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Abstract: Embedded systems pose challenges such as limited memory and power budget. The list of mandatory 
functionality like connectivity, availability and remote configuration increase the software complexity and 
requires a more dynamic behaviour. This paper shows how to introduce object orientation to achieve dynamic 
configuration of processes and communication channels, better usage of RAM and more portable source code. 
This is implemented by a limited use of C++ without libraries in coexistence with existing C code.  

1 INTRODUCTION 

The market for consumer electronics is continuously 
growing and vast amount of processors in the world 
are found in embedded applications. The gap between 
typical applications and embedded applications is 
also diminishing. The application areas are battery 
operated wearable devices (watches, GPS, medical 
sensors, sports sensors). Embedded systems pose 
challenges such as limited resources like memory and 
power budget, the need for energy conservation for 
battery-operated devices and a small form factor. 
Development for resource-constrained devices 
(RCD) has not been able to follow all the trends of 
regular computers. The availability of better batteries 
and platforms with lower power consumption tends to 
max out total operating time and not adding 
functionality. The list of mandatory functions like 
connectivity, availability and remote management, 
has increased as part of the IOT trends. To meet these 
demands a more dynamic behaviour is needed. RCDs 
have traditionally been static by nature due to lack of 
full operation systems (OS) and management 
interfaces. Many RCDs are using an embedded OS 
with real-time scheduling of multiple processes 
compiled in a monolithic block. Basic services like 
semaphores, timers, events, message queues etc. are 
supported. Advanced services like file systems, 
download of separate tasks and TCP protocol stack 
are normally not supported. 

As the functional complexity increases, the need for 
a better software architecture arise. A very common 
architecture for RCDs is a fixed set of process 
instances that are globally known. Communication 
between processes are done by accessing global 
message queues and variables. This architecture does 
not scale for reuse of code. By separating process 
functionality and how processes are connected 
(configuration) it is possible to make reusable 
processes and an architecture that scales. Multiple 
process instances can share code that can be used in 
different configurations. 
This paper introduces an RCD architecture for 
processes as objects enabling i) dynamic control of 
instantiation using µC/OS (Labrosse, 2003) and ii) 
dynamic control of communication links. 
The introduction of object-oriented design (OOD) 
enables reuse of processes as objects much easier than 
in traditional RCD architectures. The main obstacle 
has been the communication links. By introducing 
dynamic communication links as an abstraction, the 
processes can be reused between designs, and only 
the links need to be configured differently. This 
enables multiple configurations in the same binary 
code utilizing RAM and ROM memory more 
efficiently that a traditional static architecture. The 
configurations can be dynamically activated without 
downloading new binary images.  The architecture 
can coexist with the traditional RCD architecture 
without conflicts; hence, it is possible to use legacy 
processes with the new architecture. 

Dalgard, S. and Liverud, A.
Process Architecture Enabling Object Orientation and Dynamic Configuration for Small Embedded Devices - Dynamic Control of Processes and Communication Channels.
DOI: 10.5220/0006435000410048
In Proceedings of the 7th International Joint Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2017), pages 41-48
ISBN: 978-989-758-266-0
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

41



 

This RCD architecture is a variant of the mediator 
design pattern (Gamma, 1995) where the 
communication is directed through a port abstraction. 
This paper targets small RCD devices limited to 128 
kByte program memory (ROM) and 64 kByte data 
memory (RAM). An architecture offering dynamic 
creation of processes and communication channels 
portable to many targets is shown. 
The paper is organized by a state of the art section, 
followed by a description of the process architecture. 
Then implementation details and a test setup is given, 
before test results are presented and discussed in the 
conclusion. 

2 STATE OF THE ART 

Operating Systems (OS) suitable for resource-
constrained devices typically store much of their 
configuration in ROM. This is done mainly for two 
purposes: i) minimize the use of expensive RAM 
memory and ii) minimize the risk that data is 
overwritten by an erroneous application. The OS 
gives the application programmer easy access to 
hardware features. It also provides services that allow 
implementing of timing sensitive code. The build 
environment is normally in a host environment that is 
different from the target environment, using cross 
compilation. The OS is normally statically linked 
with the application at compile time and downloaded 
as a binary file to the device. For more details on 
embedded systems see (Zurawski, 2006). 
Download / upgrade of new binary code is handled 
using proprietary connections and protocols and a 
physical connection is usually required. Upgrades 
over the air are complicated due to fault scenarios. 
Multiple levels of fault detection are needed to assure 
correct binary code. Storage of multiple images is 
usually implemented as a fallback. 

2.1 Full Scale OS 

Dynamic adaptation of processes can easily be 
achieved on computers with a full operation system 
where programs can be stored on a disk and started 
from the command prompt. For devices that are more 
powerful this can be implemented using a down-
scaled version of Linux. To achieve such flexibility 
the programs have to execute from RAM, while ROM 
is used as a read only (RO) filesystem. The RAM is 
usually managed using a Memory Management Unit 
(MMU) to isolate applications from each other and 
from the hardware. Such devices require more power 
and tend to have higher weight and price. 

2.2 Software Components 

Independent modules that can be loaded or updated 
individually are often called software components. To 
achieve this the modules must be dynamically linked 
before they can access the OS. Examples of such 
systems are given by (Dunkels, Finne, Eriksson, & 
Voigt, 2006), (Taherkordi, Loiret, Rouvoy, & 
Eliassen, 2013) and (Hänninen et al., 2008). Such 
designs usually are tightly connected to specific 
object code formats and have special tools for 
dynamic linking that limit portability. When 
executing from ROM or FLASH memory it is not 
possible to update another component in the same 
device. For such updates, multiple FLASH devices 
are required and this is commonly not supported on 
smaller System on Chip (SoC) devices. 

2.3 Static Configuration 

Static configuration means that the configuration is 
fixed at compile time. The source code can be 
modularized using interfaces, and the interfaces are 
connected by use of a configuration. The source code 
can be native C-code as for the Koala project (van 
Ommering, 1998) or derivate of C-code like 
languages like NesC in TinyOS (Amjad, Sharif, 
Afzal, & Kim, 2016) and (Gay, Levis, & Culler, 
2007). Common for these systems is that number of 
instances and the RAM and ROM memory usage is 
decided at compile time. This is based on the 
assumption that dynamic memory allocation is not 
used during task execution. 

2.4 Typical µC-OS Application 

In a typically µC-OS application (Labrosse, 2003) 
message queues are used for asynchronous 
communication between concurrent OS processes. 
Each OS process has its own message queue that is 
globally known. The program is a monolithic 
construction. Each task knows to which other tasks to 
communicate. The communication is based on a set 
of globally predefined message IDs. Due to the 
unidirectional communication pattern, identification 
of message originator has to be supported in the 
message definition as an explicit field or deduced 
from the message type. Without this information, it is 
not possible to reply to the originator. The result is a 
static flat communication structure where all 
communication dependencies are intertwined. The 
communication pattern is defined at compile time. 
Normally the different processes (ProcA … Proc_n) 
are started as separate OS processes with allocated 
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stack area by the main() function at start-up. Each 
task is a separate c-code module with its local (static) 
variables and message queue. The architecture is 
shown in figure 1. 

                           Process B
qProcess A

q|

                           Process C
q

                           Process D

q

Process E
q

 

Figure 1: Process architecture using global queues. 

If an additional instance of a process is needed the flat 
structure does not support this as a concept. The new 
instance needs its own OS task and a set of local 
variables and a message queue. Because each task has 
hardcoded communication, it is not possible to start a 
new instance sharing the same code. The process 
source code has to be changed / duplicated. This will 
force an update/rewrite of several tasks when new 
functionality is added. It is possible to have different 
operational configurations deciding the mode of the 
device. This is typically done by tests inside the 
different processes. Due to static variables and the 
fact that all processes are started at start-up the RAM 
usage will be the superset of all configurations. To 
reduce RAM usage, the unused functionality has to be 
removed from the build. Dynamic memory allocation 
(heap) is normally avoided due to complexity to 
assure real-time response. Fragmentation over time is 
a problem and there is no operator to help out if the 
device fails. Some designs are using dedicated pools 
to assure predictable response.  

3 DESCRIPTION OF THE 
PROCESS ARCHITECTURE 

The new architecture shown in figure 2 is based on a 
static build (one binary image) consisting of a set of 
processes and an operation system (OS) with services 
for task scheduling and message queue handling. A 
configuration manager is added to dynamically 
manage the processes and their communication. This 
enables multiple process and communication 
configurations to be specified after the build is 
deployed on an RCD.  

Operating system

Process

Configuration manager

Task 
scheduler

Message 
queues

ProcGen Ports

ProcessProcess

 

Figure 2: The new process architecture. 

3.1 Processes Creation 

Multiple process instances require handling of 
instance variables. A process should not require any 
RAM resources before creation (instantiation). By 
controlling which process to create the usage of the 
restricted RAM resources is controlled. Dynamic 
memory management adds an unwanted uncertainty. 
This is handled by allocating all the needed instance 
memory at process creation. Dynamic memory 
creation during process execution is normally 
avoided due to unpredictable response time and 
fragmentation. However, the architecture does not 
impose any restrictions on usage of dynamic memory 
allocation for advanced process logic.  

ProcessA Class ProcessB Class ProcessC Class

ProcessA_Factory

static Instantiate()
static GetProcessInfo()

ProcessA

ProcessB_Factory

static Instantiate()
static GetProcessInfo()

ProcessB

ProcessC_Factory

static Instantiate()
static GetProcessInfo()

ProcessC

CommandParser
ConfigurationManager

Instantiate()
GetProcessInfo()

OperatingSystem

TaskCreation()

ProcessGen

TaskCreate()

Ports

Number of ports is given
by process factory

creates

many

1

creates

many

1

creates

many

1

create instance
create instance

create instance

calls

creates process

 

Figure 3: Process creation using factories. 

When creating a new process instance there are many 
process specific parameters to control like stack size 
and number of ports. This is handled using the factory 
pattern described in (Gamma, 1995). Each process 
type have their own static factory method that handles 
process specific parameters as shown in figure 3. 
A configuration manager interfaces a command 
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parser, and keeps track of all process types and 
created processes. 
The operating system has to support dynamic process 
creation. This rule out static operating systems where 
a complete process setup is given at compile time. 

3.2 Processes Generalisation and 
Control 

All process types are based on a process 
generalisation providing methods to manage all 
process instances (start/stop) and communication 
channel management (create/delete). This maximises 
reuse of management code for all process types. It 
also simplifies implementation of new process types. 
The configuration manager is accessing the 
generalized methods when controlling process 
instances as shown in figure 4. 

ProcessA Class ProcessB Class ProcessC Class

ProcessA

TaskMain()
GetTaskTypeName()
GetPortInfo()

ProcessB

TaskMain()
GetTaskTypeName()
GetPortInfo()

ProcessC

TaskMain()
GetTaskTypeName()
GetPortInfo()

CommandParser

OperatingSystem

TaskExecution()
MessageSend()
QueueWait()

ConfigurationManager

Resume()
Suspend()
CreateChannel()
DeleteChannel()

ProcessGen

virtual TaskMain()
virtual GetTaskTypeName()
virtual GetGetPortInfo()
Resume()
Suspend()
GetTaskInstanceName()
CreateBidirChannel()
DeleteChannel()

Ports

SetPortParams()
GetRemotePort()
SendMsg()
ReceiveWaitMsg()

Virtual class extended by all processes
Used for control of instances

1controls1
many

executes

1

many

uses

many

1

calls

 

Figure 4: Process management using ProcessGen. 

3.3 Communication Links 

All processes are communicating using channels 
connected by ports. The ports are part of the process 
generalization and reused by all process types. The 
number of ports for a specific process type is defined 
by its static factory. Each process instance has its own 
input queue shared for messages to all ports as shown 
in figure 5. To handle a shared queue the message 
payload must provide information about destination 
port number. General channels are bidirectional, 
which means sending a message to the incoming port 
will send it back to the originator. This makes it easy 
to implement client server design interaction model 
as described in (Zurawski, 2006) chapter 2.2. The port 
pair using a channel needs to use a common set of 
messages, while different port pairs may use different 
messages or protocols. The port concept is essential 
to configure the communication channels. The code 

inside the process only relate its communication to 
the ports. The number of ports and their functionality 
are specific for each process. This makes an 
abstraction of the communication channel and 
enables multiple instances and different 
configurations. 

                           Process Bp1
p2
p3

Configuration manager

Process A p1
p2
p3

|

                           Process Cp1

                           Process Dp1
p2
p3
p4
p5
p6

Process A p1
p2
p3

 

Figure 5: Process architecture using channels. 

4 IMPLEMENTATION AND TEST 
SETUP 

4.1 Targets, OS and Compilers 

Based on an existing codebase and experience, our 
experiments were done using µC/OS-II and µC/OS-III. 
This is a portable, pre-emptive real-time multitasking 
operating system kernel for microcontrollers. It is 
ported to a large number of microcontrollers and 
processor architectures. It provides semaphores, event 
flags, mailboxes and queues, time management and 
memory block management. The footprint of the 
kernel is low and can be configured from 5Kbytes to 
24Kbytes. The operating system kernel was initially 
written as a teaching tool and later developed as a 
commercial product. It is free for educational and non-
commercial use. 
In the setup of the process architecture, we are using 
the kernel for multitasking and queues for message 
communication. The architecture does not limit the 
introduction of other OS functions when required. 
The operating system µC-OS is a pure C component 
with an extensive library that requires all APIs to be 
accessible for C-code modules. 
For the process architecture, multiple instances of a 
process are important from a reuse point of view. The 
current concept of using a (C-code) module with 
statically defined process variables does not support 
multiple instances. It must be easy to make equal or 
almost equal processes without duplicating and 
rename code. In order to have multiple instances, all 
process variables have to be instantiated for each 
instance. This is possible if all instance variables are 
allocated when the process is created enabling shared 
code and unique variables for each instance. A natural 
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choice was to introduce a restricted subset of C++. 
We needed the class concept to support encapsulation 
and instantiation, but we did not add the C++ 
libraries. The concept is to embed C-code into C++ 
classes. The amount of C++ functionality to use 
should not be enforced by the process architecture. 
For memory allocation we made a dedicated static 
array that was used when creating processes. The C++ 
'new' method was customized to use the static array. 
We found easier to control and monitor than using the 
system heap. The total memory available from the 
heap is not an exact figure in many systems, since 
heap and stack grow towards each other. This does 
not make sense in a multitasking system with one 
stack for each process. 

4.2 The Processgen C++ Class 
Hierachy 

The ProcessGen is a virtual class that hides 
interaction with the OS and the command manager. It 
hides the differences between µC-OS-II and µC-OS-
III when it comes to process creation and managing 
processes. The process functionality is implemented 
as sub-classes that are portable between the two OSes. 
The class is a placeholder for all process information 
needed by the OS including allocated stack and 
queue. It also has methods to create, resume and 
suspend of the process. 
Methods for setup and deletion of communication 
channels are placed in ProcessGen because this 
requires information about tasks and ports. The ports 
themselves are part of a separate class. The Port class 
instance is member of ProcessGen. 
Two virtual methods are used to access process type 
specific functionality. The TaskMain() is the entry 
point for process execution. This method is called 
once when the process is activated, however it 
normally never returns. It consists of a while loop 
waiting for a message from the queue, processing it 
and generating some result. The GetTaskType() is 
used to identify the process type. Together with static 
information about the ports for that process type, 
communication channels can be configured. 
The µC-OS is implemented in C and has no specific 
support for C++. Our selected compilers (IAR and 
GCC) support both C and C++ interaction when using 
"Extern-C" calling convention. This makes it possible 
to call "C-functions" bridging code compiled for C 
and code compiled for C++. The challenge is that C 
does not have the class concept. This excludes C code 
calling class methods. To enable µC-OS to handle 
C++ processes a static adapter function has been used. 
The flow using the function is shown in figure 6. 

When calling the OS function osTaskCreate() we pass 
a start-up function pointer and a custom value. The 
custom value is passed as argument to the start-up 
function when the process is activated. This can be 
used to pass a class pointer to the adapter function. 
By using this setup the C code can start and manage 
the C++ process classes as normal C processes. 

Class ProcessA : public ProcessGen{
  TaskMain()
}

Class ProcessGen {
  virtual TaskMain();
  static Adapter( arg) {
    ((ProcessGen*)arg->TaskMain();
  }
  TaskCreate() {
    osTaskCreate(
      ProcessGen::Adapter,
      this);
  }
}

UC-OS

 C
++

 
 C

 osTaskCreate(
   startFp,
   arg)

3

1
2

4
5

6

 

Figure 6: Process create interacting C++ and C. 

4.3 The Port C++ Class 

The Port class is representing the port abstraction that 
is used for sending and receiving messages. The 
number of ports and their names are process specific. 
This is important to keep the memory consumption as 
low as possible. Each port have information about the 
far end (process and port number).  

Class ProcessGen{
  :
  PortClass Ports;
  :
}

Class PortClass {
  :
  struct port_element {
    ProcessGen *RemProc;
    int16_t     RemPortNum;
  } *PortArr;
  :
}

Proc "P1"
  PortArr
    Idx RemProc  RemPortNum
      0    P2                 1        
      1    P3                 2

Proc "P2"
  PortArr
    Idx RemProc  RemPortNum
      0    P3   4
      1    P1                 0        

 

Figure 7: Creating channels by connecting ports. 

The relation is one direction, from local port to far end 
port. To establish a bidirectional connection both 
ports have to be configured in antiparallel as shown 
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in figure 7. This makes it possible to also represent 
unidirectional connections, while a multicast (one to 
many) is not possible. When keeping the relations to 
one-to-one the architecture scales well since the port 
allocation follows the process allocation. 

4.4 Configuration Script 

Information about task types, port names and roles, 
running tasks and channels can be read by using RCD 
commands in a simple serial console interface. The 
commands available are: 

task  
  instantiate <task_name>  
              <instance_name>  
              <param1> 
              ... 
              <paramN> 
  active  - List active task instances 
  memory  - RAM used by task instances 
  run  [instance_name] (default all) 
  stop <instance_name> 
  types    - List task types 
  zero <instance_name> 
 
channel   
  create <local_instance_name> 
         <local_port_name>  
         <remote_instance_name> 
         <remote_port_name> 
  delete <local_instance_name> 
         <local_port_name> 
  list 
 

The commands listing tasks and channels do span an 
arbitrary number of lines. The start and end of the 
listing is indicated as shown here: 
HEADS->norm> task types 
Listing of supported task types 
Task type=Requester PO(0):p0 
Task type=Server PO(0):p0 PO(1):p1 
Task type=CtrlPorts RO(0):ctrl_mob 
   RO(1):ctrl_bt RO(2):ctrl_spi  
Task type=Receiver PO(0):rx0 PO(1):rx1 
   PO(2):rx2 PO(3):rx3 
Task type=Sender RO(0):tx0 RO(1):tx1 
   RO(2):tx2 RO(3):tx3 
End of task type listing 
 

All device specific information is available from the 
device. To start a process only a few commands are 
required as shown here: 
task i Receiver rx 
task i Sender tx 
channel c tx tx0 rx rx0 
task run 
 

4.5 Test Setup 

The dynamic process architecture is tested for use of 
resources, execution overhead as well as RAM and 
static code memory usage. Two small RCD systems 
are used for the testing; an Energy Micro (now Silicon 
Labs) EFM32 based sensor (www.silabs.com) with 
IAR Embedded Workbench for ARM version 7.40 
(www.iar.com) as well as a Cypress PSoC5 
development kit (www.cypress.com) with PSoC 
Creator v. 4.0. The testing is done based on the 
following code levels: 
1. Basic systems, legacy µC-OSII/III system with 

operational processes without test processes 
added. 

2. Basic systems with three additional processes, 
R1S, R2S and SS. R1S and R2S are coded to send 
µC-OS-II/III messages to SS, while SS will return 
message to the sender (R1S or R2S). R1S and R2S 
can be initiated to send messages to SS in a loop 
by a console command. The elapsed time for the 
complete loop is measured. The architecture is 
illustrated in figure 8. This level will show how 
much it costs to add the new static processes to 
the build. 

Q

Q

H1

H2

SS
R1S

Q

R2S

Basic systems, uC-OSII/III with operational processes 
 

Figure 8: Static architecture with two processes sending 
µC-OS-II/III messages and one process returning messages 
to the sender. 

3. Same static RCD architecture, compiled with 
C++ compiler instead of plain C compiler. This 
level will show how much it costs to enable C++ 
compilation and linking. 

4. Dynamic architecture as shown in Figure 9, 
however the SD object and class is removed.  

5. Dynamic architecture as shown in Figure 9, 
however the RD objects and class are removed.  

6. Complete dynamic architecture as shown in 
Figure 9. 

The static and dynamic architectures (level 2 and 
level 6) are tested for execution speed by sending 
messages in a loop (60000) and measuring the 
elapsed time by use of the microcontroller clock. 
Each tests are repeated 10 times to ensure no time 
variations. 
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Q H

SD

RD

RD

P0

Common

Channel 
setup

Config 
manager

P0

P0

P1

Basic systems, uC-OSII/III with operational processes 
 

Figure 9: Dynamic architecture with two instances of 
process RD sending µC-OS-II/III messages and one process 
SD returning messages to the sender, dynamic channel 
configuration. 

The ROM memory usage for each level is recorded 
from the map-file from the linker. The RAM usage is 
also recorded from the map-file for the static code, 
and through a combination of map-file and console 
commands for dynamic RAM usage.  

5 RESULTS 

The execution time for sensor running Energy Micro 
EFM32 (32 MHz) and Cypress PSoC5 (60 MHz) for 
60000 loops is shown in table 1. The major reason for 
increased execution time is due to the port class doing 
lookup between port number and queue to find where 
to send the message. 

Table 1: Execution time results. 

Architecture EFM32 PSoC5 

Process R1 R2 R1 R2 

Static architecture 1085 1085 1489 1500 

Dynamic architecture 1147 1137 1551 1546 

Difference 5.7% 4.7% 4.2% 3.1% 

The additional ROM memory required for the 
different steps in section 4.5 is shown in table 2. 
These results are relative to code level 1 at 61288 
bytes for EFM32 and 65792 for PSoC5. 

Table 2: ROM memory overhead. 

Code level EFM32 PSoC5 

Level 1 0 0 
Level 2 +2108 +2816 
Level 3 +2108 +2816 
Level 4 +8328 +10240 
Level 5 +8232 +10240 
Level 6 +8848 +11264 

The increase in ROM usage for level 2 and 3 is due to 
the added processes R1S, R2S and SS. For level 4, 5 

and 6 it is more complex; when adding a process the 
common code for i) ProcessGen and Port classes that 
bring in reusable code for handling dynamic 
processes and dynamic channels and ii) the 
configuration manager handling all the commands. 
The different components can be calculated based on 
the following equations:  

SizeL4=SizeCommon+SizeRD (1)

SizeL5=SizeCommon+SizeSD (2)

SizeL6=SizeCommon+ SizeRD+SizeSD (3)

The component contribution when applying the 
equations 1, 2 and 3 are shown in table 3. This shows 
that the ROM code for building one process type is 
about the same for the static and the dynamic 
architecture. For the dynamic architecture  common 
ROM code to handle the architecture features is 
added once in the build. 

Table 3: Calculated ROM details. 

Component EFM32 PSoC5 

SizeCommon 7712 9216 

SizeSD 616 1024 

SizeRD 520 1024 

Table 4 shows that the RAM overhead for level 4 to 
6 were dynamically allocated when the processes 
were created. The total RAM consumption for level 2 
and 6 are in the same range. It was expected that RAM 
usage at level 6 were slightly higher than on level 2 
due to more process information to keep in RAM. We 
did not find out why this not was the case for PSoC5. 

Table 4: RAM overhead relative to code level 1. 

Code level EFM32 PSoC5 

Level 1 total 0 0  
Level 2 and 3 addition +1670 +2112 
Level 4 to 6 not including 
dynamic RAM use (see below). 

+93 +96 

Level 4a dynamic RAM use, 
single R task 

+784 +628 

Level 4b dynamic RAM use, 
two R tasks 

+1568 +1256 

Level 6 dynamic RAM use +2360 +1892 

6 CONCLUSION AND 
DISCUSSION 

The architecture was succsesfully tested for both 
dynamic creation of processes and communication 
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channels. It was ported to two differnt compilers and 
two different OS variants. 
The overhead for the introduction of the C++ 
compiler is very low. The usage of C++ libraries 
causes added cost. In our use of objects for 
encapsulation and inheritance, there were no use of 
additional libraries. We got increased portability and 
maintainability. 
We found that the Cypress PSoC5 IDE had no support 
for C++ libraries, but it was easy to add compiler 
directives to enable C++ compiler functionality. IAR 
had support for embedded C++ with a limited support 
for C++ libraries. 
We made a set of base classes hiding the differences 
between µC-OS-II and µC-OS-III. The classes 
effectively hid all differences managing processes 
and message communication. The process 
functionality was implemented as sub-classes that are 
portable between the two OSes. 
The architecture will enable ROM code with 
processes for several application variants. The device 
can be enabled with one application variant by use of 
a script or remote commands. This reduces the need 
for downloading new code when changing between 
application variants. Downloading code costs energy, 
thus the architecture can provide increased 
operational battery time. 
The architecture can simplify code generation from 
design specific languages like ThingML (Harrand, 
Fleurey, Morin, & Husa, 2016). ThingML among 
other tools are modelling objects using message based 
communication. When using the port concept from 
the architecture, the code generation from such a tool 
is simplified due to the concept similarities such as; i) 
many object instances and ii) communication using 
channels. The architecture also makes remote 
configuration possible by interfacing tools like 
Kevoree (Tricoire et al., 2016). Then sensor devices 
can be managed using the same tools as cloud 
services. Future work will focus on automatic 
management of messages reducing manual interface 
coding. Today much time is used writing and 
maintaining proxy functions dedicated to each 
message type. Automating this process will save 
coding time and reduce time used for debugging. 
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