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Abstract: An order reduction problem for linear time invariant models brought to the multi-objective optimization 
problem is considered. Each criterion is multi-extremum and complex, requires an efficient tool for estimating 
the parameters of the lower order system and characterizes the model adequacy for the unit-step and Dirac 
function inputs. A common problem definition is to estimate the lower order model coefficients by minimizing 
the distance between the output of this model and the initial one. We propose an evolution-based multi-
objective stochastic optimization algorithm with a restart operator implemented. The algorithm performance 
was estimated on two order reduction problems for a single input-single output system and a multiple input-
multiple output one. The effectiveness of the algorithm increased sufficiently after implementing a meta-
heuristic restart operator. It is shown that the proposed approach is comparable to other approaches, but allows 
a Pareto-front approximation to be found and not just a single solution. 

1 INTRODUCTION 

The idea of reducing an identification problem to a 
black-box optimization problem (BBOP) is 
considered in this study. The initial identification 
problem is to estimate the parameters of the linear 
time-invariant (LTI) system of the lower order with 
the aim of making its behaviour close to the behaviour 
of the higher order model. In many different studies 
(Narwal et al., 2016), (Desai et al., 2014) and 
(Ramesh et al., 2011) the approaches and therefore 
the models are compared by several criteria, but the 
model parameters were identified by one of them and 
so the others are indicative. Commonly, these criteria 
are based on the sum of the output errors, where the 
output is a reaction on the unit-step or Dirac function 
input. Generally, these criteria form a non-dominated 
set of the identification problem solutions, and that is 
why the estimation of the lower order parameters 
leads to a multi-objective (MO) optimization 
problem. In this case, the proposed problem definition 
is a generalization of the LTI identification problem. 

The BBOP appearing in system identification is a 
complex multimodal problem. Recent works on the 
LTI order reduction problem are based on a 
combination of stochastic nature-inspired 

optimization algorithms and methods of providing 
stability, i.e. (Chen et al., 1979), and its first 
combination with an optimization technique was 
initially given in (Parmar et al., 2007). Nature-
inspired stochastic optimization algorithms are used 
to solve reduced optimization problems: a genetic 
algorithm (Ramesh et al., 2011), Big Bang Big 
Crunch (Desai et al., 2014) and Cuckoo Search 
Optimization (Narwal et al., 2016). The comparison 
made in these works proves that heuristic 
optimization is an efficient tool for solving an 
extremum seeking problem of this class. Solving the 
described MO optimization problem also requires an 
efficient tool, which is used to estimate not only the 
best solution by each of the criteria, thus dealing with 
multimodality and complexity, but also the Pareto set. 

As the main optimization algorithm, PICEA-g 
was used. This algorithm was improved by 
implementing a meta-heuristic, the aim of which is to 
avoid stagnation areas and improve the search by 
controlling the initial generation randomization. The 
main idea of the restart operator is given and 
developed in studies (Fukunaga, 1998) and 
(Beligiannis et. al., 2004), but was sufficiently 
modified in (Ryzhikov and Semenkin, 2017), where 
it was applied for a single-criterion optimization 
problem and in the current study it was modified for 
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solving MO problems. For this purpose, the main 
restart criteria were modified and the process of 
gathering information for the optimization problem is 
related to other statistics. This data is used to improve 
the efficiency of the Pareto estimation algorithm and 
to perform the final Pareto set estimation.  

The proposed approach is based on asymptotic 
equivalence (Ryzhikov et al., 2017), so the lower 
order model output integral square errors are always 
convergent. The stability of the dynamical system 
model is provided by including a penalty function in 
the criteria. Determining the solution in this way 
increases the dimension of the search variable space 
by one for each system output. This approach was 
compared to other approaches on the same problem 
set and with the same number of objective function 
evaluations for solving the LTI order reduction 
problem for single-input single-output (SISO) 
systems and multiple-input multiple-output (MIMO) 
systems. 

The rest of the paper is organized as follows: in 
Section II the order reduction problem is presented. 
The restart meta-heuristic and MO evolution-based 
algorithm are introduced in Section III. The 
experiments conducted and the results obtained are 
included in Section IV. The conclusions are presented 
in Section V. 

2 ORDER REDUCTION 
PROBLEM STATEMENT 

The SISO LTI system model is determined by the 
following linear differential equation 

       
0 0

n m
i i

i i
i i

a x t b u t
 

    , (1)

where , 1,ia R i n   and , 1,ib R i m   are the 

model parameters, :n n m  is the equation order, 

 0,t   is the time variable,    ix t  is the i -th 

derivative of the output,    iu t  is the i -th derivative 

of the control input. 

In this study we consider the case    0 0x t  , so 

after using the Laplace transformation, the model can 
be represented with a transfer function 

 
0 0

m n
j i

j i
j i

G s b s a s
 

    . (2)

The MIMO LTI system is determined by the 
following matrix equations, 

     d
X t A X t B U t

dt
    , 

     Y t C X t D U t    , 
(3)

where    : 0 oNY t R R    is the output function, 

oN  is the number of outputs,    : 0 cNU t R R    

is the input function, cN  is the number of inputs, 

   : 0 sNX t R R    is the space variable, the 

system matrix s sN NA R  , the control matrix 
s cN NB R  , the output matrix o sN NC R   and the 

feed-forward matrix o cN ND R  .  
In this paper, we consider the MIMO system with 

two inputs and two outputs, thus, its transient 
function, which is determined by the equation  

    1

sW s C s I A B D
       can be represented 

with the expression 

     
   

1,1 1,2

2,1 2,2s

W s W s
W s

W s W s

 
  
 

, (4)

where      , , ,i j i j i jW s D s N s , and , ,,i j i jD N , 

, 1,2i j  , are the denominator and nominator, 

respectively. Factoring out the denominator gives 

   
   
   

1,1 1,2

2,1 2,2

1 s s
s

s ss

N s N s
W s

N s N sD s

 
  

 
, 

   ,

,

i j
s

i j

D s D s , 

     , , ,

,

p q p q i j
s

i j

i p j q

N s N s D s

  

   . 

(5)

To provide the convergence of integral errors, the 
asymptotical equivalence approach is used (hidden 
reference 2), where the higher and lower order model 
output equivalence is guaranteed by the limit 
equivalence of the fraction of parameters 

  0

0

lims

t

b
a x t

a
  , (6)

where the coefficients 0a  and 0b  are given in (1) and 

known. This means that the first one could calculate 
the initial model (system) output asymptote sa , and 
on the basis of this determinate the parameters of the 
lower order model using the formula (6). 

Since our aim is to approximate the initial model 
with the lower order model, we need to estimate the 
parameters of the 2nd order model which is 
determined by the following transfer function 
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  2 1
2

0 1

,
s

m

p s a p
G s p

s p s p

  


  
, (7)

for the SISO systems and 

 
1,1 1,2

2,1 2,2

1
, m m

m
m m m

N N
G s p

D N N

 
  

 
, 

  2
0 1,mD s p s p s p    , 

     
,

11 2 1 2 1,i j s
m i j i jN s p p s a p          , 

(8)

for the MIMO systems. 
Now to provide the 2nd order model stability we 

require the following condition 

0 00 0p p    , (9)

where the parameter comes from (7) or (8). 
We want the model with the reduced order to be 

an adequate estimation of the LTI system, so its 
response needs to be close to the response of the 
model with the higher order on the same control input 
 u t . The response is a function on a time domain 

and for both models it can be found by solving the 
Cauchy problem for (2) and (7) or (4) and (8). Since 
we consider the unit-step and the Dirac functions as 
inputs, the output can be expressed via the inverse 
Laplace transformation: 

     1( , ) ,u mx t p L G s p L u t  , 

     1ˆ ( )ux t L G s L u t  , 
(10)

for the SISO LTI systems and  

 
    

 

,
, 1

,
,

,

i j
mi j

u
m

N s p L u t
x t p L

D s p

 

   
 

, 

      
 

,
, 1ˆ

i j
si j

u
s

N s L u t
x t L

D s

 

   
 

, 

(11)

for the MIMO LTI systems. Using expressions (10) 
and (11) to calculate the responses of the models on 
different input functions, one can identify parameters 
as the solution of the extremum problem 

      2

0

ˆ ,
N

u
siso u i u i

i

C p x t x t p


  , 

 
3

minu
siso

p R
C p


 . 

(12)

for the SISO system or 

      2, ,

, 0

ˆ ,
N

u i j i j
mimo u k u k

i j k

C p x t x t p


  , (13)

 
2

min
Ns

u
mimo

p R
C p


 , 

for the MIMO system. In criteria (12) and (13) the 

values , 1,it T i N i N    are the time points, T  is 

the final time and N  is the number of points. 
In this study, a penalty function is used to 

implement the stability condition (9) into the criteria 
(12) and (13). The modified criteria are as follows, 

   
30 minu u

siso siso
p R

C p C с P p


    , (14)

     
20 min ,

Ns

u u
mimo mimo

p R
C p C p с P p


     (15)

where    : 0P R R    is a static penalty 

function  
0, 0

, 0

x
P x

x x


  

 and 0с   is a 

coefficient.  
To analyse the solution adequacy on the whole 

time domain three more criteria are used. These 
criteria are involved in comparing the efficiency of 
the approaches. Let      * ˆ, ,x t x t p x t    be the 

solutions of (10) or (11), the input is the unit-step 
function    u t t   and  * arg min sisop C p   or 

 * arg min mimop C p  , depending on the problem.  

The first criterion we want to calculate is the integral 
square error 

 2

1

0

ˆ( ) ( )I x t x t dt


   , (16)

Its estimation was used to identify the parameters via 
solving problems (14) or (15). The integral (16) is 
divergent if    ˆlim lim

t t
x t x t  

 , and for this 

reason the function (6) is implemented and the 
stability condition is required.  

The next criteria concern the relative integral 
square error; they are given in (Parmar and Prasad, 
2007) and are proposed in order to check the accuracy 
of the model. Both criteria are expressed with by 
fraction: 

    

    

2

0
2

2

0

ˆx t x t dt

I

x t x dt



 



 




 




, (17)

and the second is for the input    u t t  , 
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    

  

2

0
3

2

0

ˆx t x t dt

I

x t dt



 










. (18)

The result of the inverse Laplace transformation (10) 
and (11) can be found symbolically for the current 
problems, where the initial and reduced order models 
are linear. 

3 RESTART META-HEURISTIC 
AND PICEA-G 

The optimization problem considered in this study 
can be represented in a following way: 

   : , dimm
AC a A C R A n   , 

      1 ... m
a A

C a С a С a extrem


  , 
(19)

where A is a space of alternatives with dimension n
, AC  is a subspace of some Euclidean vector space 

mR ,    1, : : ,i
i A j A

j

i m С A C R С A C      are 

the unknown mappings. After the problem 
formulation and the determination of the 
identification parameters, we can use a bijection 
between alternatives and binary strings, so every 
alternative can be determined with a real value vector 
and thus a binary string. Generally, the criteria (19) 
are computable functions or mappings with unknown 
properties and unknown symbolic form. 

For solving MO BBOP we propose using the 
PICEA-G algorithm, which is population-based. 
Each population is a set of different solutions – a set 
of alternatives and our aim is to approximate the 
Pareto front. In this case, there is a contradiction 
between the need for an in depth search to improve 
current solutions and for a search in breadth to 
approximate the whole front. 

To resolve this contradiction we put forward a 
hypothesis that restarting the Pareto front estimation 
algorithm improves the population-based 
optimization algorithm efficiency. This is why an 
independent restarting operator meta-heuristic was 
designed and implemented. The proposed meta-
heuristic estimates if the stagnation condition is met 
and evaluates the parameters for the randomized 
performing of the initial generation. The stagnation 
estimation is based on the distances between the 
Pareto front estimations, which are taken at the 
current generation and the previous one and consist 

only of non-dominated individuals. If the distance 
does not change for a given number of generations, 
the MO optimization algorithm restarts. A more 
detailed explanation is given below. 

Let the population in the i -th generation be noted 
as iP . For each algorithm generation a set 

      : , : ,
С

i j k j kj k j kS a A k i j k S a a a S        

and a set   ,i j j iF C a a S   are formed. These sets 

are the Pareto set and front estimations at the i -th 
generation, respectively. It is easy to see that 

1i i ii S S P   , so the distance  1,i iF F   between 

two different sets iF  and 1iF   is calculated for the 

non-dominated solutions found in the current 
generation. Let F  be a set of any limited cardinality 

 , 1,m
iF f R i F   , then 

   , : 0 ,a bF F F F R     

      
1

1
, min

a

m
b

F

a b a bi jj F R
ia

F F F F
F 



   
,

(20)

where  : 0m

m

R
R R    is a norm on the mR  

vector space. 
The decision of whether to perform a restart or not 

is made on the basis of the specific variable value. 
This variable is the diameter of a set, which is a queue 
that consists of the metric values of the previous 
iterations. Let the number of iterations be noted as 

taill , then the set is determined  in the following way 

    1, :i tail j j tailTail l F F i l j i     , (21)

and the meta-heuristic performs the restart if the 
following condition  

     max min
tailtail

i i tail
j lj l

Tail j Tail j


   , (22)

is met. As can be seen from equations (21) and (22), 
two different operator settings are used: the tail length 

taill  controls the size of the observation period and 

tail  is a threshold level.  

Now, if the restart takes place, we collect the 
current algorithm run data and put it into the sets to 
gather information about the MO optimization 
problem and algorithm’s behaviour to provide its 
control with the meta-heuristic. In this case, we need 
the estimations of the Pareto front and Pareto set, the 
last generation population and its criteria values. 
These sets are used for performing the final solution 
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and initial generation population of the next algorithm 
run:  

 S S iMemory Memory S  , 

 F F iMemory Memory F  , 

 P P iMemory Memory P  , 

 C C iMemory Memory C  ,  

where     : , 1,i j j i ij
C F c c P j P   . 

The generation of the initial population is an 
important feature of the meta-heuristic and it directly 
influences the algorithm’s performance. This 
generation is controlled by two parameters: the 
probability of each individual in this initial population 
being randomly generated -  , and the probability of 
each gene of the individual being changed to the 
opposite -  , in the case of the individual not being 

randomly generated. Each j -th individual can be 

generated by one of the proposed schemes and it 
means that its k -th gene in the initial population is 
generated in one of the following ways: 

      0 , , ,, 0 1j k j k j kj k
P r P r P r    , (23)

with the probability   and with the probability 1
: 

     1
2

3
0 ,,

j
j

c S j kj rk r
P f Memory r

 
  

 
, (24)

where k  is the index of a gene,  
, 0

,
, 1c

v p
f v p

v p


  

 

is a special function and 1
jr , 2

jr , 3
,j kr  are the random 

values: 

   1 11 ...j j SP r P r Memory    , 

    1
2 21 ...

j
j j S r

P r P r Memory    , 

   3 3
, ,0 1 1j k j kP r P r      . 

By varying parameters   and   we control the initial 

population generation. If we want the initial 
population to be completely randomized, we set   to 
1, and if we want it to be in a some sense near to some 
previously estimated Pareto set solutions, we set it 
closer to 0 and   closer to 0 too, where   represents 

the closeness of the new individual to a found one. 
In our study, the restart meta-heuristic is 

incorporated into the Preference-inspired Co-
evolutionary Algorithm using goal vectors (PICEA-
g) proposed by Wang in 2013 (Wang, 2013). This 

algorithm relates to a class of preference-inspired co-
evolutionary algorithms (PICEAs) which are based 
on the concept of co-evolving the population with 
decision-maker preferences.  

PICEA-g includes the following steps: 
1. Generate an initial population and evaluate 

objective values for individuals. Find non-
dominated candidate solutions in the population 
and copy them into the archive. Determine the set 
of goal vectors as a number of targets randomly 
generated within the goal vector bounds.  

2. Produce the offspring solutions with genetic 
operators: selection, crossover and mutation. 
Evaluate objective values for new generated 
individuals. 

3. Pool together parents and children; compile the 
common set of objective values.  

4. Append to the set of goal vectors the additional 
targets generated within the determined bounds. 

5. Assign fitness values for goal vectors and for 
individuals in the united population. 

6. Form the new population and the set of goal 
vectors based on their fitness. 

7. Update the archive with new non-dominated 
solutions.  

8. Check the stopping criterion: if it is satisfied then 
finish the search with the archive set, otherwise 
proceed with the second step.  

In Steps 1 and 4 decision-maker preferences are 
incorporated into the algorithm by using goal vectors. 
They represent points generated in the criteria search 
space within bounds determined according to the rule: 

 

,)min(

),min()max(

),min(

max

min

ii

ii

ii

FiBestFg

BestFiBestFF

BestFg






 (25)

 

where min
ig  is the lower bound and max

ig  is the 

upper one for the i-th goal vector component, iBestF  

is the best value of the i-th objective function amid 

solutions in the archive, ,,1 Mi  M is the number of 
criteria. The recommended value of the   parameter 
is 1.2. 

4 PERFORMANCE 
INVESTIGATION 

Since  we  propose  the  multi-objective  optimization 
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problem, and using the proposed approach results in 
receiving an estimation of a Pareto set and not a single 
solution, for each problem we should present the best 
solution by the first criterion and the best one by the 
second criterion. As in similar investigations, we 
assign a limit to the maximum number of fitness 
function evaluation as being equal to 2500. To tune 
the restart meta-heuristic parameters we performed 
additional experiments for the same MO optimization 
problems, where the values of the restart operator 
parameters were varied. According to the results of 
these experiments the following parameters were 
chosen:  α=0.9, β=0.7, ltail=5, δtail=0.0005. 

The first problem we consider is the SISO system, 
which is determined by the equation 

 
3 2

4 3 2

7 24 24

10 35 50 24

s s s
G s

s s s s

    


      
, (26)

and for which we received models: the best one by the 
first criterion value 

   *
2

0.7696275 1.621897

2.522232 1.621897t

s
G s

s s

 


  
 and the best 

one by the second criterion value 

   *
2

0.86107 0.679314

1.568184 0.679314t

s
G s

s s

 


  
, after 25 

independent launches of the proposed PICEA-g with 
the restart meta-heuristic. 

The initial model and reduced model outputs are 
given in Figure 1, where the dotted line is the initial 
model output and the solid line is the output of the 
reduced model. The numeric adequacy estimation is 
given in Table 1, where the results of the proposed 
approach are compared with the results received in 
different studies using other approaches and 
optimization tools, including the PICEA-g algorithm 
without the restart meta-heuristic. Knowing the 
model parameters makes it possible to calculate 
criteria and compare approaches. Here we use the 
following notation: with “the proposed approach” we 
mean the solutions found by PICEA-g with the restart 
meta-heuristic, 1 – is the same approach, but without 
restarting, 2 – COBRA optimization tool and 
asymptotical equivalence (Ryzhikov et al., 2017), 3 – 
(Desai, Prasad, 2013), 4 – (Parmar el. al., 2007) and 
5 – (Narwal, Prasad, 2016).  

Table 1: SISO problem (26): performance of approaches. 

 Criterion 

Approach 1I  2I  3I  

Proposed 
  7.48510-5  1.31310-4  6.51510-3 

Proposed 
  

4.20510-4  7.37310-4  6.04710-3 

1,   7.56410-5  1.32610-4  6.55010-3 

1,   1.13410-3  1.98910-3  6.19810-3 

2 57.458 10  41.308 10  36.901 10  

3 42.841 10   44.982 10   35.236 10  

4 42.394 10   44.197 10   0.018  

5 31.986 10   33.483 10   37.612 10  

 

The approximations of the Pareto front, which 
were made during every algorithm launch and the 
randomly chosen single Pareto front estimation, are 
given in Figure 2, where the criteria are represented 

with a mapping 1
1 C , where C  is a criterion, and 

this mapping was maximized by the searching 
algorithm. As can be seen, there is not such a solution 
that would bring the maximum of two of these criteria 
representations at the same time. This is why it is 
necessary to solve the multi-objective optimization 
problem if the model must satisfy more than one 
criterion. 

 

a)  

b)  

Figure 1: Initial model (dotted line) and lower order model 
(solid line) outputs for the – a) - unit-step input function and 
– b) – Dirac input function. 
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Figure 2: Pareto front estimation in all of the runs (black) 
and a single front estimation (grey). 

Although the PICEA-g with the restart meta-
heuristic is a multi-objective optimization tool and it 
is efficient in solving the problem with two criteria, 
solutions with maximum criterion values outperform 
most of the solutions obtained by the optimization 
algorithms solving a single criterion problem. 

A similar problem was considered for the MIMO 
system order reduction problem 

 

 
       

       

2 5 4

1 10 2 5

10 6

1 20 2 3

s s

s s s s
H s

s s

s s s s

  
          
        

 (27)

for the same computational resources and algorithm 
runs we received the set of models with the highest 
criteria values given in Table 2. 

Table 2: MIMO problem (27): solution found. 

   *
tG s  

 * 2 3.145035 2.168462,mD s s s     

 *1,1 1.206913 2.168462,mN s s    

 *1,2 0.927334 0.867384,mN s s    

 *2,1 0.515576 1.084231,mN s s    

 *2,2 1.581389 2.168462,mN s s    

   *
tG s  

 * 2 4.989368 4.344733,mD s s s     

 *1,1 1.7814044 4.344733,mN s s    

 *1,2 1.028391 1.737893,mN s s    

 *2,1 0.792901 2.172366,mN s s    

 *2,2 1.088212 4.344733,mN s s    

 

As for the SISO problem, the outputs for unit-step 
and Dirac function inputs are given in Figures 3 and 
4, respectively. In these figures a) represents the 

outputs of (1,1) model components, b) represents the 
outputs of (1,2) components, c) represents the outputs 
of (2,1) components, and d) represents the outputs of 
(2,2).  
 

 

 

Figure 3: Initial model (dotted line) and lower order model 
(solid line) outputs for the unit-step function. 

Similar experimental results are compared in 
Table 3, but there criteria are summarized by all the 
model components.  

Also, the Pareto front estimations are given in 
Figure 5. 
 

 

 

Figure 4: Initial model (dotted line) and lower order model 
(solid line) outputs for the Dirac function. 

Here we use the following notation: “the proposed 
approach” is PICEA with the restart meta-heuristic, 1 
– is the same, but without the restart, 2 – COBRA 
optimization tool and asymptotical equivalence 
(Ryzhikov et al., 2017), 3 – (Desai, Prasad, 2013) and 
4 – (Narwal, Prasad, 2016). 
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Table 3: MIMO problem (27): performance of approaches. 

 Criterion 

Approach 1I  2I  3I  

Proposed   5.00410-3  0.022  0.128 

Proposed   0.028 0.103 0.095 

1   6.67010-3 0.022 0.140 

1   0.025 0.970 0.102 

2 33.323 10  0.027  0.136  

3 0.02   0.325   0.218  

4 0.045   0.372   0.409  

 

 
Figure 5: Pareto front estimation in all of the runs (black) 
and a single front estimation (grey). 

To summarize, all the figures and examination 
results prove that the proposed approach and the 
optimization algorithm are a reliable combination of 
techniques for solving the order reduction problems. 

5 CONCLUSIONS 

It is widely known that solving the order reduction 
problem for LTI systems requires a powerful and 
reliable global optimization tool for black-box 
problems. Many researchers, according to other 
studies on this topic, are using heuristic optimization 
techniques, which allow them to achieve satisfying 
results. However, for some problems there is an aim 
not just to identify the parameters by some criterion, 
but to identify the parameters which would fit two or 
more criteria. 

In order to solve the multi-objective problem, it is 
necessary to use the MO optimization algorithm 
because the Pareto front is not just a single point in a 
vector space and, generally, it cannot be determined 
with additive or multiplicative combination of the 
criteria. Figures 3 and 5 prove this hypothesis for the 
considered problems. It can be seen that the Pareto 
front is a curve, so the best solution for the unit-step 
function would not prove that this model is the best 
for another input. Results received in a single run, 

which are marked in these figures in grey, prove that 
we receive an acceptable approximation of the Pareto 
front. As was shown in this study, a meta-heuristic 
can be used to sufficiently improve the multi-
objective optimization algorithm performance with 
the same computational resources. 

This is one more class of optimization problem for 
which the algorithm efficiency and performance 
improve after implementing the proposed restart 
operator. The results of this work demonstrate that 
this algorithm is not only good at estimating the 
Pareto front, but can also find good solutions, which 
are close or even outperform the best solutions found 
by the single criterion optimization tools using the 
same resources. 

Further work is related to improving the quality of 
the estimation of the Pareto front in the case of a 
higher criterion number as well as to developing a 
meta-heuristic to improve the proposed restart 
operator and the performance of different multi-
objective algorithms. The other aspect of further work 
is related to using a modified optimization tool to 
solve MIMO order reduction problems in which each 
output is characterized by its own criteria. 
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