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Abstract: The propose of this work is to extract different features from surface EMG signals of forearm muscles such 
as MAV, RMS, NZC, VAR, STD, PSD, and EOF's. Signals are acquired through 8 channels from "Myo 
Armband" sensor that is placed in the forearm of the human being. Then, identification and classification of 
5 types of movements are done, including open hand, closed hand, hand flexed inwards, out and relax position. 
Classification of the movement is performed through machine learning and data mining techniques, using two 
methods such as Feedforward Neural Networks and Support Vector Machines. Finally, an analysis is done to 
identify which features extracted from the sEMG signals and which classification method present the best 
results. 

1 INTRODUCTION 

Nowadays advances in robotics have made life easier 
for human beings, both domestically and industrially. 
An application of the first one, is to assist people with 
different types of disabilities, helping them to lead 
their lives in the most normal way possible. 
Specifically, in the case of people who have suffered 
the loss of a superior member such as the amputation 
of a hand, it is indispensable that the disabled person 
recovers the ability to take or manipulate objects. The 
muscular groups present in the forearm of the human 
being are directly related to the different states of the 
hand (Khushaba, Al-Timemy, Kodagoda, and 
Nazarpour, 2016), for example, completely open, 
closed, flexed inwards, flexed out, relax position, etc. 

The surface EMG can be measured easily and 
non-invasively (Nakajima, Keeratihattayakorn, 
Yoshinari, and Tadano, 2014), through the use of dry 
sensors, which measure the potentials generated by 
muscle contractions. EMG signals are widely used to 
perform medical diagnoses (Abel, Zacharia, Forster, 
and Farrow, 1996), as well as to determine 
movements of the upper limbs and thus control hand 
prosthetics (Kawano and Koganezawa, 2016). With 
multisensory information is possible identify human 

hand motion via feature extraction and classification 
(Ju and Liu, 2014)(Ju, Ouyang, Wilamowska-Korsak, 
and Liu, 2013). There are different studies that have 
allowed the estimation of mathematical models that 
establish the generation of potentials in muscle 
groups as in the case of those belonging to the 
forearm, to study its behavior and its mechanism 
which may be potentially used for assessment or 
neuromuscular rehabilitation (Nakajima et al., 2014). 
Other studies have focused on identifying different 
states of the hand through myoelectric sensors placed 
in the forearm, to control robotic prostheses 
establishing states of supination, pronation, open and 
closed hand, this through the classification of the 
signals through the harmonic wavelet packet 
transform (Wang, Zhiguo, Xiao, Hongbo, and 
Zhizhong, 2006), and detection of the angle of the 
hand, considering the position of relax, semi-flexed 
and flexed to replicate those movements in an 
orthopedic hand that may be useful for rehabilitation 
(Kavya, Dhatri, Sushma, and Krupa, 2015), the 
classification of these states is done through Support 
Vector Machines (SVM). The force generated 
between each of the fingers and the thumb is also 
considered to determine the behavior of EMG signals 
of the forearm (16 channels) and its relation to these 
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movements which may be useful to identify precise 
movements (Fang, Ju, Zhu, and Liu, 2014), and may 
help identify which muscle group interacts in greater 
proportion with each of these movements. There are 
a lot of features that can be obtained from the signals 
in time, frequency and wavelet domain. (Boostani and 
Moradi, 2003), studying which of them improves the 
results in the classification process. 

This work proposes to identify and classify 5 
types of movements, including open hand, closed hand, 
hand flexed inwards and flexed out and relax position, 
through different patterns such as: Mean Absolute 
Value “MAV”, Root Mean Square “RMS”, Number 
Zero Crossing “NZC”, Variance “VAR”, Standard 
Deviation “STD”, Power Spectral Entropy “PSD”, 
and Empirical Orthogonal Functions “EOF's”, 
extracted from the surface myoelectric signals in 8 
channels from "Myo Armband" sensor that is placed 
in the forearm of the human being. Classification of 
the movement is performed through machine learning 
and data mining techniques, using two methods such 
as Neural Networks and Support Vector Machines, 
finally an analysis is done to identify which pattern 
extracted from the signal and which method of 
classification present the best results, through 
subjects/users of training and test groups.  

2 METHODOLOGY 

The system to be tested consists of the steps shown in 
Figure 1, for the proposed analysis using different 
features extracted for the sEMG signals, and 
classified by two methods such as Feedforward 
Neural Networks and Support Vector Machines. 

 

Figure 1: Scheme of the proposed approach. 

2.1 Signal Acquisition 

In this work is performed feature extraction and 
pattern recognition of a sEMG signals from the 

forearm to identify different class of movements. 
Signals are acquired using “Myo Armband” sensor, 
which is a gesture recognition device worn on the 
forearm and manufactured by Thalmic Labs. It uses a 
set of electromyographic sensors that sense electrical 
activity in the forearm muscles, combined with a 
gyroscope, accelerometer and magnetometer to 
recognize gestures. 

The sensor consists of 8 channels (Figure 2) to 
acquire the myoelectric signals of muscles of the 
forearm from users/subjects. 

 

Figure 2: Myo Armband Sensor and its channels. 

This sensor allows to know the myoelectric 
signals of the muscular groups present in the forearm 
(Figure 3), the signals are acquired at a sampling 
frequency of 200 Hz, and are normalized to values 
between -1 and 1 as shown in Figure 4. 

 

Figure 3: Positioning the sensor for signals acquisition. 
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Figure 4: EMG signal acquired by Myo Armband Sensor. 

The electrodes are in contact with the different 
muscles around the forearm as shown in Table 1. 

Table 1: Electrodes distribution in muscles of the forearm. 

Myo 
Armband 

Muscle 

Channel 1 Extensor Digitorium Cummunis
Channel 2 Extensor Carpi Radialis 
Channel 3 Brachioradialis 
Channel 4 Pronator Teres 
Channel 5 Flexor Digitorum Sublimas 
Channel 6  Flexor Carpi Ulnaris 
Channel 7  Flexor Digitorum Profundus 
Channel 8  Extensor Carpi Ulnaris 

The signals acquired by the 8 channels of sensor 
(S1, S2, ... S8) allow detecting 5 hand movements 
(M1, M2, ... M5) which are produced by the 
combination of contraction and relaxation of different 
muscles in the forearm. Figure 5.  

 

Figure 5: Multi-channel sensor and its relation with the 
movements of the hand scheme. 

Signal acquisition is made to fifteen user/subjects 

who were separated in seven subjects for training and 
eight subjects for test. They were asked to perform the 
movements that are to be detected. Figure 6. 

 

 

Figure 6: Proposed movements to identify a) closed hand, 
b) open hand, c) hand flexed inwards d) hand flexed out e) 
relax position. 

2.2 Feature Extraction 

Different features can be extracted from the obtained 
signals (Boostani and Moradi, 2003), in this work has 
been calculated parameters in time domain such as: 
MAV, NZC, RMS, VAR, STD, and EOF, in the 
frequency domain is calculated PSD. With these 
parameters, is desired to reduce the number of signal 
data to facilitate pattern recognition and movement 
classification. 

 MAV (Mean Absolute Value): This feature 
determines the mean value of the difference in 
amplitudes of consecutive samples in a time 
segment. 

ܸܣܯ ൌ
1
݊
෍|ݔ௜|
௡

௜

 (1)

Where: xi is the value of ݅-th sample,	݊ is the number 
of samples. 

 RMS (Root Mean Square): This feature 
determines the root mean square of consecutive 
samples in a time segment. 

ܵܯܴ ൌ ඩ
1
݊
෍ݔ௜ଶ
௡

௜

 (2)

 NZC (Number Zero Crossing): is the number of 
times that signal passes the zero-amplitude axis. 
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ሻݔሺ݊݃݅ݏ ൌ ቄ1							݂݅	ݔ ൐ 0
݁ݏ݅ݓݎ݄݁ݐ݋			0

 
 

 VAR (Variance): This feature measures the 
spread of data from the mean (̅ݔ) of consecutive 
samples in a time segment. 

 

ܴܣܸ ൌ
1

݊ െ 1
෍|ݔ௜ െ |ݔ̅
௡

௜

 (4)

 

Where ̅ݔ is the mean of data in a time segment. 
 

 STD (Standard Deviation): this feature measures 
the data dispersion of consecutive samples in a 
time segment from its mean. 

 

ܦܶܵ ൌ ඩ
1

݊ െ 1
෍|ݔ௜ െ ଶ|ݔ̅
௡

௜

 (5)

 

 EOF (Empirical Orthogonal Function): is a time 
series data mining technique  that allows 
decomposing time series into a sum of a set of 
discrete functions namely EOF’s (Cepeda and 
Colome, 2014).  

In this work time series correspond to the signals 
obtained from eight channels of the forearm F. 

 

F୬୮ ൌ ൥
ଵଵݔ ⋯ ଵ௣ݔ
⋮ ⋱ ⋮
௡ଵݔ ⋯ ௡௣ݔ

൩ (6)

 

The SVD of F matrix has the form: 

F୬୮ ൌ U୬୬Λ୬୮
ଵ/ଶV୮୮

ᇱ (7)
 

Where Λ୬୮
ଵ/ଶ is a diagonal matrix with the square roots 

of eigenvalues from U୬୬ or V୮୮.  U୬୬ and V୮୮ are an 
orthogonal matrix whose columns are the 
orthonormal eigenvectors of  FF′ and F′F 
respectively.  

The number of selected eigenvectors of V୮୮ is 
defined by eigenvalues of  Λ, which allow a measure 
of the corresponding explained variability (ܸ݅ܧ), and 
whose elements are known as EOF’s. 

ܧ ௜ܸ ൌ 	
௜ߣ

∑ ௜ߣ
௣
௜ୀଵ

ൈ100% (8)

Then the EOF’s will be used for training of 
classifiers. 

 PSD (Power Spectral Entropy): is used to extract 
information content in a discrete signal. To 
calculate PSD is necessary to apply the FFT to the 

signals in a finite time. The algorithm to calculate 
this parameter is summarized to the following 
steps (Zhang, Yang, and Huang, 2008): 

- The discrete Fourier Transform ܺሺ߱௜ሻ can be 
computed by FFT. Considering ߱௜ is the i-th 
frequency of the spectrum. 

- The Power Spectral Density is computed by: 

ܲሺ߱௜ሻ ൌ
1
݊
|ܺሺ߱௜ሻ|ଶ (9)

- In this work, the sum of the ࡼሺ࣓࢏ሻ corresponding 
to each frequency is the pattern that will be used. 

ܦܵܲ ൌ෍ܲሺ߱௜ሻ
௡

௜

 (10)

2.3 Classification 

In this work two methods of pattern recognition are 
presented: Feedforward Neural Networks and 
Support Vector Machines, then it is done a 
comparison between the performance of the 
classifiers when they are tested with different patterns 
that are obtained from the acquired signals. 

2.3.1 Feedforward Neural Networks (FNN) 

Neural Networks are processing algorithms whose 
operation simulates a biological brain. They can 
process large parallel amounts of information, even if 
it is partial and diffuse. This method can learn and 
memorize very varied information and formalize it 
and, of course, predictions from the data with which 
it has been trained. They provide a powerful non-
linear interpolation tool and multidimensional. So, 
they have been used mainly in identification and 
prediction of patterns. 
 

 

Figure 7: Feedforward Neural Network Scheme. 

The feedforward topology is characterized by 
running the processing in one direction only (Russell 
and Norvig, 2009). Distinguishing three layers of 
computation called neurons: input layer where the 
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data to be processed is received; the intermediate 
layer or layers, where is the processing itself and the 
output layer. (See Figure 7). 

2.3.2 Support Vector Machines (SVM) 

SVM is a supervised machine learning algorithm 
which can be used for both classification or 
regression challenges. However, it is mostly 
used in classification problems. In this algorithm, is 
plotted each data item as a point in n-dimensional 
space (where n is number of features) with the value 
of each feature being the value of a particular 
coordinate. Then, is performed classification by 
finding the hyper-plane that differentiate the two 
classes. In Figure 8, is shown the representation of 
SVM’s and the optimal hyperplane. 

 

Figure 8: Representation of SVM’s. 

Support Vector Classifiers (SVC) needs a priori 
an off-line learning stage, in which the classifier must 
be trained using a training set of data. Each element 
in the training set contains one ¨target  value¨ and 
several attributes (Cepeda, 2013). Training involves 
the minimization of the error function: 

1
2
ݓ்ݓ ൅ ௜ߦ෍ܥ

ே

௜ୀଵ

 (11)

Subject to the constraints: 

௜ሻݔሺ߶்ݓ௜ሺݕ ൅ ܾሻ ൒ 1 െ ௜ߦ	݀݊ܽ	௜ߦ ൒ 0 (12)

Where: ܥ is the margin parameter, ݓ is the vector of 
coefficients, ܾ	is the bias constant, and ߦ௜ represents 
parameters for handling nonseparable data (inputs). 
The index i labels the ܰ training cases. ݕ௜ represents 
the class labels and ݔ௜ represents the independent 
variables. The kernel ߶ is used to transform data from 
the input (independent) to the feature space. Radial 
Basis Kernel function used in this work, it has the 
form (Chih-Wei Hsu, Chih-Chung Chang, 2008): 

,௜ݔ൫ܭ ௝൯ݔ ൌ ݁ିఊฮ௫೔ି௫ೕฮ
మ
, ߛ ൐ 0 (13)

In this work, the inputs are the different features 
extracted of the signals of the forearm muscles and 
the targets are the hand movements. 

2.3.3 K-Fold Cross Validation 

It is a technique used to measure how accurate is the 
classification algorithm. In this method, the sample 
data are divided into K subsets. One of the subsets is 
used as test data and the rest (K-1) as training data. 
The cross-validation process is repeated during K 
iterations, with each of the possible subsets of test 
data. Finally, the arithmetic mean of the results of 
each iteration is performed to obtain a single result. 
This method is very accurate since we evaluate from 
K combinations of training and test data. In practice, 
the choice of the number of iterations depends of the 
measurement of the data set. 

2.3.4 Reduction of Dimensionality of the 
Data 

In this work, it is identified the clusters belonging to 
the 5 movements of the hand to verify its separation. 
Data have been obtained through the 8 channels of the 
sensor, then it necessarily to reduce their 
dimensionality to show the information in the space.  

Through the principal component analysis (PCA) 
is proposed to reduce the dimensionality of elements 
to represent the clusters in the plane (2-dimensions) 
or space (3-dimensions) without excessive loss of 
accuracy.  

Principal component analysis (PCA) is a data 
mining technique that allows transform the original 
data into a new set of variables which are uncorrelated 
(Cepeda, 2013), and can be obtained through 
calculation of singular value decomposition (SVD) of 
the covariance matrix (S). 

Considering a data matrix X: 

X ൌ ൥
ଵଵݔ ⋯ ଵ௣ݔ
⋮ ⋱ ⋮
௡ଵݔ ⋯ ௡௣ݔ

൩ (14)

The covariance matrix is calculated from data matrix 
(X): 

S ൌ
1
݊
Xᇱቂ୍ି

ଵ
௡ଵଵ

ᇲቃX (15)

where:  
I: identity matrix 
1: all ones vector 

Applying spectral decomposition (SVD) to S matrix: 

S ൌ UΛU´ (16)
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Where Λ is a diagonal matrix containing eigenvalues 
 of S, U is an orthonormal matrix containing the (௜ߣ)
eigenvector of S.  

The number of selected eigenvectors of U is 
defined by eigenvalues of Λ, which allow a measure 
of the corresponding explained variability Ec (8). 

Thus, the new data matrix Y is the projection of 
original data X on the hiper-plane defined by U. 

Y ൌ XU (17)

3 RESULTS 

Feature extraction has been for time window of 100 
milliseconds as shown Figure 9. Once the data for 
these segments are obtained, it is calculated: MAV, 
NZC, RMS, VAR, STD, and EOF, and PSD. 

 

Figure 9: Time window used for feature extraction 
(example). 

Figure 10, shows clusters obtained with 3 PC´s 
which have an Explained Variability ܧ ଷܸ=93.3%. 
 

 

Figure 10: Clusters identified for 5 hand movement. 

In Table 2, the results obtained to measure the 
robustness of the implemented classifiers are 
presented, taking the signals of 7 subjects/users (4 
men, 3 women) for off-line training of Feedforward 
Neural Networks (10 hidden layers and 
backpropagation method for training phase) and 
Support Vector Machines with 350 time windows of 
signals corresponding to the 5 movements of the 
hand, that is: 70 open hand, 70 closed hand, 70 hand 
flexed inwards, 70 hand flexed out and 70 hand 
relaxed, the accuracy of the classifiers is done using 
K-fold cross validation algorithm for K = 10. 

Tests were performed with independent features 
and with the best combinations of them to find the 
best accuracy. 

Table 2: Classification accuracies throw K-fold cross 
validation method. 

Pattern 
Feedforward 

Neural 
Network 

Support Vector 
Machines 

MAV 79.2 % 63.2 %
NZC 34.5 % 29.5 %
RMS 87.5 % 66.0 %
VAR 77.0 % 55.5 %
STD 86.0 % 69.0 %
PSD 45.0 % 35.5 %
EOF 22.5 % 39.0 %

MAV-STD 86.0 % 67.0 %
RMS-STD 86.5 % 67.5 %

MAV-RMS-STD 78.8 % 62.4 %
MAV-RMS-VAR 82.4 % 62.4 %

MAV-RMS-VAR-STD 78.0 % 63.2 %
 

It is recommendable to identify the best 
parameters C and γ of SVM classifier to obtain better 
results (Chih-Wei Hsu, Chih-Chung Chang, 2008). 
Differential evolution algorithm has been used to 
identify the constants, obtaining the accuracy results 
shown in Table 3. 

Table 3: Classification accuracies throw K-fold cross 
validation method with identified parameters of SVM. 

Pattern 
Feedforward 

Neural 
Network 

Support 
Vector 

Machines
MAV 79.2 % 100 %
NZC 34.5 % 61.0 %
RMS 87.5 % 99.5 %
VAR 77.0 % 98.5%
STD 86.0 % 100 %
PSD 45.0 % 65.5 %
EOF 22.5 % 56.0 %

MAV-STD 86.0 % 99.5 %
RMS-STD 86.5 % 100 %

MAV-RMS-STD 78.8 % 99.6 %
MAV-RMS-VAR 82.4 % 99.2%

MAV-RMS-VAR-STD 78.0 % 99.6 %
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In Table 3, it can be evidenced when using a 
method of optimization for calculation the SVM 
constants, the performance of the classifier can be 
greatly improved. 

Table 4: Classification accuracies in the test group. 

  
Classification accuracy with different features 

(%) 

Test CLA MAV STD 
RMS 
STD 

MAVR
MS 
STD 

MAV 
RMS 
VAR 
STD

User 1 
FNN 79.0  84.0 74.0 40.0 50.0
SVN 94.0 92.0 92.0 82.0 94.0

User 2 
FNN 80.0 38.0 50.0 74.0 74.0
SVN 90.0 84.0 84.0 90.0 92.0

User 3 
FNN 70.0 58.0 68.0 72.0 42.0
SVN 88.0 84.0 84.0 76.0 76.0

User 4 
FNN 50.0 34.0 28.0 36.0 22.0
SVN 64.0 62.0 62.0 78.0 90.0

User 5 
FNN 74.0 84.0 44.0 84.0 96.0
SVN 92.0 92.0  100  100 100

User 6 
FNN 80.0 74.0 56.0 52.0 46.0
SVN 99.0 98.0  100  100 100

User 7 
FNN 46.0 20.0 18.0 82.0 52.0
SVN 88.0 86.0 84.0 84.0 88.0

User 8 
FNN 58.0 30.0 36.0 52.0 50.0
SVN 82.0 96.0 78.5 92.0 96.0

After the training of the FNN and SVM 
algorithms, accuracy measurements, were performed 
taking the signals of 8 subjects/users (6 men, 2 
women) of the test group, with 400 time windows of 
signals corresponding to the 5 movements of the 
hand, that is: 80 open hand, 80 closed hand, 80 hand 
flexed inwards, 80 hand flexed out and 80 hand 
relaxed. It has been done with the better features such 
as: MAV, STD, RMS-STD (R-S), MAV-RMS-STD 
(M-R-S) and MAV-RMS-VAR-STD (M-R-V-S) which 
exceed 99.5% accuracy in the training phase of SVM. 
This results are shown in Table 4. 

Table 5, shows the average accuracies for each 
classifier, and Figure 11 a comparative graph of these 
values. 

Table 5: Average accuracies in the test group. 

 
Feedforward 

Neural Network 
Support Vector 

Machines
MAV 67.1 % 87.1 %
STD 52.8 % 86.8 %
R-S 46.8 % 85.6 %

M-R-S 61.5 % 87.8 %
M-R-V-S 54.0 % 92.0 %

 

Results presented in Figure 11, show the best 
feature for the classification of movements in users 
who did not participate in the training phase, this is 
the combination of the features M-R-V-S, with the 

SVM classifier, which have an average accuracy of 
92.0%. 
 

 

Figure 11: Average accuracies of classifiers test. 

4 CONCLUSIONS 

The present work has allowed to determine the 
identification of different movements of the hand 
through the acquisition of sEMG signals of the 
forearm. In this work, it has been shown that SVM 
presents better accuracy regarding the FNN for 
classification, and the feature that is considered the 
best for this aim is the combination MAV-RMS-
VAR-STD with 92% of accuracy. 

In future works, it is proposed to detect other 
movements, especially including the fingers of the 
hand and to verify other classification techniques 
such as Linear Discriminant Analysis (LDA) among 
others to transfer these movements ton robotic 
orthotic prostheses. 
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