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Abstract: Causal Temporal Signatures (CTS) is an efficient formalism for behaviors description and recognition of fault 
diagnosis in Discrete Event Systems (DES). The main advantages of this formalism are the readability and 
the expressivity. Indeed, it is able to describe clearly all desired behaviors and it is understandable and 
readable by an expert in the field. However, it raises the problem of acquisition and updating of expert 
knowledge stored in a CTS base. In this paper, we suggest an incremental learning approach based on the 
simulation to acquire and update automatically a consistent CTS base. The proposed approach is illustrated 
with an example applied to the turntable helps to understand the different modules of the method. 

1 INTRODUCTION 

Over the recent decades, the automation of industrial 
systems has aimed at increasing the production 
performance, enhancing product quality, reducing its 
cost and making its equipments more available in the 
market. Indeed, the Automated Production Systems 
(APS) can be considered from three different views 
depending on their dynamics: Continuous Systems, 
Discrete-Event Systems (DES) and Hybrid Systems. 

In this context, on-line diagnosis systems are 
necessary to detect, locate, and identify as soon as 
possible the potential failure at the system on run. In 
this paper, we are interested in an online diagnosis of 
APS considered as DES.  

In fact, when the system is running, a large 
number of observations come forward regularly and 
should be considered. These amounts of data cannot 
be processed online by a human operator due to their 
complexity and / or their large number. From this 
observation, the need for proposing specific support 
tools used to analyze and process these data has 
emerged in order to recognize both normal and faulty 
behaviors. These tools are able to first describe and 
represent the possible evolutions of the systems in 
form of rules or predicates and secondly to recognize 
these behaviors in a flow of events. 

The literature distinguishes several description 
and recognition tools, such as chronicles with 

different definitions (Dousson et al., 1993), (Boufaied 
et al., 2002), (Bertrand et al., 2007), (Carle et al., 
2011), (Subias et al., 2014), (Cram et al, 2012) and 
Causal Temporal Signatures (CTS) (Toguteni et al., 
1991), (Saddem et al., 2011), (Saddem et al., 2014), 
etc. The main advantage of these tools is their high 
efficiency due to the symptom to fault knowledge 
they rely on (Cordier et al., 2000). However, the 
common problem is the difficulty of acquiring and 
updating this expert knowledge. The literature shows 
two types of approaches on this problem: model 
based approaches (Guerraz and Dousson, 2004) 
(Saddem and Philippot, 2014) and data-based 
approaches (Dousson and duong, 1999) (Cordier and 
Dousson, 2000) (Cram et al., 2012), (Subias et al., 
2014). A key limitation of data-based approaches is 
the need of human expert (analyst) intervention. 
Indeed, they require its presence either for the 
qualification of the chronicles (Dousson and duong, 
1999) (Cordier and Dousson, 2000) or for the 
definition of constraints to guide the algorithm of the 
discovery of the chronicles of interests (Cram et al., 
2012), (Subias et al., 2014). This article offers a 
solution for CTS formalism that is very close to 
chronicle formalism. It presents a new approach 
based on past experiences and couples simulation 
with learning to automatic acquisition and updating 
of a CTS base. The coupling between simulation and 
learning (AI technique) is a promising solution where 

262
Rabah, N., Saddem, R., Hmida, F., Carre-Menetrier, V. and Tagina, M.
Automatic Acquisition and Update of a Causal Temporal Signatures Base- for Faults Diagnosis in Automated Production Systems.
DOI: 10.5220/0006430102620269
In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2017) - Volume 1, pages 262-269
ISBN: 978-989-758-263-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



simulation is used as a technique for generating 
empirical knowledge for learning. On the one hand 
we propose a Representation of Observations in form 
of CTS Algorithm (ROCTSA) which describes the 
possible evolutions of the system to diagnose as a set 
of CTS. The algorithm allows to model normal 
behavior of the system as normal CTS and faulty 
behavior as abnormal CTS. This set constitutes the 
learning base. On the other hand, an incremental 
learning module is introduced to learn new CTS and 
to update the CTS base based on past experiences. 
The remainder of this paper is organized as follows. 
In section 2, problem background, definitions and 
concepts of CTS are detailed. In section 3, we 
describe an example of APS on which we will rely to 
illustrate our approach. Section 4 is devoted to present 
our proposed method. In section 5, we present the 
results of applying our approach to the described 
example. A conclusion and a perspective for future 
works are presented in section 6. 

2 PROBLEM BACKGROUND, 
DEFINITIONS AND CONCEPTS  

We begin this section by presenting a short state of 
the art on knowledge building approaches for 
chronicle and CTS formalisms and providing 
concepts and definitions that explain CTS formalism.  

2.1 State of the Art on Knowledge 
Building Approaches for 
Chronicles and CTS 

In the literature, several approaches have been 
suggested for acquiring and updating chronicles or 
CTS base either from models or data. 
 

 Model based approaches:  
Are problem solving techniques based on models 
representing either the system to diagnose or the 
faults that may exist in the system. For example, 
(Guerraz and Dousson, 2004) developed a petri nets 
based method for the generation of chronicles 
necessary for diagnosis from the fault model of the 
system to diagnose. The proposal does not require 
knowledge of the global behavior of the system. 
Another solution is described in (Saddem and 
Philippot, 2014) to translate a timed Atomaton model 
of a diagnoser into CTS. The method ensures the 
completeness of the CTS data base but it is done 
manually.  

 Data based approaches: 

They rely on historical data by extracting significant 
features using temporal data mining techniques. One 
of the first examples is suggested in (Dousson and 
Duong 1999), (Cordier and Dousson, 2000). It 
introduced FACE (Frequency Analyzer for Chronicle 
Extraction) which is a technique for analyzing log 
files of alarms (i.e. events) inspired from data mining 
techniques. It allows analyzing log files of alarms in 
order to determine the most frequent alarms and to 
reduce their number displayed to the operator. The 
negative point of FACE is that during the generation 
of chronicles (candidates), there is only one time 
constraint that is taken into account.  

To fill this limit, (Cram et al., 2012) proposed a 
process of discovering chronicles from a trace (i.e. 
temporal sequence). The learning process is based on 
two steps:  
(i) Construction of a database of time constraints. It 

allows to associate for each pair of events, a set of 
temporal constraints represented in a graph called 
constraint graph. The graph is constructed through 
the Complete Constraint-Database Construction 
(CCDC) algorithm. 

(ii) A Heuristic Chronicle Discovery Algorithm 
(HCDA) that generates a set of chronicles 
(candidates) from a set of chronicles that are 
frequent and uses the temporal constraint database 
to explore the chronicle space.  

 

The latest solution is described in (Subias et al., 
2014). It improved the proposal of (Cram et al., 2012) 
to learn frequent chronicles for several temporal 
sequences (not only one temporal sequence) in order 
to represent variants of a single situation. 

The intervention of human experts (i.e. analysts) 
represents a major drawback to these data-based 
methods. Indeed, they require their presence either for 
the qualification of chronicles (Dousson and Duong, 
1999), (Cordier and Dousson, 2000) or for the 
definition of constraints to guide the algorithm of 
discovery of chronicles of interests (Cram et al . 
2012), (Subias et al., 2014). 

In this work, we present a new approach based on 
past experiences to automatic acquisition and 
updating of a CTS base. Construction and CTS 
labeling are purely automatic (they don’t require a 
human expert). The following section details the 
basic concepts of CTS formalism. 

2.2 Definitions and Concepts 

CTS were proposed in the early 90s by (Toguyeni et 
al., 1991). Then, they were improved by (Saddem et 
al., 2011). Like chronicles, a CTS is a formalism for 
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the description and recognition of behaviors applied 
to the DES diagnosis. It was defined in the work of 
Saddem (Saddem et al., 2011) as "a subset of 
partially-ordered observable events that 
characterizes the system faulty behavior" and as "the 
description of a temporal pattern defining a partial 
order on events determined by their type and date of 
occurrence".  

Diagnosis based on CTS consists in interpreting 
online the event occurrence to instantiate the pattern 
to be recognized. In fact, a CTS is recognized when 
all its events occur while respecting their temporal 
constraints. This determines if the system is operating 
normally or not. The literature shows a variety of 
algorithms for chronicle and CTS recognition 
(Dousson et al., 1993), (Bertrand et al., 2007), 
(Saddem and Phillippot, 2014). In this paper, we are 
interested in the acquisition and the update of a set of 
CTS (CTS base) that will be the input of recognition 
algorithm. We present (in the rest of the section) the 
basic concepts of CTS formalism in the rest of the 
section. 

 

Definition 1 (Event)  
Let EN be a finite set whose elements are called by 
the observable events names. Let E be a finite set 
whose elements are observable events. A naming 
function is a total function H: E -> EN that assigns a 
name to each observable event. 
 

Definition 2 (Occurrence of an event) 
E is a finite set whose elements are observable events. 
Let F be a set of times corresponding to the times of 
events production. An occurrence function is a 
function O: E-> F that associates to each observable 
event a time at which it occurs. 
 

Definition 3 (CTS triplet) 
Let it  be a CTS triplet defined by: ( er , ec , Ctrc ) 

where er  is the name of a reference observable event, 

ec is the name of an observable constrained event 

expected compared to er , and Ctrc is a temporal 

constraint. 
 

Definition 4 (Temporal constraint) 
Let Ctrc be a temporal constraint which corresponds to 

a relative time separating the occurrence of an event 
having er reference and an expected one ec . The time 

constraint can be a date, a period or a duration.  
 

 Date constraint:  
A date constraint (figure 1) allows modeling the exact 
time separating the occurrence of two events. It is 
defined by: 

( ) ( )O e O e t
c r

    (1)

 

Figure 1: Date constraint. 

 Period constraint: 
A period constraint (figure 2) allows the modeling, 
with uncertainty degree, of the time between the 
occurrence of two events. It expresses that ec must 

occur after er in a time interval [α, β] where α and β 

∈Q+. 

( ) ( )O e O e
c r

     (2)

 

Figure 2: Period constraint. 

 Duration constraint 
A duration constraint is generally used to characterize 
an event which persists in time. It shows that an event 
ei occurs for the date 1t  to the date 1t + 2t . 

Note 1: 
In order to describe the dynamics of DES that we are 
studying, we consider time as a set of discrete 
linearly-ordered instants and we use only the period 
constraint in our examples. 

Definition 5 (CTS) 
Let T be a countable set whose elements are triplets 
of CTS. Indeed, a CTS represents a rule that can be 
formally defined as follows: 
 

X Y  (3)

 X consists of a sequence of a subset of triplets TR 
included in T where it * jt  describes the 

recognition of triplet it  followed by that of triplet

jt .  

 Y represents the state of the system following this 
signature (normal or faulty behavior). 

 We choose to identify each CTS by a unique 
identifier which is an integer. 
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Definition 6 (Normal CTS) 
It is a CTS that describes a normal behavior in the 
system. It is defined by:  

X N  (4)

N denotes a normal behavior in the system. 
Definition 7 (Abnormal CTS) 
It is a CTS that describes a faulty behavior in the 
system. It is defined by:  

X Fi  (5)

Fi presents a system failure. 
 

We note that APS study is carried out from the point 
of view of the operative part (OP). That’s why we 
only treat internal failures, those caused by the OP, 
such as the stuck-off to 1 or 0 of a sensor or an 
actuator. 
 
Example 1: 

       , , *  , , 1, 2  * , , 3, 4   1In A nct A B t t A D t t F  (6)

In is the name of an observable event that is always 
occurring. It is used as the reference of events that are 
not constrained. nct: implies the absence of time 
constraint. The rule (6) implies that if event A (not 
limited by any temporal constraint) occurs followed 
by the occurrence of event B satisfying the period 
constraint [t1, t2] with respect to A and the occurrence 
of event D satisfying the period constraint [t3, t4] 
with respect to A, then we can deduce the system is 
faulty and F1 is the fault. 

3 STUDY FRAMEWORK 

In this section, we describe an example of APS which 
we will rely on to illustrate our approach presented 
later. We chose the sorting system which brings boxes 
of entry conveyor to exit conveyor by sorting them 
according to their size. The system has 11 sensors to 
determine boxes size (small or large) and the box 
entry or exit in different conveyors (feeding, 
intermediate, and evacuation) or turntable. It also has 
7 actuators to activate the various conveyors and the 
turntable. In our case, we only present our results for 
the turntable, a component of the sorting system. It 
has 2 sensors (c4, c5) and 1 actuator (S4). The 
specifications retained are presented through a state 
automaton with 6 states and 10 transitions (figure 3). 
Normal behavior of the component can be described 
through two paths: 

Path A: State 0 -> State 1 -> State 2 -> State 3 
 -> State 4 -> State 5 -> State 0  

From the initial state '0', the turntable is in the c4 
loading position. If the S4 actuator is activated, the 
turntable is moving and sensor c4 is deactivated 
(transition from state "1" to "2"). From there, if the 
command is still active, the turntable returns to the 
unloading position (transition from state "2" to "3"). 
Disabling the S4 actuators allows returning to the 
original position (states "4" after "5" then "0"). 
Path B: State 0 -> State 1 -> State 2 -> State 5  
-> State 0  

From state '2', during the movement, and if the S4 
actuator is deactivated, the turntable returns directly 
to state '0'. 

 
c4: Detector of the turntable loading position 
c5: Detector of the turntable unloading position 
S4: Turntable 

Figure 3: Model of turntable.  

An expert work allowed to obtain the following 
internal failures that may occur in the turntable: F1: 
c4 stuck at 0, F2: c4 stuck at 1, F3: c5 stuck at 0, F4: 
c5 stuck at 1, F5: S4 stuck at 0, F6: S4 stuck at 1, F7: 
unexpected passage of c4 from 0 to 1, F8: unexpected 
passage of c4 from 1 to 0, F9: unexpected passage of 
c5 from 0 to 1, F10: unexpected passage of c5 from 1 
to 0.  

In the following sections, we will try to formulate 
automatically CTS which are able to describe these 
normal and faulty behaviors of the turntable.  Our 
approach is presented in the next section. 

4 PROPOSED APPROACH 

The main idea of our approach (figure 4) is to couple 
simulation with learning (AI technique) (Monostori et 
al., 2000), (Belisario et al., 2015). The simulation 
describes the evolution of the studied model over time 
in order to provide useful information on its dynamic 
behavior in different situations (including situations 
of dysfunctioning). This information can be exploited 
by an expert system or a decision maker (Pierreval 
and Ralambondrainy, 1992). 
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In our proposal, this information (i.e. signals of 
sensors and actuators) is the input of the proposed 
Representation of Observations in form of CTS 
Algorithm (ROCTSA) which allows to model the 
normal behavior of the system as a set of normal CTS 
and the faulty behavior as a set of abnormal CTS. 
From these CTS examples (i.e learning base), an 
incremental learning is introduced to learn new CTS 
and to update the CTS base based on past 
experiences. 

 

 

Figure 4: Proposed approach. 

4.1 Simulation 

Simulation is a necessary module to generate 
examples of CTS from which it will be possible to 
learn new knowledge and update the knowledge base. 
It consists in:  
a) Operating the model of the real system in a normal 

mode (absence of failures) and abnormal mode 
(triggering failures). 

b) Collecting for each mode the relevant information 
(values of the sensors +actuators+ dates) from the 
model.  

c) Generating from these information causal 
temporal signatures through the proposed 
Representation of Observations in form of CTS 
Algorithm (ROCTSA) which will be presented in 
the following paragraph. 

4.1.1 Principle of ROCTSA 

For each PLC cycle (T), the algorithm constructs a 
triplet ( er , ec , Ctrc ) from a binary signature which 

represents the signals of sensors and actuators of the 
system to be diagnosed and from a binary signature 
which represents the signals during the previous PLC 
cycle (T-1). A CTS is the concatenation of at least 
two triplets. 

The proposed algorithm can be illustrated through 
these steps: 

 Step 1: Group the signals of the sensors and 

actuators of the system to be diagnosed during the 
PLC cycle (T) in order to construct a binary 
signature and associate a cycle time to it. (Note: 
tampon is the binary signature of the previous 
PLC cycle (T-1) and PreviouscycleTime is its 
cycle time). 

 Step 2: Formulate the reference event ( er ): If this 

is the first PLC cycle executed then er <- "IN" 
otherwise the constrained event of the previous 
PLC cycle (T-1) becomes the reference event of 
the PLC cycle T. 

 Step 3: Formulate the constrained event ( ec ): 

Each element of the binary signature is 
transformed into an event that can be either the 
rising edge (denoted by R) or the falling edge 
(denoted by F) of a sensor or actuator. This event 
is defined as a constrained event. 

 Step 4: Formulate the temporal constraint 
(temporalC): If the referent event(er) is equal to 
IN then absence of the temporal constraint (nct) 
otherwise the temporal constraint is constructed 
from two times [DateMin, DateMax]. 

DateMin<- CurrentcycleTime- PreviouscycleTime 
DateMax<- DateMin +d 
       with "d" is the duration of the PLC cycle, 

DateMin is the lower bound of the period 
constaint and DateMax is the upper bound of the 
period constraint.  

 Step 5: Group the result of the 3 previous steps to 
construct a triplet of the CTS. 

The complexity of the algorithm is a linear 
complexity with respect to the size of the binary 
signature: O (K (n + m)) where K is the number of 
PLC cycles performed by the automated production 
system, n is the number of sensors and m is the 
number of actuators. 

4.1.2 Labeling of CTS 

The operation of the model in a normal mode and 
abnormal mode (triggering failures) allows the 
labeling of each instance of CTS automatically 
without the need for an expert accompanying the data 
formatting process and it does not need to give advice 
(normal or faulty behavior). The normal functioning 
of the model is represented as a set of normal CTS, 
while the faulty one is defined as a set of abnormal 
CTS. Both types of CTS are stored in a CTS Base. 
This base is the learning base. 

4.2 Learning Module 

For  new  CTS  learning,  we rely on the learning  data 
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stored in the CTS base obtained during the simulation 
module. Each new observation is transformed into a 
new CTS (nCTS) through ROCTSA.  The principle 
of this module consists in extracting, for each nCTS, 
the similar or nearest CTS from the CTS Base. The 
research is based on the use of a similarity metrics that 
calculates the degree of similarity between the new 
CTS and the past CTS.  

For this reason, we use a similarity calculator that 
has as input a nCTS and the CTS base. Its outputs are 
the similarity values between the nCTS and all the 
past CTS (pCTS) stored in the base. Then, the new 
CTS will inherit the result of the CTS having the 
greatest similarity and will be stored in CTS Base. 

4.2.1 Similarity Calculator 

Let S be the similarity relation defined by: 
 

S= CTS × CTS -> [0, 1] 

-If CTSi
and CTS j  are equal, then S ( CTSi

, CTS j ) =1 

-If CTSi
and CTS j are not equal, then S ( CTSi

, CTS j ) 

=0 
Calculate the similarity between two CTS is to 
calculate the distance: 

( , ) 1 ( , )D CTS CTS S CTS CTSi j i j   (7)

To calculate the distance between two CTS, we must 
compute the distance separating its triplets. The 
triplets consist of different types of elements (event 
of chain type, time constraint of interval type), which 
makes the distance calculating a difficult step.  

To solve this problem, we propose to discretize 
the values of the triplets’ elements as follows: 
 To events, we assign the value 1 if Val ( ),eti k = Val 

( ),et j k and the value 0 if Val ( ),eti k ≠ Val ( ),et j k  

where Val is the value of the event, ( ),eti k denotes 

an event of a triplet kt of a CTSi  and ( ),et j k  

represents an event of a triplet kt  of CTS j . 

 To temporal constraints of interval type, we assign 
the value 1 if Val (lower bound ( )

,
Cti k

) >= Val 

(lower bound ( )
,

Ct j k
) and Val (upper bound ( )

,
Cti k

) < 

= Val (upper bound ( )
,

Cti k
), otherwise 0, where 

Val is the value of the lower or upper bound of the 
temporal constraint, ( )

,
Cti k

is a time constraint of 

a triplet kt of a CTSi  and ( )
,

Ct j k
 is a time constraint 

of a triplet kt  of a CTS j . Thus, the value of a triplet 

kt of a CTSi
( ),Vti k is calculated by the aggregation 

of values of its events and its temporal constraint. 

4.2.2 Distance Metric 

The choice of distance metric depends on data type to 
compare (nominal, ordinal, continuous or binary). 
Indeed, values of triplets are numerical. Therefore we 
choose the Manhattan distance (Stahl, 2003) to 
calculate the distance between two CTS. 

1
( , ) , ,13

mD CTS CTS Vt Vti k j ki j km
    (8)

Where TR is the set of triplets representing a CTS 
defined by 1 2 3{ , , ,..., }mTR t t t t , m is the triplets 

number of a CTS, m>=2 and ,Vti k , ,Vt j k are the triplet 

values.  

5 EXPERIMENTATION 

To validate our proposal, we exploit the Interactive 
Training System for PLC (ITS PLC) proposed by the 
Portuguese company Real Games 
(www.realgames.pt). ITS PLC is an education and 
training tool dedicated to programming the PLC and 
validating the control algorithm through a real time 
interactive experience (Riera et al., 2010). It offers 3D 
simulations of Operative Parts (OP) of 5 industrial 
systems (sorting, batching, palletizer, pick and place 
and automatic warehouse). Each system a graphical 
simulation of an operative part including its sensors 
and its actuators and allowing a PLC to control it. 

We use the beta version of ITS PLC in this study 
which allows: (a) using scripts in IronPyton 
(http://ironpython.net) to write its own controllers in 
a language close to the ST (Structured Text). (b) 
accessing to an Interactive IronPython Interpreter 
allowing the user to interact with each simulated 
system by accessing for example to its inputs / outputs 
through the IO object. IO.Actuators and IO.Sensors 
respectively return the actuators and sensors signals. 
(c) simulating failures in sensors and actuators. Our 
proposal was led through the development of 2 
scripts: 
 The first one allows controlling the sorting system 

without the need for a real API 
 The second one allows access to the inputs / 

outputs of the simulated system each the 16ms 
(ITSPLC cycle duration), to implement the 
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ROCTSA (simulation module) and the similarity 
calculator (learning module). 

Note: we chose the duration of a temporal constraint 
of period type (d) is 5ms. 

During the simulation module, the set of normal 
and abnormal CTS are recorded in the CTS base to 
form the learning base. Figure 5 shows various 
examples of CTS instances with the different 
attributes of the learning base. It describes 10 
instances labeled as normal behaviors of the turntable 
and 7 instances labeled by the various failures as 
previously described. 
Instance 5 of the learning base is a normal CTS which 
corresponds to this rule: 

(In, ↑S4, nct)* (↑S4, ↓c4, [80, 85])* (↓c4, ↑c5, 
[2816, 2821])* (↑c5, ↓S4, [6912, 6917])* (↓S4, ↓c5, 
[80, 85])* (↓c5, ↑c4, [2816, 2821]) -> N  

 
This signature describes the passage through the 
different states of path A (introduced above). It 
implies that if the rising edge of the S4 actuator (↑S4) 
occurs followed by the occurrence of the falling edge 
of sensor c4 (↓c4) satisfying the time constraint [80, 
85] with respect to ↑S4, the occurrence of the  rising 
edge of the sensor c5 (↑c5) satisfying the constraint 
[2816, 2821] with respect to ↓c4, the occurrence of 
the falling edge of the S4 actuator (↓S4) satisfying the 
constraint [6912, 6917] with respect to ↑c5 of the 
falling edge of the sensor (↓c5) satisfying the 
constraint [80, 85] with respect to ↓S4 and the rising 
edge of sensor c4 (↑c4) satisfying the constraint 
[2816, 2821] with respect to ↓c5, then we 
the normal behavior of the system. 

Instance 11 of the learning base is an abnormal 
CTS which corresponds to this rule:   

(In, ↑S4, nct)*(↑S4, ↑c5, [2896, 2901])-> F2 
It implies that if the rising edge of the S4 actuator 
(↑S4) occurs followed by the occurrence of the rising 
edge of sensor c5 (↑c5) satisfying the time constraint 
[2896, 2901], then we can deduce the faulty behavior 
F2. The learning module uses these past experiences 
to add new CTS to the CTS base (to promote 
learning). 
Example: We propose to add an nCTS and search the 
most similar using our similarity calculator. 
ROCTSA starts generating an nCTS: 

 
nCTS: (↑c4, ↑S4, [65664,65669])* (↑S4, ↓c4, [80, 
85])-> ?  

It does not exist in the CTS base. Consequently, 
the similarity calculator can be launched. The nCTS 
inherits the (normal or faulty) behavior of the CTS 
which has the minimum distance and will be stored in 
the CTS Base. In this example, CTS 6 has the 

minimum distance (D=0.166). Therefore, the nCTS 
inherits the normal behavior of CTS 6 and is stored in 
the CTS Base.  

6 CONCLUSIONS 

In the context of diagnoses, we suggest a new 
approach based on past experiences which couples a 
simulation with learning for automatic acquisition 
and update of a set of CTS. We present ROCTSA 
algorithm allowing to model the normal behavior of 
the system to diagnose as a set of normal CTS and the 
faulty behavior as a set of abnormal CTS. A learning 
module is introduced to learn new CTS and to update 
the CTS base. The proposed approach has many 
advantages: (i) An easy update for the CTS Base. 
Indeed, when a new behavior occurs in the APS, a 
new CTS will be added to the CTS base that models 
this new behavior. (ii) It is a generic approach that can 
be applied to any APS. (iii) It does not require the 
presence of an expert who might be reluctant to 
acquire a CTS base. As a prospect, to improve the 
expressiveness of ROCRSA, we will express the 
absence of events (negation operators). Then, we will 
use this work to introduce a distributed approach for 
complex system diagnoses.  It will be based on a 
multi-agent architecture which decomposes the 
system to be diagnosed into subsystems. Each 
subsystem will be supervised through an agent which 
is responsible for the acquisition of its CTS Base and 
its local diagnosis.  
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ID : identifier of the instance, X: sequence of triplets,  Y: state of the system, ti : CTS triplet,  
er: reference event, ec: constrained event, L: lower bound of the period constraint, U: upper bound of the period constraint. 

Figure 5: Learning base. 
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