
Model-based Tool Support for the Development of Visual Editors
A Systematic Mapping Study

David Granada, Juan M. Vara, Francisco Pérez Blanco and Esperanza Marcos
Kybele Research Group, Rey Juan Carlos University, Móstoles, Madrid, Spain

Keywords: Model Driven Engineering, DSL, IDE, Systematic Mapping Study.

Abstract: Visual Domain Specific Languages play a fundamental role in the development of model-driven software. The
increase in this type of visual languages and the inherent complexity as regards the development of graphical
editors for them has, in recent years, led to the emergence of several tools that provide technical support for
this task. Most of these tools are based on the use of models and increase the level of automation of software
development, which are the basic principles of Model Driven Engineering. This paper therefore reviews the
main features, potential advantages and current limitations of the main tools that exist for the development of
graphical editors for visual DSLs.

1 INTRODUCTION

Model-Driven Engineering (MDE) (Schmidt, 2006)
is a natural step in the historical tendency of software
engineering as regards raising the level of abstrac-
tion at which software is developed. In this context,
Domain Specific Languages (DSLs) (Mernik et al.,
2005) play a cornerstone role in almost any proposal
that applies the principles of MDE. The fact that DSLs
are targeted toward a particular domain contributes to
ease of use and greater expressiveness allowing the
distance between business users and developers to be
shortened (Ghosh, 2011). DSLs also allow us to find
solutions by using appropriate terms and abstraction
level for the problem domain, which improves the
quality, productivity and usability of software.

During the last few years, provided that MDE is
approaching its slope of enlightenment in the tradi-
tional hype cycle experienced by any technological
proposal (Linden and Fenn, 2003), we have under-
taken several works oriented towards the adoption of
more rigorous and systematic approaches for the de-
velopment of MDE tools. They were first focused on
identifying best practices for the development of DSL
toolkits (Vara and Marcos, 2012), while the focus lat-
ter shifted to the development of model transforma-
tions (Bollati et al., 2013) as the main assets with
which model-based proposals can be automated. We
have been working as well in the application of MDE
principles in other fields (Vara et al., 2012).

One of the main lessons learned during this time

is that probably the most attractive feature of MDE
for researchers from other fields is the ability to use
visual models to depict their ideas, represent plans or
processes, etc. In order for this feature to become re-
ally useful those DSLs should come accompanied by
the corresponding tooling, basically in the shape of
visual editors or diagrammers (Selic, 2012).

Therefore, in order to know what the possibilities
are when building visual editors for DSLs and to ob-
tain a clear understanding of the state of the art as
regards tools for the development of these editors, in
this paper we present the main results obtained after
carrying out a systematic mapping study according to
the guidelines proposed in (Biolchini et al., 2005) for
the development of this type of studies in the context
of Software Engineering, which is composed of three
main phases: Planning, Execution and Analysis of Re-
sults.

Note also that only model-based tools are consid-
ered. That is, tools that make some use of models for
the development of visual editors. We do so under
the premises that: we firmly believe in the advantages
brought by MDE and we acknowledge that it is time
to start eating our own dog food (use models to de-
velop solutions) if we want MDE to be effective and
definitively adopted by the industry.

The results obtained from this study were then
used in an attempt to gain a general idea about the
current state of the different technologies used in the
tools analysed. We also wished to check for possible
improvements based on certain criteria evaluated. For

330
Granada, D., Vara, J., Blanco, F. and Marcos, E.
Model-based Tool Support for the Development of Visual Editors - A Systematic Mapping Study.
DOI: 10.5220/0006430503300337
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 330-337
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



the sake of space, we do not include here all the data
gathered during the development of the study, which
can be found in (Granada, 2016).

The remainder of this paper is structured as fol-
lows: Section 2 describes the main phases of the
method followed to carry out the systematic mapping
study; Section 3 presents its main results; Section 4 is
devoted to answer the research questions of the study
and Section 5 to compare this work with existing lit-
erature. Finally, Section 6 summarizes the main con-
clusions derived from this work.

2 METHOD

In this section, we shall focus on the planning of the
study (Biolchini et al., 2005), in which the research
objectives and how the study was conducted are in-
troduced. More specifically, Section 2.1 presents the
research questions defined for the study; Section 2.2
presents the digital libraries and query strings used;
and finally, Section 2.3 enumerates the inclusion and
exclusion criteria.

2.1 Research Questions

The first step conducted in the planning phase was
that of defining the main objective of the systematic
mapping study, i.e., to identify and analyse the state
of the art as regards the generation of editors that sup-
port DSLs in the context of Model-Driven Engineer-
ing. To achieve this goal, we defined the two research
questions (RQ) that gave rise to this study.

• RQ1: How many model-based tools with which
to generate editors for visual DSLs exist?

• RQ2: What are the main features and functionali-
ties of these tools?

2.2 Digital Libraries and Query Strings

The next phase includes the identification of the dig-
ital libraries in which the search for studies will take
place (Biolchini et al., 2005). It is also necessary to
define a set of query strings that will be used in these
digital libraries.

Table 1 shows the digital libraries that were se-
lected for this study. It is worth noting that, although
Table 1 shows only six data sources, we initially con-
sidered another four digital libraries that were dis-
carded during the search process, given the lack of
relevant information and data obtained from them.

The box below shows the query string used to
search for the studies. Note that given that each of the

Table 1: Digital libraries.

digital libraries supports a slightly different syntax,
the query string had to be adapted to each search
engine.

(”development” OR ”generation”) AND (”visual editor” OR ”di-
agrammer” OR ”graphical editor” OR ”IDE”) AND (”DSL” OR
”DOMAIN SPECIFIC LANGUAGE”)

2.3 Inclusion and Exclusion Criteria

In any systematic mapping study, most of the results
first retrieved from the digital libraries are not related
to the research questions posed. To specify inclusion
and exclusion criteria directly derived from the re-
search questions are therefore needed in order to filter
those studies (Biolchini et al., 2005). The inclusion
criterion used in this study was formulated as follows:
the abstract indicates that it is a study related to mod-
elling tools that can be used to develop editors for vi-
sual DSLs. We therefore checked the abstract (as well
as the title and keywords of each study) in order to
confirm whether they satisfied the inclusion criterion.

Resulting studies were then subject to a detailed
reading in order to exclude non relevant ones accord-
ing to the following exclusion criteria: studies whose
main purpose is to classify other articles or are them-
selves systematic literature reviews; studies whose
main purpose is not related to graphical editors or vi-
sual DSLs, although these concepts are mentioned in
the content of the study; studies related to other types
of graphical editors, tools and/or technologies that are
not relevant to the purpose of this analysis.

The remaining set of studies were then considered
as potential candidates to become primary studies for
this review.

3 RESULTS

This section presents the results of this systematic
mapping study. First, section 3.1 provides some data
related to the number of works retrieved from the dig-
ital libraries. Section 3.2 then presents the main find-
ings and conclusions gathered after analysing the set
of primary studies considered here.

Model-based Tool Support for the Development of Visual Editors - A Systematic Mapping Study

331



3.1 Studies Selection

Running the search in each digital library (using the
adapted version of the query string) yielded the results
shown in (Table 2) which computed 10,116 works.
First two columns on the left show the number of re-
sults for each digital library. Third column shows the
number of relevant studies, i.e., those that fulfilled the
inclusion criterion. Fourth column shows the number
of primary studies: those remaining that were not ex-
cluded by the exclusion criteria. Last column shows
the percentage of primary studies found in each data
source. Note that most of the primary studies were
found in Google Scholar (27.82%) and ISI Web of
Knowledge (21.8%).

Table 2: Distribution of selected studies.

However, many of the relevant, and therefore, the
primary studies were available in more than one dig-
ital library. Table 3 shows the eventual number of
primary studies found after removing all the repeated
studies. These data show that more than 36% of the
primary studies found in this review were duplicated
in different digital libraries. We therefore removed
the copies and consequently obtained a list of 85 non-
duplicated primary studies.

Table 3: Duplicated primary studies.

3.2 Data Extraction

The data extraction phase of the systematic map-
ping study allowed us to collect the most relevant
information from the primary studies. Regarding
RQ1, the main model-based tools for the generation
of editors for visual DSLs resulted to be: DiaGen
(Minas and Köth, 2000), EuGENia (Kolovos et al.,
2009), GMF (Gronback, 2009), Graphiti (Brand
et al., 2011), MetaEdit+ (Tolvanen and Kelly, 2009),

Obeo Designer (Juliot and Benois, 2010), Sirius
(Viyovic et al., 2014) and Tiger (Ehrig et al., 2005).
Note also that this is indeed a never-ending task, since
new proposals arise every so often.

In order to analyse each of these tools in a sys-
tematic manner and gather the data needed to answer
RQ2, the following criteria were used, derived from
the features analyzed by the primary studies consid-
ered:

Scope. One of the main issues to consider regarding
software engineering tools is whether the tool is
commercial or open source. The type of license is
also considered here.

Framework. Frameworks are technological struc-
tures that can provide the basis for the develop-
ment of software. In the context of MDE, Eclipse
is the most widely used framework (Vara and
Marcos, 2012). Given this, it is interesting to
identify whether the tool analysed is isolated or
runs on an existing framework.

Distinction between Abstract and Concrete Syntax.
The abstract syntax defines the set of abstractions
provided by a language and how they may be
combined to create models, while the concrete
syntax provides a notation that facilitates the
representation of models expressed with such
language.

Abstract Syntax. The first step toward the definition
of a DSL is the specification of its metamodel. It
is therefore relevant to identify the way abstract
syntaxes must be specified for the reviewed tool
to generate the visual editor.

Concrete Syntax. One of the main distinctive fea-
tures between these tools is the mechanisms pro-
vided for the definition of the concrete syntax of
the DSL for which the editor is been developed.

Editing capabilities. Once the editor has been devel-
oped, the ability to manipulate and modify the ele-
ments of the models that can be created with such
editor in a simple, complete and functional man-
ner becomes the most relevant need. Editing capa-
bilities of the editors produced with the reviewed
tool is something that is worth attention as well.

Use of Models. Given that we focus on model-based
tools, the extent to which models are used in
the development process implemented by the re-
viewed tool need attention.

Automation. The level of automation is one of the
most relevant features of MDE proposals. More-
over, one of the main factors for a software en-
gineering tool to success is the ability to perform
its job without adding external complexity to the

ICSOFT 2017 - 12th International Conference on Software Technologies

332



process. All this given, the level of automation
with which these tools are able to produce visual
editors is also considered in this study,

Usability. This criterion was included to check the
ease of use of each tool. In other words, the
simplicity with which users could perform all
the steps required to complete the development
of a visual editor for their DSLs. We check
for instance whether the tools provide official
documentation, wizards, guided tours, examples
and/or any other form of assistance.

Methodological Basis. Finally, when designing a vi-
sual notation, the issues related to the quality of
that notation should be considered. Several mech-
anisms with which to assess the quality of the
metamodel that collects the abstract syntax of a
DSL can be employed for this purpose (López-
Fernández et al., 2014). There are as well dif-
ferent metrics with which to assess whether the
graphical symbols composing the concrete syntax
could be correctly processed by the human mind.
We analyse consequently whether the tools fol-
lows or applies any kind of scientific theory, em-
pirical evidence or any given method to guide, de-
rive or define visual notations.

4 DISCUSSION

In this section, we present the detailed answers to the
research questions posed in Section 2.1. For each of
the criteria defined in the Data extraction results sec-
tion, a brief analysis will be presented.

4.1 Scope

We discovered that most of the tools analyzed are
open source with different license types. Only
two of these proposals have a commercial license:
MetaEdit+ and Obeo Designer.

4.2 Framework

Frameworks are characterized by the fact that they
provide various types of support that facilitate the re-
duction of development time. In this context, most
of the proposals under discussion are designed to be
used in the Eclipse development environment. This
framework is widely accepted by the development
community owing to the ease with which its function-
alities can be expanded through the creation of new
extensions that can be added to its core. It is notewor-
thy that MetaEdit+ is the only tool that provides its
own framework independent of Eclipse.

4.3 Distinction between Abstract and
Concrete Syntax

With regard to the distinction between abstract syn-
tax and concrete syntax, most of the tools analyzed
allow users to perform this process. For example, GMF
uses the component called GMF Notation. This com-
ponent has an EMF-standard mechanism to provide
annotations in an Ecore metamodel, which allows in-
formation on graphical decisions and the definition of
elements in the domain model to be maintained as two
different concepts.

Another interesting proposal in this regard is
Eugenia, which provides not only the ability to define
visual annotations during the definition of the meta-
model (Kolovos et al., 2009), but also the definition
of these visual annotations by means of external li-
braries written in EOL, signifying that the two syn-
taxes can be kept conceptually separated. Of the tools
analyzed, the only proposals that do not provide such
a separation are Diagen and Tiger.

4.4 Abstract Syntax

Most of the proposals analyzed use Ecore to define
the abstract syntax of DSLs, and of these propos-
als, some may also use other mechanisms to define
the abstract syntax. For example, Graphiti can use
objects defined in Java, while Diagen can do so via
UML diagrams. The tools that do not use Ecore to
define the abstract syntax are: MetaEdit+ and Tiger.
Tiger uses the graphic transformation integrated en-
gine AGG (Attributed Graph Grammar) to define the
abstract syntax. Finally, MetaEdit+ uses the GOP-
PRR (Graph Object Property Port Role Relationship)
language, which also provides a support tool with
which to import and use other modeling languages.

4.5 Concrete Syntax

After specifying the abstract syntax it is necessary to
associate a visual representation with each of its ele-
ments. GMF and Graphiti have in common the use of
Draw2D tool, which is based on the use of Java ob-
jects to define the graphical representation of the do-
main elements. In Obeo Designer and Sirius, the
graphical aspects of the domain model elements are
defined by means of templates called Odesign. These
templates allow us to define some visual properties
through the use of intuitive contextual menus. In
Eugenia, the definition of the concrete syntax is con-
ducted by means of textual annotations on the meta-
model, but it also provides the ability to define these
annotations using the EOL language in an external

Model-based Tool Support for the Development of Visual Editors - A Systematic Mapping Study

333



file. MetaEdit+ uses an internal library and a symbol
editor that allow the user to assign a graphical repre-
sentation to each of the elements of the metamodel.
Finally, Tiger uses a component called ShapeFig-
ures, which allows the user to assign the shape, color
and size to each of the elements of the domain model.

4.6 Editing Capabilities

Most of the proposals provide the common operations
needed to edit the elements of the models that can be
created with the editor developed. However, only a
few proposals have sophisticated and advanced op-
tions with which to edit these elements.

In this context, the tools that provide the greatest
editing capabilities are: GMF, Graphiti, MetaEdit+,
Obeo Designer and Sirius. For example, GMF pro-
vides some advanced editing features such as: a de-
sign palette, a browser, decorators, an assistant di-
agram, editing tips, filters, drag and drop, animated
zoom and exportation to other formats.

Likewise, Obeo Designer and Sirius, in addi-
tion to providing a wide variety of styles by default,
make it possible to extend these styles. Most of the
editing options can be easily performed through the
use of intuitive contextual menus and the properties
table of the elements related to the generated editor.

4.7 Use of Models

With regard to the extent to which models are used
for the production of graphical editors, Eugenia, GMF,
Graphiti, Obeo Designer and Sirius are those
that use different types of models in the development
of editors. GMF is specifically a proposal that pro-
vides a model-driven approach with which to gener-
ate graphical editors. Its core is the Graphical Defini-
tion Model, which contains information related to the
graphical elements that will appear in a GEF-based
runtime (editor), while the tool palette are defined by
the Tooling Definition Model. The latter two mod-
els are related by means of the Mapping Definition
Model, which links the graphical and tooling defini-
tions to the domain model selected. The other tools
that have a high level of use of models are based on
GMF, and therefore inherit its approach.

4.8 Automation

It is important to obtain the editor, or at least the in-
termediate stages, automatically in order to provide
the user with a clear and efficient process. In some
of the tools analyzed it is possible to achieve this

goal by means of a few initial instructions and the se-
lection of some default options. The proposals that
offer a higher level of automation during the pro-
cess of generating an editor are Eugenia, Graphiti,
MetaEdit+, Obeo Designer and Sirius. More
specifically, in the case of Eugenia, the definition of
the abstract syntax and visual annotations for each el-
ement of the domain makes it possible to generate all
the models involved in the editor-generation process
automatically. Similarly, Graphiti is another tool
that has an editor-generation process in which refine-
ments and modifications made to the models created
during the process are not required. Obeo Designer
and Sirius go one step further, because these tools
provide the user with the ability to generate the editor
without having to either manually launch any inter-
mediate process or use a second instance of Eclipse.

4.9 Usability

In the case of usability, it is interesting to identify the
facilities provided by the proposals employed to cre-
ate and modify new editors. In this context, DiaGen,
EuGENia, Graphiti, MetaEdit+, Obeo Designer,
Sirius and Tiger provide a better usability. For ex-
ample, Diagen provides a set of interfaces that guide
users when defining the abstract syntax and show
them how to use the editor generated. Moreover,
one of the main goals of Graphiti is to provide the
user with easy and intuitive methods when generat-
ing graphical editors. This goal is achieved by means
of an interface based on an API that allows the user
to build an editor without having prior knowledge of
GEF or Draw2D.

On the contrary, as mentioned previously, GMF is
one of the most important projects for the generation
of graphical editors, although one of its weaknesses is
the complexity of the learning curve when compared
to other tools.

4.10 Methodological Basis

In this case we can conclude that none of the tools
studied follows a methodological basis in the process
of construction of graphical editors, nor use a theoret-
ical basis for assessing the quality of the visual nota-
tions generated. In this respect, none of the tools an-
alyzed takes into account the basic principles of Hu-
man Computer Interaction (HCI) in order to obtain
concrete (visual) syntaxes that can be understood and
correctly analyzed by the human mind. The defini-
tion of the concrete (visual) syntaxes therefore usu-
ally consists of the arbitrary assignment of graphical
symbols to the concepts defined, of which the abstract

ICSOFT 2017 - 12th International Conference on Software Technologies

334



syntax of the language is composed.
In this context, only a few tools such as

MetaEdit+, Obeo Designer and Sirius provide
certain facilities related to the use of visual variables
(location, shape, color, brightness, size, orientation
and texture) (Bertin, 1983). These three tools have a
properties panel from which it is possible to select,
in a way that is intuitive for the user, all the possible
values of the visual variables that can be used in the
elements of the concrete syntax generated.

4.11 Summary Results

Having analyzed the different proposals, and in order
to provide a rapid overview of them, Table 4 shows
a summary of the comparative study according to the
characteristics defined in the previous subsections.

As will be observed in the summary of the com-
parative study presented in Table 4, most of the pro-
posals solve the problem of the conceptual separation
between the metamodel (abstract syntax) and the de-
sign features that are attached to each of its elements
(concrete syntax), without adding information related
to the domain of the solution in the context of the
problem domain. There are also proposals that au-
tomatically generate many of the intermediate phases
during the process of generating an editor. However,
most of these tools have to refine each intermediate
phase through the use of mechanisms that are com-
plex and unintuitive for the user.

As regards the use of models, only a few of the
tools use models in each of the editor-generation
phases, which considerably facilitates the usability of
the tool and allows the user to focus on the impor-
tant aspects of the domain. Furthermore, in this work
we have found that most of the proposals have been
designed to be used in Eclipse, which is one of the
most popular frameworks in the software develop-
ment community. This feature facilitates integration
and interoperability with other software systems de-
veloped under Eclipse. Regarding the use of a scien-
tific basis to design visual notations, we have identi-
fied that virtually no tool provides mechanisms with
which to achieve this goal, and only a few of them
provide the possible values of visual variables in a
way that is orderly and intuitive for the user.

Furthermore, the values of the last row in Table
4 represent the percentage of the maximum possi-
ble score for the qualitative criteria evaluated (ticks
obtained / maximum possible ticks). As this data
shows, the highest values are obtained for the us-
ability (91.6%) and the use of models (87.5%) crite-
ria, while it is worth noting that a very small value
(12.5%) is obtained for the criterion related to the

use of a methodological basis so as to take into ac-
count the quality of the visual notations generated.
Given that, we can state that of the commercial tools,
MetaEdit+ and Obeo Designer are the most com-
plete proposals according to the characteristics evalu-
ated in this work. Of the open source tools, Eugenia,
GMF, Graphiti and Sirius can, meanwhile, be con-
sidered as the most complete and functional for the
purpose of generating editors for DSL. And this may
be understandable, considering that these four tools
have technological bases in common, such as the fact
that they use EMF.

Many of the proposals discussed in this paper
therefore have interesting features as regards gener-
ating graphical editors for DSL, although several of
their features have room for improvement and refine-
ment. In order to obtain tools that are able to create
editors with a minimal difficulty and transparency for
the user, it is important that these tools take into ac-
count aspects such as the use of frameworks that fol-
low the standards of the software development com-
munity, the use of models in each phase of editor gen-
eration, the separation between abstract and concrete
syntax, automation in the development process and
the usability of the tool itself.

Finally, we have concluded that none of the tools
follows a methodological basis in the process of con-
struction of editors that support DSLs, nor use a theo-
retical basis for assessing the quality of the visual no-
tations generated, in order to guide to the user in the
generation of visual notations that are easier to pro-
cess by the human mind, without being limited to the
classic geometric shapes like boxes and arrows.

5 RELATED WORKS

In this section, we briefly present some related works
(Ehrig et al., 2005; Pelechano et al., 2006; Amyot
et al., 2006; Kelly, 2004; Kern et al., 2011). More
specifically, some works, such as (Ehrig et al., 2005),
present the Tiger tool, but they also present a state-
of-the-art generation of a graphical editor divided into
two generation categories: the Eclipse-based editor
generation and the Graph-transformation based editor
generation. The choice of presenting a state of the art
divided into these two categories is made because the
tool presented combines the advantages of formal vi-
sual language specifications using graph transforma-
tions with the facilities offered by Eclipse/GEF in or-
der to generate graphical editors.

In (Pelechano et al., 2006) the authors present
a comparative study of tools for model-driven de-
velopment, and more specifically a comparison be-

Model-based Tool Support for the Development of Visual Editors - A Systematic Mapping Study

335



Table 4: Overview of tools for graphical editors development.

tween Microsoft DSL tools and Eclipse Modeling
plugins. This study presents the main differences be-
tween these two categories of tools according to cer-
tain criteria, such as how to collect the abstract syntax,
the format of its models, the type of concrete syntax
used and different types of transformations between
models. It also presents an experiment with real users
of the tools, which allowed some significant values to
be obtained as regards user preferences and the effec-
tiveness of using each of the different approaches.

Furthermore, (Amyot et al., 2006) present a com-
parative study of 5 tools that support the development
of DSML environments: GME, Telelogic Tau G2,
Rational Software Architect, XMF-Mosaic and
Eclipse EMF/GEF. In this study, the following evalu-
ation criteria are used: graphical completeness, editor
usability, effortlessness, language evolution, integra-
tion and transformation. The authors of this paper as-
sessed these criteria by developing a graphical editor
for a case study with each of the five tools analyzed.

Likewise, (Kelly, 2004) shows a comparison be-
tween Eclipse EMF/GEF and MetaEdit+ for Domain-
Specific Modeling. This paper presents a brief de-
scription of these types of tools and a comparison be-
tween them, focused on comparing only those aspects
related to the development time required and the num-
ber of lines of code generated.

Finally, (Kern et al., 2011) present a comparison
of a set of metamodeling languages like ARIS, Ecore,
GOPPRR, GME or MS DSL Tools, which are using
the heavyweight metamodelling approach (Frankel,
2003) and are available as tools.

In conclusion, the main differences between these
articles and the study presented here is that these ar-

ticles are mainly focused on presenting one (or sev-
eral) tools in detail, and showing only some differ-
ences among these tools. Furthermore, those works
that show a wider comparison do not follow a rigor-
ous literature review process, and the research criteria
are different and fewer than those evaluated here.

6 CONCLUSIONS

Visual DSLs are becoming increasingly more impor-
tant and this implies that there is clearly a need for
tools with which to create supporting tools for these
DSLs as quickly and effectively as possible (Völter,
2009). In order to address this need, the findings
of this systematic mapping study have enabled us to
gather some data and ideas that provide a complete
picture of existing tool support for the development of
visual editors for DSLs. This study has also served to
identify some of the main challenges that the genera-
tion of these editors should address in the forthcoming
years. Some of them are summarized as follows:

Giving more relevance to the two basic principles
of MDE when developing visual editors, i.e., leverag-
ing the role of models throughout the entire develop-
ment process and enhancing the level of automation
in the development process.

Usability plays a cornerstone role for this type of
tools. Note that domain experts have not to be neces-
sarily familiarized with software engineering tools at
all. Ease of use is then key to enable users to develop
visual editors for the domain of interest without even
noticing that they are applying model-based princi-
ples or developing a DSL.

ICSOFT 2017 - 12th International Conference on Software Technologies

336



According to the findings of this study, none of
the analysed tools consider quality aspects during the
development of visual editors. This might be related
with the fact that most of these tools were built by
experienced developers not used to deal with HCI is-
sues.

It is worth noting that this type of study is a never-
ending task since new tools appear every some often.
One of our future goals is to periodically update this
study in order to identify new tools that enable the
generation of visual editors from a domain model.

ACKNOWLEDGEMENTS

This research has been funded by the Govern-
ment of Madrid under the SICOMORo-CM project
(S2013/ICE-3006), the ELASTIC project (TIN2014-
52938-C2-1-R), financed by the Spanish Ministry of
Science and Innovation, and by the GES2ME Re-
search Excellence Group, co-funded by URJC and
Banco Santander

REFERENCES

Amyot, D., Farah, H., and Roy, J.-F. (2006). Evaluation of
development tools for domain-specific modeling lan-
guages. In International Workshop on System Analysis
and Modeling, pages 183–197. Springer.

Bertin, J. (1983). Semiology of graphics: diagrams, net-
works, maps. University of Wisconsin press.

Biolchini, J., Mian, P. G., Natali, A. C. C., and Travassos,
G. H. (2005). Systematic review in software engineer-
ing. COPPE/UFRJ, Technical Report ES, 679(05):45.

Bollati, V. A., Vara, J. M., Jiménez, A., and Marcos, E.
(2013). Applying MDE to the (semi-)automatic de-
velopment of model transformations. Information and
Software Technology, 55(4):699 – 718.

Brand, C., Gorning, M., Kaiser, T., Pasch, J., and Wenz, M.
(2011). Graphiti - development of high-quality graph-
ical model editors. Eclipse Magazine.

Ehrig, K., Ermel, C., Hänsgen, S., and Taentzer, G. (2005).
Generation of visual editors as eclipse plug-ins. In
Proceedings of the 20th ASE International Confer-
ence, pages 134–143. ACM.

Frankel, D. S. (2003). Model Driven Architecture Applying
Mda. John Wiley & Sons.

Ghosh, D. (2011). Dsl for the uninitiated. Communications
of the ACM, 54(7):44–50.

Granada, D. (2016). Desarrollo dirigido por modelos de ed-
itores grficos cognitivamente eficaces para Lenguajes
Especficos de Dominio. PhD thesis, Rey Juan Carlos
University.

Gronback, R. (2009). Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Eclipse Series. Pear-
son Education.

Juliot, E. and Benois, J. (2010). How to build eclipse dsm
witwith being an expert developer? Obeo Designer
whitepaper.

Kelly, S. (2004). Comparison of eclipse emf/gef and
metaedit+ for dsm. In 19th ACM SIGPLAN confer-
ence.

Kern, H., Hummel, A., and Kühne, S. (2011). Towards a
comparative analysis of meta-metamodels. In Pro-
ceedings of DSM’11, pages 7–12. ACM.

Kolovos, D. S., Rose, L. M., Paige, R. F., and Polack, F. A.
(2009). Raising the level of abstraction in the devel-
opment of gmf-based graphical model editors. In Pro-
ceedings of the 2009 ICSE Workshop on Modeling in
Software Engineering, pages 13–19.

Linden, A. and Fenn, J. (2003). Understanding gartners
hype cycles. Strategic Analysis Report No R-20-1971.
Gartner, Inc.

López-Fernández, J. J., Guerra, E., and de Lara, J. (2014).
Meta-model validation and verification with metabest.
In Proceedings of the 29th ASE international confer-
ence, pages 831–834. ACM.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
computing surveys (CSUR), 37(4):316–344.

Minas, M. and Köth, O. (2000). Generating diagram editors
with diagen. Applications of Graph Transformations
with Industrial Relevance, pages 539–541.

Pelechano, V., Albert, M., Muñoz, J., and Cetina, C. (2006).
Building tools for model driven development. In Com-
paring Microsoft DSL Tools and Eclipse Modeling
Plug-ins, volume 227, pages 1613–0073.

Schmidt, D. C. (2006). Model-driven engineer-
ing. COMPUTER-IEEE COMPUTER SOCIETY-,
39(2):25.

Selic, B. (2012). What will it take? a view on adoption of
model-based methods in practice. Software and Sys-
tem Modeling, 11(4):513–526.

Tolvanen, J.-P. and Kelly, S. (2009). Metaedit+: defining
and using integrated domain-specific modeling lan-
guages. In Proceedings of the 24th ACM SIGPLAN
conference, pages 819–820. ACM.

Vara, J. M., Andrikopoulos, V., Papazoglou, M. P., and Mar-
cos, E. (2012). Towards model-driven engineering
support for service evolution. Journal of Universal
Computer Science, 18(17):2364–2382.

Vara, J. M. and Marcos, E. (2012). A framework for model-
driven development of information systems: technical
decisions and lessons learned. Journal of Systems and
Software, 85(10):2368–2384.

Viyovic, V., Maksimovic, M., and Perisic, B. (2014). Sirius:
A rapid development of dsm graphical editor. In Intel-
ligent Engineering Systems (INES), pages 233–238.

Völter, M. (2009). Md* best practices. Journal of Object
Technology, 8(6):79–102.

Model-based Tool Support for the Development of Visual Editors - A Systematic Mapping Study

337


