosable, and the delay bound can be smaller than using the synchronous diagnosis scheme.

1 INTRODUCTION

Several works in the literature address the problem
of failure diagnosis of discrete-event systems (DESs)
(Sampath et al., 1995; Sampath et al., 1996; Qiu and
Kumar, 2006; Carvalho et al., 2011; Carvalho et al.,
2012; Basilio et al., 2012; Fanti et al., 2013; Cabasino
et al., 2010; Cabasino et al., 2013; Carvalho et al.,
2013; Zaytoon and Lafortune, 2013; Cabral et al.,
2015b; Tomola et al., 2016; Santoro et al., 2017). In
the seminal work (Sampath et al., 1995), a centralized
diagnoser for DESs, constructed based on the plant
model, is proposed. However, in general, systems
are formed by the parallel composition of several sub-
systems, local components or modules, and the state
space of the plant model grows, in the worst-case, ex-
ponentially with its number of subsystems. In order
to avoid the use of the global plant model for diagno-
sis, several failure diagnosis schemes that take advan-
tage of the modularity of systems have been proposed
in the literature (Debouk et al., 2002; Contant et al.,
2006; Zhou et al., 2008; Kan John et al., 2010). In
these works, different modular diagnosability defini-
tions are introduced and local diagnosers are proposed
to detect the occurrence of failure events. The diagno-

sis decision of the global system is determined based
solely on the observations of the failure module.

In (Garcı́a et al., 2006), a different approach for
modular diagnosis is proposed. Differently from (De-
bouk et al., 2002; Contant et al., 2006; Zhou et al.,
2008; Kan John et al., 2010), the method presented
in (Garcı́a et al., 2006) consists of splitting the global
plant model into subsystems, constructing a minimum
controller for each subsystem, and then constructing
a local diagnoser for each subsystem composed with
its minimum controller. In (Schmidt, 2013), an in-
cremental abstraction-based approach for the verifi-
cation of modular language diagnosability of DESs is
proposed, and the differences between the online di-
agnosis methods presented in (Debouk et al., 2002;
Contant et al., 2006; Zhou et al., 2008) are reviewed.

More recently, in (Cabral et al., 2015a; Cabral
and Moreira, 2017), a new approach for online fail-
ure diagnosis of modular DESs modeled as automata
is proposed. Differently from (Debouk et al., 2002;
Contant et al., 2006; Zhou et al., 2008; Garcı́a et al.,
2006; Kan John et al., 2010), a centralized synchro-
nized Petri net diagnoser (SPND) is proposed. The
SPND is formed by Petri net observers, constructed
from the nonfailure behavior models of the system
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components, and provides a superset of the state es-
timate of the global system. The Petri net observers
are naturally synchronized by the observable events
executed by the plant, and if the observation of a trace
is not recognized in the SPND, i.e., if the observa-
tion of a trace executed by the system does not be-
long to the nonfailure behavior of at least one com-
ponent of the system, the occurrence of the failure
event is indicated by using a failure detection logic. In
(Cabral et al., 2015a; Cabral and Moreira, 2017), the
authors show that if two or more components have
unobservable events in common, then the estimated
nonfailure observed language can be a larger set then
the actual observable nonfailure language of the sys-
tem. This fact can increase the delay bound for syn-
chronous diagnosis compared with the traditional di-
agnosis scheme or, in the worst-case, the failure event
is not synchronously diagnosable.

In this work, we propose a modification in the
Petri net observers that form the SPND. This mod-
ification relies on the addition of conditions to the
transitions of the Petri net observers, such that if an
event is observed by the diagnoser, the Petri net ob-
servers update their state estimate only if the occur-
rence of the event is possible in the nonfailure model
of the global system, leading to the conditional syn-
chronized Petri net diagnoser (CSPND). If an event is
observed, and the transitions labeled with this event
cannot occur in the nonfailure behavior model of the
system, then the failure event has certainly occurred,
and it is diagnosed by the CSPND. In this diagnosis
scheme, the estimated observed nonfailure language
can be a smaller set than the estimated observed non-
failure language obtained by using the synchronous
diagnosis scheme. In addition, in the worst-case, a
modular system can be conditionally synchronously
diagnosable and not synchronously diagnosable. In
this regard, we introduce the definition of conditional
synchronous diagnosability of the language of a mod-
ular system with respect to the languages of its mod-
ules. The verification of this property can be done
by using the algorithm proposed in (Cabral et al.,
2015a; Cabral and Moreira, 2017). An example is
used throughout the paper to illustrate our results.

This paper is organized as follows. In Section 2,
we present some preliminary concepts, including the
definitions of synchronous diagnosability of modular
DESs and synchronized Petri net diagnoser (SPND).
In Section 3, we present the conditional synchronized
Petri net diagnoser (CSPND). Finally, in Section 4,
the conclusions are drawn.

2 PRELIMINARIES

2.1 Notation and Definitions

Let G = (Q,Σ, f ,Γ,q0) denote the automaton model
of a DES, where Q is the state-space, Σ is the finite
set of events, f : Q×Σ? → Q is the transition func-
tion, where Σ? is the Kleene-closure of Σ, Γ : Q→ 2Σ

is the feasible event function, and q0 is the initial state
of the system. For the sake of simplicity, the feasi-
ble event function will be omitted unless stated other-
wise. The language generated by G, L(G), is denoted
in this paper by L. The accessible part of G, denoted
by Ac(G) is obtained as usual (Cassandras and Lafor-
tune, 2008).

Let G1 and G2 be two automata. Then, G1×G2
and G1‖G2 denote the product and the parallel com-
position of G1 and G2, respectively (Cassandras and
Lafortune, 2008).

The projection operation Pl
s : Σ?

l → Σ?
s , where Σs⊂

Σl is defined as Pl
s(ε) = ε, Pl

s(σ) = σ, if σ ∈ Σs or
Pl

s(σ) = ε, if σ ∈ Σl \ Σs, where \ denotes set dif-
ference, and Pl

s(sσ) = Pl
s(s)P

l
s(σ), for all s ∈ Σ?

l , and
σ∈Σl . The projection can also be applied to language
L, by applying the projection to all traces s ∈ L. The
inverse projection Pl−1

s : Σ?
s → 2Σ?

l when applied to a
trace s ∈ Σ?

s generates all traces of Σ?
l whose projec-

tion is equal to s. The inverse projection can also be
applied to languages.

Let us now suppose that the event set of G is
partitioned as Σ = Σo ∪̇ Σuo, where Σo and Σuo de-
note, respectively, the set of observable and unobserv-
able events, and let Σ f ⊆ Σuo denote the set of fail-
ure events. In this paper, we assume, without loss
of generality, that there is only one failure event, i.e.,
Σ f = {σ f }.
Definition 1. (Failure and normal traces) A failure
trace is a sequence of events s such that σ f is one of
the events that form s. A normal trace, on the other
hand, does not contain the event σ f . �

The normal language LN ⊂ L denotes the set of all
normal traces of L, and the subautomaton of G that
generates LN is denoted by GN . Thus, the set of all
traces generated by the system that contain σ f is LF =
L\LN .

Let Po : Σ? → Σ?
o be a projection. Then, it is

always possible to obtain a deterministic automa-
ton whose generated language is equal to Po(L).
This automaton is the observer of G, denoted by
Obs(G,Σo) = (Qobs,Σo, fobs,Γobs,q0,obs) (Cassandras
and Lafortune, 2008).

A Petri net is another formalism usually used to
model a DES (Cassandras and Lafortune, 2008; Davi
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and Alla, 2005). Let N = (P,T,Pre,Post,x0) denote
a Petri net where P is the set of places, T is the set of
transitions, Pre : (P×T )→ N is the function of arcs
that connect places to transitions, Post : (T × P)→
N is the function of arcs that connect transitions to
places, and x0 : P→ N is the initial marking of the
system.

The set of places is denoted here by P =
{p1, p2, . . . , pn} and the set of transitions by T =
{t1, t2, . . . , tm}. Thus, |P| = n and |T | = m, where |.|
denotes cardinality. The set of input places (resp.,
transitions) of a transition t j ∈ T (resp., place pi ∈ P)
is denoted by I(t j) (resp., I(pi)), and is formed by
the places pi ∈ P (resp., transitions t j ∈ T ) such that
Pre(pi, t j)> 0 (resp., Post(t j, pi)> 0).

The number of tokens assigned to a place pi is
represented by x(pi), where x : P → N. Thus, the
marking of a Petri net is given by the vector x =
[x(p1) x(p2) . . . x(pn)]

T formed with the number of
tokens of each place pi, for i= 1, . . . ,n. A place pi ∈P
is said to be safe if x(pi) ≤ 1 for all reachable mark-
ings of the Petri net.

A transition t j is said to be enabled when x(pi)≥
Pre(pi, t j), ∀pi ∈ I(t j). If a transition t j is enabled for
a marking x, then t j can fire reaching a new marking
x̄. The evolution of the markings is given by:

x̄(pi)=x(pi)−Pre(pi, t j)+Post(t j, pi), i = 1, . . . ,n.
(1)

A binary Petri net can be defined as a Petri net
with a different evolution rule for the place mark-
ings reached after the firing of a transition t j given
by (Alayan and Newcomb, 1987):

x̄(pi) =

{
0, if x(pi)−Pre(pi, t j)+Post(t j, pi) = 0
1, if x(pi)−Pre(pi, t j)+Post(t j, pi)> 0 ,

(2)
for i = 1, . . . ,n. Notice that in a binary Petri net all
places are forced to be safe.

In order to model DESs, events are associated
with transitions in the Petri net, leading to the so-
called labeled Petri net. A labeled Petri net is
the seven-tuple Nl = (P,T,Pre,Post,x0,Σ, l), where
(P,T,Pre,Post,x0) is a Petri net, Σ is the set of events
used to label transitions, and l : T → 2Σ is the transi-
tion labeling function that associates a subset of Σ to
a transition in T . An enabled transition t j in a labeled
Petri net fires when one of the events associated to t j
occurs.

2.2 Diagnosability of Discrete-Event
Systems

The following definition of language diagnosability
can be stated (Sampath et al., 1995).

Definition 2. Let L and LN ⊂ L be the live and prefix-
closed languages generated by G and GN , respec-
tively. Then, L is said to be diagnosable with respect
to projection Po : Σ?→ Σ?

o and Σ f if

(∃z ∈ N)(∀s ∈ L\LN)(∀st ∈ L\LN ,‖t‖ ≥ z)⇒
(Po(st) 6∈ Po(LN)),

where ‖.‖ denotes the length of a trace.

According to Definition 2, L is diagnosable with
respect to Po and Σ f if, for all failure traces st with
arbitrarily long length after the occurrence of a fail-
ure event, there does not exist a normal trace sN ∈ LN ,
such that Po(st) = Po(sN). Therefore, if L is diagnos-
able, then it is always possible to identify the occur-
rence of a failure event after a bounded number of
observations of events.

A polynomial-time algorithm to verify language
diagnosability is presented in (Moreira et al., 2011).

2.3 Synchronous Diagnosability of
Modular Discrete-Event Systems

In (Cabral et al., 2015a; Cabral and Moreira, 2017),
the definition of synchronous diagnosability of a mod-
ular DES is presented. In order to do so, it is as-
sumed that the system is composed of r modules Gk,
k = 1, . . . ,r, i.e., the plant G = ‖r

k=1Gk. It is also as-
sumed that the event set of each module Gk can be
partitioned as Σk = Σk,o∪̇Σk,uo, where Σk,o and Σk,uo
denote, respectively, the sets of observable and unob-
servable events of Gk. Moreover, each component has
its nonfailure behavior modeled by automaton GNk ,
such that the nonfailure behavior of the plant is given
by GN = ‖r

k=1GNk . The main idea in (Cabral et al.,
2015a; Cabral and Moreira, 2017) is to implement
observers for each normal part of the modules of the
system, which are naturally synchronized with the ob-
servable events executed by the plant, and then, using
a failure detection logic, identify the occurrence of a
failure event. The following definition can be stated.

Definition 3. Let L and LN ⊂ L be the languages gen-
erated by G and GN , respectively, and let LF = L\LN .
Consider that the system G is composed of r mod-
ules, such that GN = ‖r

k=1GNk , where GNk is the au-
tomaton that models the normal behavior of Gk, and
let LNk denote the language generated by GNk , for
k = 1, . . . ,r. Then, L is said to be synchronously
diagnosable with respect to LNk , Pk : Σ? → Σ?

k , for
k = 1, . . . ,r, Po : Σ?→ Σ?

o, and Σ f if

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF ,‖t‖ ≥ z)⇒
(Po(st) 6∈ ∩r

k=1Po(P−1
k (LNk))).
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Notice that Definition 3 of synchronous diagnos-
ability of a language L is equivalent to the stan-
dard definition of diagnosability (Definition 2) of
a language La = LF ∪ LNa , where LNa is such that
Po(LNa) = ∩r

k=1Po(P−1
k (LNk)).

It is important to remark that since Po(LNa) ⊇
Po(LN), then diagnosability is a necessary condition
for synchronous diagnosability, but it is not suffi-
cient, i.e., a system can be diagnosable but not syn-
chronously diagnosable. Moreover, since Po(LNa) ⊇
Po(LN), the delay bound for synchronous diagnosis
can be greater that the delay bound for diagnosis. In
(Cabral et al., 2015a; Cabral and Moreira, 2017) it
is also shown that if there do not exist unobservable
events in common between the components, i.e., if
Σi,uo ∩ Σ j,uo = /0 for all i, j ∈ {1, . . . ,r}, and i 6= j,
then Po(LN) = Po(LNa), and diagnosability becomes
a necessary and sufficient condition for synchronous
diagnosability.

2.4 Synchronous Diagnosability
Verification

In (Cabral et al., 2015a; Cabral and Moreira, 2017),
a method for the verification of synchronous diagnos-
ability of modular discrete event systems is proposed.
The method is based on the comparison between au-
tomaton GR

N , whose observable language is equal to
Po(LNa), and GF , that models the failure behavior of
the system G. Automaton GR

N is constructed in two
steps: (i) compute automata GR

Nk
from automata GNk

by renaming its unobservable events using function
Rk : ΣNk → ΣR

Nk
, defined as:

Rk(σ) =
{

σ, if σ ∈ Σk,o
σRk , if σ ∈ Σk,uo

, (3)

and; (ii) compute GR
N = ‖r

k=1GR
Nk

.
In the synchronous diagnosis scheme, the syn-

chronization of unobservable events of the system
modules is lost, which leads to the possible growth of
the estimated normal language by using this scheme.
In order to model the observation of this augmented
language, the unobservable events of the normal
behavior automaton models of the system compo-
nents GNk are renamed using the renaming function
(3), which leads to automata GR

Nk
. Thus, since the

unobservable events of GR
Nk

are private events, for
k ∈ {1, . . . ,r}, the observed language of automaton
GR

N = ‖r
k=1GR

Nk
models the observation of the aug-

mented normal language for synchronous diagnosis,
i.e., Po(LNa) =PR

o (L(GR
N)), where PR

o : ΣR
N→Σo, with

ΣR
N = ∪r

k=1ΣR
Nk

.
According to Definition 3, in order to verify if the

language L of a modular system is synchronously di-

agnosable, it is necessary to verify if the projection
Po : Σ? → Σ?

o of any failure trace st, with arbitrarily
long length after the occurrence of the failure event
σ f , belongs to Po(LNa). If the answer is yes, than L
is not synchronously diagnosable with respect to LNk ,
Pk : Σ? → Σ?

k , for k = 1, . . . ,r, Po : Σ? → Σ?
o, and Σ f .

Thus, the synchronous diagnosability verification is
carried out by comparing automaton GR

N with the fail-
ure behavior automaton GF . Automaton GF is ob-
tained from G following the algorithm proposed in
(Moreira et al., 2011). The event set of GF is Σ, and
its states are labeled with N or F , such that if a state
of GF has the label F , then this state is reachable after
the occurrence of the failure event σ f .

Since the unobservable events of GR
N = ‖r

k=1GR
Nk

are private events with respect to GF , and since
Po(LNa) = PR

o (L(GR
N)), the verification of syn-

chronous diagnosability can be done by searching for
cyclic paths in GV = GR

N‖GF formed by states labeled
with F and with at least one event from Σ. The lan-
guage L is synchronously diagnosable if and only if
there does not exist a cyclic path with these charac-
teristics in GV . In the sequel, we present an example
that illustrates the synchronous diagnosability verifi-
cation.

Example 1. Consider the system G = G1‖G2, where
G1 and G2 are depicted in Figure 1. The set of
events of G1 and G2 are Σ1 = {a,c,e,g,σu} and Σ2 =
{e,h,σu,σ f }, where Σ1,o = {a,c,e,g}, Σ2,o = {e,h},
Σ1,uo = {σu}, Σ2,uo = {σu,σ f }, and σ f is the fail-
ure event. In Figures 2 and 3, we present automata
GN and GF , respectively, obtained by following the
method presented in (Moreira et al., 2011). Automa-
ton G is equal to automaton GF , except for the labels
N and F. In order to verify the synchronous diagnos-
ability, it is necessary to obtain the automaton models
of the normal behavior of the components of the sys-
tem GN1 and GN2 , which can be seen in Figure 4. In
the sequel, automata GR

N1
and GR

N2
, depicted in Figure

5, are computed by applying the renaming function
(3) to automata GN1 and GN2 , respectively. Automa-
ton GR

N = GR
N1
‖GR

N2
, whose observed generated lan-

guage is PR
o (L(GR

N)) = Po(LNa), is shown in Figure
6.

Notice that the gray states of GR
N do not belong

to GN and, thus, all observable transitions related to
such states can contribute to the growth of the esti-
mated normal language obtained by using the syn-
chronous diagnosis scheme. Finally, in order to ver-
ify the synchronous diagnosability of the system G, it
is necessary to compute the verifier automaton GV =
GR

N‖GF and search for cyclic paths formed by states
with the label F and at least one event σ∈ Σ. Since in
GV there is a cyclic path that violates the synchronous
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Figure 1: Automata G1 and G2 of Example 1.
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Figure 2: Automaton GN of Example 1.

diagnosability condition, L is not synchronously diag-
nosable. It is important to notice that, according to
Definition 2, L is diagnosable.

2.5 Synchronized Petri Net Diagnoser

In order to implement the synchronous diagnosis
scheme, in (Cabral et al., 2015a; Cabral and Mor-
eira, 2017), the authors propose a synchronized Petri
net diagnoser (SPND). The SPND is a centralized di-
agnoser, consisting of r Petri net state observers that
provide the state estimate of the normal behavior of
the system components GNk , for k = 1, . . . ,r, and a
failure detection logic. If an event that is not feasible
in at least one of the current state estimate of a given
nonfailure model component, than the failure event is
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Figure 3: Automaton GF of Example 1.
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Figure 4: Automata GN1 and GN2 of Example 1.
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of Example 1.

diagnosed.
The synchronized Petri net diagnoser ND =

(PD,TD,PreD,PostD,x0,D,Σo, lD) is a labeled binary
Petri net formed by Petri net state observers NSOk =
(PSOk ,TSOk ,PreSOk ,PostSOk ,x0,SOk ,Σk,o, lSOk), for k =
1, . . . ,r, where its set of transitions is defined as
TSOk = Tk,o∪̇T ′k,o, where Tk,o is the set of observable
transitions of NSOk , such that each transition t i

k,o ∈ Tk,o
corresponds to an observable transition of GNk , and
T ′k,o is the set of complementary transitions, whose
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Figure 6: Automaton GR
N of Example 1.
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function is to remove tokens from the places that do
not belong to the estate estimate of GNk after the ob-
servation of an event. Consider a state q j ∈ Q of
GNk , the complementary transition t ′

j

k,o ∈ T ′k,o is la-
beled with all observable events that do not belong
to the feasible event set of q j, i.e., t ′

j

k,o is labeled with
all events of Σk,o \Γ(q j). Therefore, if an event that
is not in the feasible event set of a state that belongs
to the current state estimate of GNk is observed, then
this state does not belong to the state estimate after
the observation of this event. In order to correctly im-
plement this behavior, the complementary transition
of the place associated with this state of GNk will fire
and the token of its input place is removed.

After the Petri net state observers NSOk , for k =
1, . . . ,r have been computed, the next step to obtain
ND is to build the Petri nets NDk by adding a tran-
sition t fk to NSOk , labeled with the always occurring
event. All places of NDk are connected to t fk by in-
hibitor arcs, such that if all places of NDk lose all their
tokens, transition t fk is enabled and fires since it is la-
beled with the always occurring event. Finally, the
synchronized Petri net diagnoser ND is obtained by
grouping all NDk into one Petri net, and adding a place
pF to represent the diagnosis of the failure event. The
place pF is an output place of all transitions t fk such
that if one of the Petri nets NDk loses all its tokens,
transition t fk fires and a token is assigned to place pF ,
indicating the occurrence of the failure event. In the
sequel, we present an example of the SPND for the
system G = G1‖G2, where G1 and G2 are presented
in Figure 1.
Example 2. Consider again the modular system G =
G1‖G2, where G1 and G2 are shown in Figure 1. Al-
though, as pointed out in Example 1, L is not syn-
chronously diagnosable, let us construct the SPND
for this example. Following the method presented in
(Cabral et al., 2015a; Cabral and Moreira, 2017), the
SPND depicted in Figure 7 is obtained. Notice that if
the system generates the failure trace hσ f eh(eh)?, the
failure event σ f is not diagnosed since none of the
Petri nets ND1 or ND2 loses all their tokens.

When the system generates the failure trace
hσ f eh(eh)?, as a consequence of the occurrence of
event h, observable transition t2,1 of Petri net ND2
fires, removing a token from place 0N2 and adding
a token to places 1N2, 2N2, and 3N2. Then, when
event e is observed, transition t1,2 of ND1 and tran-
sition t2,4 of ND2 fire, removing a token from places
0N1 and 2N2, and adding a token to places 3N1 and
0N2. However, transition ((0,2,N),e,(3,0,N)) does
not exist in automaton GN , as shown in Figure 2, and
therefore, the simultaneous firing of transitions t1,2
and t2,4 should be avoided. Indeed, it can be seen in

Figure 2 that event e is feasible only in states (0,0,N)
or (3,2,N) of GN , i.e., if the system is in state 0 in au-
tomaton G1 and state 0 in automaton G2, or in state 3
in automaton G1 and state 2 in automaton G2. Thus,
if we add a condition to the firing of transition t1,2, as-
sociated with the marking of place 0N2 of ND2 , and a
condition to the firing of t2,4 associated with the mark-
ing of place 3N1 of ND1 , the simultaneous firing of t1,2
and t2,4 would be avoided.

In the following section, we propose a modifica-
tion of the SPND in order to decrease the estimated
normal observed language for synchronous diagnosis.

3 CONDITIONAL
SYNCHRONIZED PETRI NET
DIAGNOSER

In this paper, we propose a modification in the SPND,
in order to allow an observable transition to fire in
a state observer Petri net only if this transition also
exists in the normal automaton of the system GN ,
leading to the conditional synchronized Petri net di-
agnoser (CSPND) ND,c. In order to do so, we add
conditions to the observable transitions of the Petri
net state observers NSOk , for k = 1, . . . ,r, based on
GN . These conditions are boolean expressions associ-
ated with places of the Petri net state observers NSO j ,
for j = 1, . . . ,r, and j 6= k.

As illustrated in Example 2, the addition of con-
ditions to the observable transitions of NSOk based
on the normal automaton model GN can contribute
to the diagnosis of the failure event. This leads to
conditional Petri net state observers N c

SOk
, where

each transition is labeled with observable events and
conditions that depend on the marking of places of
Petri nets N c

SO j
, for j = 1, . . . ,r, j 6= k. These condi-

tions are selected based on the possible observable
transitions of GN . Thus, Petri net N c

SOk
is an eight-

tuple N c
SOk

= (PSOk ,T
c

SOk
,Prec

SOk
,Postc

SOk
,x0,SOk ,

Σk,o,CSOk , l
c
SOk

), where lc
SOk

: T c
SOk
→ 2Σk,o ×CSOk is a

labeling function that associates to each transition in
T c

SOk
a set of events from 2Σk,o and a condition C from

CSOk , associated with the places of Petri nets N c
SO j

,
for j = 1, . . . ,r, j 6= k.

In the sequel, we present Algorithm 1 for the com-
putation of the conditional synchronized Petri net di-
agnoser ND,c.
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Figure 7: Synchronized Petri net diagnoser of Example 2.

Algorithm 1. Conditional synchronized Petri net di-
agnoser ND,c.
Input: Petri net state observers NSOk = (PSOk ,TSOk ,

PreSOk ,PostSOk ,x0,SOk ,Σk,o, lSOk), for k = 1, . . . ,r, and
automaton GN .
Output: Conditional synchronized Petri net diag-

noser ND,c.

1: Compute the conditional state observer Petri
nets N c

SOk
= (PSOk ,T

c
SOk

,Prec
SOk

,Postc
SOk

,x0,SOk ,

Σk,o,CSOk , l
c
SOk

), as follows:

1.1: Let T c′
SOk

= /0. Create a new transition
tc
k for each transition q̃Nk = fNk(qNk ,σ) de-

fined in GNk , where q̃Nk ,qNk ∈ QNk , and
σ ∈ Σk,o. For each transition tc

k , define
Prec

SOk
(pk, tc

k ) = 1, if pk corresponds to state
qNk , and Prec

SOk
(pk, tc

k ) = 0, otherwise, and do

T c′
SOk

= T c′
SOk
∪{tc

k}.
1.2: Define T c

SOk
= TSOk ∪T c′

SOk
.

1.3: Define Prec
SOk

: PSOk × T c
SOk
→ N and

Postc
SOk

: T c
SOk
× PSOk → N such that

Prec
SOk

(pk, tk) = PreSOk(pk, tk), and
Postc

SOk
(tk, pk) = PostSOk(tk, pk) for

all pk ∈ PSOk and tk ∈ TSOk , and
Postc

SOk
(tc

k , pk) = Postc
SOk

(tc
k , pk) = 0, for

all tc
k ∈ T c′

SOk
and pk ∈ PSOk .

1.4: Define lc
SOk

: T c
SOk
→ 2Σk,o ×CSOk as:

lc
SOk

(tk,i)=
{
(lSOk(tk,i),Ck,i), if tk,i∈Tk,o∪T c′

SOk
(lSOk(tk,i),1), otherwise,

(4)
with

Ck,i =

{
[
∧r

j=1, j 6=k(
∨

` p j,`)], if tk,i ∈ Tk,o

[
∧r

j=1, j 6=k(
∨

` p j,`)], if tk,i ∈ T c′
SOk

(5)
for all places p j,` ∈ PSO j such that I(tk,i) and
p j,` correspond to states in QNk and QN j that
are the k-th and j-th coordinates of a state qN ∈
QN , respectively, where fN(qN ,σ) is defined for
σ ∈ lSOk(tk,i).

1.5: Define the initial marking of N c
SOk

as xc
0,SOk

=

x0,SOk , for k = 1, . . . ,r.
2: Compute the Petri net N c

Dk
= (Pc

Dk
,T c

Dk
,

Prec
Dk
,Postc

Dk
, Inc

Dk
,xc

0,Dk
,Σk,o,CSOk , l

c
SOk

), where
Inc

Dk
: Pc

Dk
×T c

Dk
→ {0,1} denotes the function of

inhibitor arcs, as follows:
2.1: Add to N c

SOk
a transition t fk labeled with the

always occurring event λ. Define T c
Dk

= TSOk ∪
{t fk}.

2.2: Add to N c
SOk

a place pNk , and define
Prec

Dk
(pNk , t fk) = 1. Set xc

0,Dk
(pNk) = 1, and de-

fine Pc
Dk

= PSOk ∪{pNk}.
2.3: Define Inc

Dk
(pc

Dk
, t fk) = 1 and InDk(pc

Dk
, tc

SOk
) =

0, ∀pc
Dk
∈ Pc

Dk
and ∀tc

SOk
∈ T c

SOk
.

3: Compute the conditional synchronized Petri
net diagnoser ND,c = (Pc

D,T
c

D,Prec
D,Postc

D,
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Inc
D,x

c
0,D,Σo,Cc

D, l
c
D), as follows:

3.1: Form a unique Petri net by grouping all Petri
nets N c

Dk
, for k = 1, . . . ,r.

3.2: Add a place pF and define Postc
D(t fk , pF) = 1,

for k = 1, . . . ,r. Set xc
0,D(pF) = 0.

In the following, we present an example of the
CSPND ND,c for the modular system G of Example
1.
Example 3. Consider the modular system G =
G1‖G2, where G1 and G2 are depicted in Figure 1.
Following the steps of Algorithm 1, the conditional
synchronized Petri net diagnoser ND,c, shown in Fig-
ure 8, is constructed. Notice that, if the system gen-
erates the failure trace hσ f eh(eh)?, the failure event
σ f is diagnosed by the CSPND ND,c after the first ob-
servation of event e, since both Petri nets ND,c1 and
ND,c2 lose all tokens.

It is important to notice that the conditions added
to ND prevent observable transitions that cannot occur
in GN to be considered as belonging to the estimated
normal observed behavior of the system. The practi-
cal consequence of this fact is a decrease in the ob-
served augmented normal language for synchronous
diagnosis Po(LNa), leading to an observed condi-
tional augmented normal language Po(LNa,c), where
Po(LNa,c) ⊆ Po(LNa). Moreover, since the observed
language of automaton GR

N is equivalent to Po(LNa),
in order to model the language Po(LNa,c), we have to
erase the observable transitions of GR

N according to
GN , leading to the conditional normal behavior model
automaton GR

Nc
. This can be done by following the

steps of the algorithm presented in the sequel.

Algorithm 2. Conditional normal behavior model

Input: Automata GN and GR
N .

Output: Automaton GR
Nc

.

1: Flag the transitions f R
N (q

R
N ,σ) = qR

N
′, such that

[(qR
N 6∈ QN)∨ (qR

N
′ 6∈ QN)]∧ (σ ∈ Σo) of GR

N .

2: Compute GR
N
′ by eliminating the flagged transi-

tions from GR
N .

3: Compute GR
Nc

= Ac(GR
N
′
).

In the following, we present a theorem that en-
sures that the removal of observable transitions from
GR

N by Algorithm 2 in order to compute GR
Nc

has the
same effect as the conditions added to ND in order to
obtain ND,c.
Theorem 1. Consider automaton GR

Nc
obtained by

following the steps of Algorithm 2. The observed lan-
guage of GR

Nc
, PR

o (L(GR
Nc
)) = Po(LNa,c), corresponds

to the conditional augmented normal language.

Proof. In order to prove Theorem 1, we must show
that the conditions added to the SPND ND have the
same effect as erasing the observable transitions of
GR

N to compute automaton GR
Nc

. Notice that the con-
ditions added to an observable transition in a Petri net
state observer NSOk only allow this transition to fire if
a set of places of the other Petri nets have tokens as-
signed. This set of places correspond to a set of states
of the normal behavior models of the components of
the system that form a state in GN , where this observ-
able event is active. Therefore, this transition can only
fire in the CSPND ND,c if there exists a correspondent
observable transition in GN . �
Example 4. Consider automata GN and GR

N depicted
in Figures 2 and 6, respectively. Following the steps
of Algorithm 2, automaton GR

Nc
, shown in Figure 9, is

computed. Notice that there are no observable tran-
sitions in GR

Nc
that do not belong to GN . It is im-

portant to remark that the augmented normal trace
ωa,1 = hσR2e(hσR2e)?, that belongs to GR

N , whose ob-
servation in Σo is PR

o (ωa,1) = he(he)? was eliminated
and it is not possible to occur in GR

Nc
. The trace ωa,1

has the same observation in Σo that the failure trace
st = hσ f e(he)n, which makes the system G not syn-
chronously diagnosable. However, after eliminating
the observable transitions of GR

N that do not belong
to GN , the normal augmented trace ωa,1 is not possi-
ble to occur in GR

Nc
, and the failure trace st becomes

conditionally synchronously diagnosable.
It is important to notice that, even with the elimi-

nation of the observable transitions from GR
N that do

not belong to GN , the observable normal language
for conditional synchronous diagnosis can still be a
larger set than the observable normal language of
the system, i.e., PR

o (G
R
Nc
) ⊇ Po(LN). In order to see

this fact, consider the normal augmented trace ωa,2 =
haσuR2σuR1σuR1e(haσuR2σuR1σuR1e)?, whose observa-
tion in Σo is PR

o (ωa,2) = hae(hae)?. Notice that
PR

o (ωa,2) does not belong to the observable nor-
mal language of the system Po(LN), PR

o (ωa,2) =
hae(hae)? 6∈ Po(LN).

It is important to remark that the observed nor-
mal language for the conditional synchronous diag-
nosis Po(LNa,c) is a superset of the observed normal
language of the composed system Po(LN). Therefore,
even if a modular system is diagnosable, this system
is not necessarily conditionally synchronously diag-
nosable. This leads to the following definition of con-
ditional synchronous diagnosability.
Definition 4. Let L and LN ⊂ L denote the languages
generated by G and GN , respectively, and let LF =
L \ LN . Consider that the system is composed of r
modules, such that GN = ‖r

k=1GNk , where GNk is the
automaton that models the normal behavior of Gk,
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Figure 8: Conditional synchronized Petri net diagnoser ND,c of Example 3.
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Figure 9: Automaton GR
Nc

of Example 4.

and let LNk denote the language generated by GNk ,
for k = 1, . . . ,r. Then, L is said to be condition-
ally synchronously diagnosable with respect to LNa,c ,
Po : Σ?→ Σ?

o, and Σ f if

(∃n ∈ N)(∀s ∈ LF)(∀st ∈ LF ,‖t‖ ≥ n)⇒
(Po(st) 6∈ Po(LNa,c)).

Notice that, according to Definition 4, in order to
verify if a system is conditionally synchronously di-
agnosable, it is necessary to verify if there is an arbi-
trarily long length failure trace with the same observa-
tion as a normal trace that belongs to Po(LNa,c). Since,
as shown in Theorem 1, PR

o (L(GR
Nc
)) = Po(LNa,c), and

all unobservable events of GR
Nc

are renamed, in order
to verify the conditional synchronous diagnosability
of a system, the algorithm proposed in (Cabral and
Moreira, 2017) for verifying synchronous diagnos-
ability can be used. In order to do so, instead of using
GV = GR

N‖GF , it is necessary to build GV,c = GR
Nc
‖GF

and search for cyclic paths formed with states labeled

with F and events there are not renamed. If there ex-
ists a cyclic path in GV,c with these characteristics,
then the system is not conditionally synchronously
diagnosable. It can be seen that for the running ex-
ample of this paper GV,c does not have cyclic paths
whose states are labeled with F and at least one event
belongs to Σ. Thus, L is conditionally synchronously
diagnosable.

Remark 1. It is important to remark that since
Po(LNa)⊇Po(LNa,c), even if a system is synchronously
diagnosable, the delay bound for conditional syn-
chronous diagnosis can be smaller than for syn-
chronous diagnosis. In (Cabral and Moreira, 2017),
a method for the computation of the delay bound for
synchronous diagnosis that uses the verifier automa-
ton GV is proposed. The same method can be used for
the computation of the delay bound for conditional
synchronous diagnosis by using the verifier automa-
ton GV,c instead of GV .

4 CONCLUSIONS

In this paper, a conditional synchronized Petri net di-
agnoser is proposed. In order to do so, we propose
the addition of conditions to the observable transitions
of the synchronized Petri net diagnoser (SPND) pre-
sented in (Cabral et al., 2015a; Cabral and Moreira,
2017). We show that the conditional synchronous di-
agnosis can have a smaller delay bound than the syn-
chronous diagnosis approach. Moreover, systems that
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are not synchronously diagnosable can be condition-
ally synchronously diagnosable.
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