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Abstract: The ETL processes can be seen as typical data-oriented workflows composed of dozens of granular tasks that 
are responsible for the integration of data coming from different data sources. They are one of the most 
important components of a data warehousing system, strongly influenced by the complexity of business 
requirements, their changing, and evolution. To facilitate the planning and ETL implementation, a set of 
patterns specially designed to map standard ETL procedures is presented. They provide a simpler and 
conceptual perspective that can enrich to enable the generation of execution primitives. Generic models can 
be built, simplifying process views and providing methods for carrying out the acquired expertise to new 
applications using well-proven practices. This work demonstrates the fundaments of an ETL pattern-based 
approach for ETL development, its configuration and validation trough a set of Alloy specifications used to 
express its structural constraints and behaviour.

1 INTRODUCTION 

Even now, the development of data warehouses 
populating processes – ETL – remains a challenge in 
the area, engaging very diversified personnel with 
specific expertise and specific computational 
resources. Due to its complexity and heterogeneous 
nature, ETL systems development process addresses 
very challenging problems ranging from simple 
access to information sources to complex strategies 
for conciliating data and ensure their quality. 

Usually, ETL architects and engineers start by 
initial drafts and models, getting a system overview 
with the main requirements that need to be validated 
before its implementation. Additionally, they need to 
know the data they are bringing from data sources as 
well establish the techniques applied in data 
extraction, transformation, and load phases. Abstract 
models are very useful even for initial versions since 
they have the ability to describe the system we want 
to implement, regardless of the methodology or 
technology used in its implementation. They 
revealing project needs in a very clear and precise 
way, representing “first picture” of the system, very 
useful for project discussion and planning (Losavio et 
al., 2001).  

Abstract models can include the representation of 

software components that are frequently used for 
software modelling to describe common and well-
known techniques that are used to describe specific 
system parts. The component reuse helps to produce 
software with better quality, faster and with lower 
costs since coarse grain components based on well-
known design techniques are used. We believe that 
the pattern-oriented approach can be applied as well 
to ETL development, enabling its reuse in many 
different scenarios to solve recurring problems. 

In this paper, we designed and developed a set of 
Alloy language specifications (Jackson, 2012) for 
expressing ETL patterns’ structural constraints and 
behaviour. The Alloy is a declarative specification 
language that supports problem structural modelling 
and validation, helping to avoid process 
inconsistencies or architectural contradictions.  

We selected one of the most relevant ETL 
patterns: The Data Conciliation and Integration 
(DCI), which has a set of operational requirements 
that are presented using the Alloy language. After this 
first introductory part, we present next to a briefly 
related work (section 2), and the ETL meta model 
designed for ETL patterns formalization with the DCI 
pattern specification as an example (section 3). The 
exception and log handling mechanisms that support 
each pattern operationally are also explored (Section 
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4), as well with a specific example applied to the DCI 
pattern (Section 5). Finally, in Section 6, we evaluate 
the work done so far, pointing out some research 
guidelines for future work. 

2 RELATED WORK 

After producing an initial plan using more abstract 
models, the selection of an ETL tool to support the 
system implementation appears quite naturally. 
Complex software pieces are usually supported by 
development processes covering all development 
stages: from requirements identification to the 
implementation and maintenance phases. The design 
task (conceptual and logical) supports the 
development team, identifying how the system 
should meet customer requirements and to determine 
how the system should be effective and efficient. The 
use of a design methodology to support ETL 
implementation using a specific tool was proposed by 
Vassiliadis and Simitsis (Vassiliadis et al., 2003, 
2000). Several authors explored the ETL design 
phases using different approaches, languages and 
notations. The use of UML (Unified Modelling 
Language) (Trujillo and Luján-Mora, 2003) and 
BPMN  (Business  Process  Model  and  Notation)  (El 

Akkaoui and Zimanyi, 2009) are just two examples. 
The works presented by Munoz (Muñoz et al., 2009) 
and Akkaoui (El Akkaoui et al., 2011) revealed as 
very important contributions to our work, revelling 
important aspects to cover models translation to 
executable code, providing a way to describe the 
structure and semantic to produce final systems 
guided from more abstract models. 

With this work, we propose a method to 
encapsulate patterns behaviour inside components 
that can be reused and mapped to more detailed 
primitives using a generator-based reuse approach 
(Biggerstaff, 1998). Based on pre-configured 
parameters, the generator produces a specific pattern 
instance that can represent the complete system or 
part of it, leaving physical details to further 
development phases. The use of software patterns to 
build ETL processes was first explored by Köppen 
(Köppen et al., 2011) that proposed a pattern-oriented 
approach to support ETL development, providing a 
general description for a set of patterns such as 
aggregator, history and duplicate elimination. The 
patterns are presented only at conceptual level, 
lacking to describe how they can be mapped to 
execution primitives. The approach presented in this 
paper works with high level components instead of 
using very granular tasks such as joins, union, 

 

 

Figure 1: Basic Alloy specification to support ETL patterns. 

abstract sig Field{} 
sig KeyField extends Field 
sig PKField, SKField, FKField extends KeyField{} 
sig ControlField, VariationField, DescriptiveField extends Field{}(...) 
sig DataObject{fields: some Field,keys: some SKField} 
fact dataObjectKeyFields {all o: DataObject | o.keys in o.fields(...)} 
sig Mapping {inData: one DataObject,outData: one DataObject,association: Field 
-> Field} 
fact consistentMapping { 

all m: Mapping | m.association in m.inData.fields -> m.outData.fields 
    (...)} 

abstract sig PatternCore{sourceToTarget: some Mapping} 
abstract sig Throwable{sourceToThrowable: some Mapping} 
abstract sig Log{sourceToLog: some Mapping} 
abstract sig Pattern{ 
   coreComponent:one PatternCore,  

throwableComponent: set Throwable,  
logComponent: set Log} 

fact consistentPattern {(...)} 
abstract sig Extract, Transform, Load extends PatternCore{}(...) 
enum Rule{DELETE, PRESERVE} 
sig IntegrationRules{associationFields : some Mapping,rule: one Rule, 

condition: one ConditionalOperator} 
sig DCI extends Transform{rules: some IntegrationRules,compensationPattern: 
lone Transform} 
fact DCISameOutput{(...)} 

{ }
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projections or selections. As well happens in other 
software areas, the use of abstraction techniques can 
be used to provide a simpler view over ETL 
conceptual models, and at the same time provide a 
flexible approach to enrich conceptual models in 
further stages. All this considering and using the 
efforts done in earlier stages. Thus, we believe that a 
formal model that describes model constraints and 
behaviour is needed to support the physical 
generation of ETL processes. We have been working 
in the last years in a pattern-oriented approach for 
ETL development (Belo et al., 2014; Oliveira et al., 
2014). We already identified a set of ETL patterns 
that can be used to support all ETL development 
phases. Recently, we introduce the use of Alloy 
Language to formalize ETL patterns behaviour 
(Oliveira et al., 2016), showing the specification of 
one common ETL procedure: The Slowly Changing 
Dimension (SCD) pattern. In this work, we extend the 
work presented through the extension of pattern main 
components for exception and log handling, and with 
the DCI pattern specification. 

3 ETL META MODEL FOR 
PATTERNS DEFINITON 

The Model-driven techniques are being developed for 
several software areas and are used not only to 
support models development but also to cover code 
generation as well as model synchronization between 
physical models and abstract models. Whether being 
conceptual or logical, ETL models cover specific data 
requirements that reveal a symbiotic relationship 
between business requirements and process 

implementation. This means that each ETL is 
different even under the same domain, which 
compromises its reusability outside problem scope. 
To minimize such problems, an ETL framework 
covering a set of most common ETL procedures used 
is proposed.  

The ETL pattern concept is represented by a 
“core” that encapsulates all pattern rules to support 
operational requirements and the logic behind it, the 
internal input and output interfaces to communicate 
both with ETL workflow and with the data layer to 
produce specific instances and the communication 
layer with other patterns. Additional ETL metadata is 
also preserved in the data layer, supporting the error 
and log strategies to handle errors and pattern events. 
Specific instances of “Throwable” and “Log” pattern 
components communicate with each associated 
pattern, encapsulating all logic behind error and log 
handling. The “Throwable” pattern component uses 
the input configuration to handle error or exception 
scenarios through the application of specific recovery 
strategies previously configured using pattern 
metadata. The unexpected scenarios that cause 
system critical failure can be configured to use 
specific procedures to maintain data consistency. For 
example, if some error compromises the ETL 
execution, the process can be aborted using a rollback 
procedure, maintaining data in a consistent state. The 
“Log” pattern stores ETL main events timeline to 
identify data lineage, bottlenecks, and errors.  Thus, 
the ETL process can be analysed to identify error 
trends and to apply specific strategies to minimize 
them and eventually reduce ETL resources needed for 
subsequent loads.  

In Figure 1, a set of formal specifications in Alloy 
is presented to express patterns structural constraints  

 

 

Figure 2: Pattern instance generated by the Alloy Engine Analyser. 
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and behaviour. The concepts hierarchy is described 
using Alloy signatures that introduce sets of elements 
of a certain type in the model. Abstract signatures are 
used to describe abstract concepts that should be 
refined by more specific elements, which is the case 
of top-level signatures, for example: “Field” 
representing patterns configuration properties and 
“DataObject” representing the type of data 
repositories related to the “Pattern” concept. The 
“Field” signature can be specialized in control fields 
(“ControlField”) to descriptive properties that store 
useful metadata related to each handled schema. For 
example: the date fields (“DateField”), describing 
temporal data; or the the log fields (“LogField”), 
describing specific metadata related to store the 
action performed during ETL execution. 

The “PatternCore” signature represents the most 
general concept used, while the “Extraction”, 
“Transform” and “Load” signatures represent the 
three types of patterns that are intrinsically associated 
with each typical phase of an ETL process. The 
“Extraction” class instances are used to extract data 
from data sources using a specific data object (e.g. a 
table or file), representing typical extraction data 
processes and algorithms applied to specific data 
structures. The “Transformation” class represents 
patterns that are used in ETL transformation phase 
(Rahm and Do, 2000) to align source data schema 
requirements to the target DW schema requirements. 
This pattern category represents a large variety of 
procedures that are often applied in DWS, such as the 
application of data variation policies (SCD), 
generation of surrogate keys or schema 
transformations. Patterns of this class can also be 
specialized in concrete procedures considering its 
decomposition properties.  For example, the “Data 
Quality Enhancement” (DQE) pattern can be 
specialized to the “Normalization” pattern that 
represents the set of tasks needed whenever it is 
necessary to standardize or correct data according to 
a given set of mapping rules. Thus, all the most 
frequent ETL patterns can be represented along with 
all its operational stages. Finally, the “Load” class 
represents patterns used to load data to the target DW 
repository, encapsulating efficient algorithms for data 
loading or index creation and maintenance. The 
“Intensive Data Loading” (IDL) signature represents 
the “Load” signature specialization, embodying the 
necessary operational requirements to load data to a 
target DW schema considering the schema 
restrictions followed.  

The “Mapping” signature represents the 
association between fields, establishing the 
relationship between attributes from two different 

sources through the binary field association between 
fields (a->b). Additional constraints impose 
(“consistentMapping” fact), for example, that a 
mapping is only valid if it associated fields from the 
input (“inData”) and the output (“outData”) data 
sources. The “Pattern” signature is composed of a set 
of three different mappings (“Mapping” signature):  
− “sourceToTarget”: describing the set of 

relationships between source and target fields for 
pattern application; 

− “sourceToThrowable”: describing the set of 
relationships between the source fields and 
exception/error support fields; 

− “sourceToLog”: describing the set of field 
relationships between the source schema and 
target log structures. 

Each “PatternCore” specialization should preserve 
additional constraints over the arity of the fields to 
serve particular requirements. Signatures may contain 
fields of arbitrary arity that will embody the 
associations between the different artifacts. For 
example, the “DataObject” signature represent data 
repositories that contain a set of field declarations 
shared by its extensions: each “DataObject” element 
is related to a non-empty set of “Field” elements 
(imposed by the keyword “some”). A set of 
“SKField” elements ae also used to express the 
surrogate key fields.  

The DCI pattern is a “Pattern” specialization that 
involves the integration of data about the same 
subject from several data source. Thus, several 
conflicts can occur that should be properly handled to 
provide consistent data view to reporting tools. Thus, 
it is necessary to integrate some related data (data 
from the same entity) coming from different data 
sources. The data integration should be accomplished 
using binding logic procedures that should be 
implemented to specify how related fields could be 
linked together. The Figure 1 presents an Alloy 
specification with the main concepts and 
relationships to support the DCI rules. The “DCI 
“signature represents the DCI pattern structure to 
support the logical mappings between each data 
source and target data objects for a given 
configuration. Several “sourceToTarget” mappings 
can be provided, however, the output data object 
should be only one, which is forced by the 
“DCISameOutput” fact. This means that for each 
object that we need to integrate data, a specific DCI 
instance should be used. For that, specific integration 
rules (“IntegrationRules” signature) should be 
provided to identify the action that should be applied 
to each field association. Thus, when multiple sources 
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are used, conflicts can be avoided using specific rules 
(“Rule” enumeration) to decide which fields from a 
specific data object are used to populate the target 
DW object. The “consistentDCI” fact enforces 
several constraints to guarantee the DCI consistency. 
For example, the fields associations used for rules 
configuration should be defined in “sourceToTarget” 
mappings. A predicate is then defined to embody the 
notion of consistent DCI: in this case, checking 
whether the mappings of DCI are themselves 
consistent according to the rules defined above. This 
property can then be automatically processed by the 
Alloy Analyser, either to simulate instances that 
conform to the specification or to check for the 
correctness of concrete instances. The Figure 2 
presents a random, consistent, instance, composed by 
two “sourceToTarget” mappings and one 
“sourceToLog” and “sourceToThrowable” mapping. 

4 THE THROWABLE AND LOG 
PATTERNS 

The ETL implementation and management deal with 
several problems that can compromise all process 
activities. Data coming from operational systems can 
suffer from inconsistencies related to bad data input 
or even from changes performed to cover new 
business needs. Using specific “throwable” 
components for each pattern instance allows for the 
definition of specific strategies to plan and deal with 
recurring problems, anticipating them and provide 
suitable recovery strategies. However, stopping all 

process every time an unexpected situation occurs can 
be impractical. For that reason, a more flexible 
approach should be followed to prevent process 
failure, providing a way to separate inconsistent 
records from ETL normal flow or, if possible, correct 
them at execution time. 

The Figure 3 represents the main concepts related 
to the “throwable” pattern using Alloy primitives. 
The “Exception” signature represent data errors that 
do not compromise ETL execution and for that 
reason, can be handled or avoided using specific 
routines. Incoherent records are moved to quarantine 
(“Quarantine” signature) data objects, whose 
structure is determined according to each pattern 
configuration. The quarantine meta data structure is 
generally composed by a “Key” attribute identifying 
each quarantine row and a set of control attributes 
(“controlAtt”) that are used to tag each row with 
additional metadata that can be provided by the 
exception handler mechanisms. The temporal data 
(“Temporal” signature), the source object 
(“objectDescription”) where the exceptions are 
found, the triggered exception (“Throwable”), the 
action that triggered the exception (“event”), the 
evaluation state (“State”, by default ‘invalid’) and the 
exception severity (“severityScore”) are some 
examples of possible control fields used to store 
errors metadata. Additionally, descriptive attributes 
are used to represent non-structured data to enrich the 
quarantine objects with information that can be used 
for human interpretation, while the record 
identification (“recordId”) is used to identify source 
records stored in quarantine object. 

 

 

Figure 3: Alloy specification describing “throwable” and “Log” patterns. 

(...) 
enum SeverityCode{LOW, MEDIUM, HIGH} 
sig ThrowableField, StageField extends Field{} 
sig ThrowableMetaData { 

temporalData:some DateField, objectDescription:one Field, (...)} 
sig QuarantineData extends DataObject{metaData:one ThrowableMetaData & fields} 
abstract sig Throwable extends Pattern{sourceToThrowable:some Mapping, log:one 
LogPattern} 
sig Exception extends Throwable{quarantineObject:one 
QuarantineData,correctionProcedure:one DQE} 
sig Error extends Throwable{metadata:one ThrowableMetaData}(...) 
-- Log specification 
abstract sig LogField extends Field{} 
abstract sig EventLogField extends LogField{} 
sig CompensationField, ErrorLogField, CheckPointField extends EventLogField{} 
sig SequenceField, PerformanceField extends LogEventField{} 
enum LogLevel{EXCEPTION, FATAL, INFO} 
sig LogObject extends DataObject{temporalData:some DateField & fields,(...)} 
abstract sig Log extends Pattern{sourceToLog: some Mapping}(...) 
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The “Error” class represents serious data errors 
that cannot be handled automatically, compromising 
all ETL flow. When errors are detected, rollback 
mechanisms can be configured to reverse all 
operations done so far and return data to a consistent 
state. Otherwise, the process can be cancelled, 
leaving data at the current state. Additionally, to the 
ability to track error or unexpected situations, the 
ETL process must detect data inconsistent states to 
avoid its progression to DW system. The transaction 
logs files are a common strategy used by many 
software systems to collect data about the 
events/transactions that occurred during system daily 
operations. All the performed actions can be stored to 
provide a system picture in a specific time-window. 
For that, critical tasks should be monitored to ensure 
quality/performance measures, identifying 
bottlenecks and errors that can influence the DW 
operationally. For example, log mechanisms can be 
used to control the performance or quality measures 
for specific tasks and check process consistency 
based on the execution history. Strong variations in 
the results can point to source systems anomalies that 
should be investigated. 

The log structure can also be used to support 
recovery mechanisms that are used to protect ETL 
procedures against critical failures, providing a way 
to rollback ETL data to a consistent state. The “Log” 

pattern is composed by specific mappings 
(“sourceToLog”) that relate the field association 
between the source object and target log Object 
(“LogObject”). The log objects use specific fields to 
check quality parameters such as the temporal 
(“temporalData”) and performance data 
(“taskDescription” using specific 
“performanceFields”) about process tasks. The 
number of records processed and the time needed to 
perform particular tasks are just some example of 
possible performance fields that can be used. The log 
level (“LogLevel” enumeration) describes the type of 
log used. For example, information log can represent 
its entries as information logs (‘INFO’), which are 
useful to describe informational messages that 
highlight progress tasks, or fatal logs (‘FATAL’) that 
describe critical error events that lead the process to 
abort. The log description (“logDescription”) 
describes the event that originates the log entry, 
which can be an exception, error or a state indicating 
task finishing. Finally, the key referencing the source 
object and the sequence of log entries (primary key) 
can be described using “sequence” fields. 

5 A DCI PATTERN EXAMPLE 

The  Figure  4 presents  a BPMN  algorithm  with the
 

 

Figure 4: BPMN example algorithm for DCI instantiation. 
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main tasks to support the DW data load process, 
involving a “Product” dimension. Considering that 
several data sources are used to populate the 
“Product” dimension without the guaranty of well-
conformed data, a specific DCI instance was 
configured to deal with such scenario. The BPMN 
process describes two cyclic structures to handle each 
input source (“Load source” sub process) and the 
records they bring, respectively. For each record 
(“load record” sub process), the mappings that 
preserve the binding rules (derived from 
“sourceToTarget” Mapping) must be used to 
identified to enable the integration logic. Thus, for 
each processed record, a specific lookup process over 
the mapping table is performed to find the 
correspondent plan name (“Find correspondence” sub 
process). When records are stored (“Store record” sub 
process), specific events can be triggered to identify 
three possible exception scenarios (“Throwable” 
pool): 
− “Missing SK” referring to the new records 

without correspondent SK; 
− “Incompatible types” for data type 

incompatibilities between the product id attribute 
from source and target repositories; 

− “Contradictory records” for product names with 
contradictory values.  

While for the contradictory values, records are stored 
in quarantine objects using “Store quarantine” sub 
process, for the “Missing SK” and “Incompatible 
types” exceptions, specific Surrogate Key Generator 
(“Generate SKG” sub process) pattern instance and 
DQE instances (“Generate DQE” sub process) are 
generated to deal with each scenario. The logic 
between each pattern handling is represented using 
collapsed BPMN pools (“SKG” and “DQE”, 
respectively). Then, “Throwable” instances, specific 
resources can be instantiated and invoked to correct 
wrong values before proceeding to its storage. When 
the conflict is successfully managed, records are 
reintroduced to regular ETL flow. If the conflict 
persists, the quarantine table is updated with all 
conflicting records (a BPMN conditional gateway is 
used to select the right path) and a specific log entry 
is registered. 

The “Log” pool presents two configured 
scenarios, representing the “Exception log” and the 
“Audit log” sub processes. The logic behind each one 
is straightforward, consisting of the identification of 
several control attributes to identify complementary 
data about the actions performed in the remaining 
BPMN lanes and its storage according to its purpose: 
the “Exception Log” stores “Throwable” events while 

the “Audit Log” stores checkpoint events triggered 
when the populating processes reaches a specific 
milestone. In this case, the “throwable” configuration 
was configured with a log component (“log” field), 
allowing the communication between the 
components. That way, when “throwable” events are 
triggered, the exception and error logs can be properly 
updated. 

The DCI pattern instance presented was generated 
based on the specification principles presented in 
Figure 1 and Figure 3. Based on the Alloy 
specification, a specific generator engine can be used 
to support the generation of specific instances through 
the use of the Alloy Analyzer, validating the 
constraints previously defined (similar approaches 
for different domains were already presented (Khalek 
et al., 2011) or following a test automation approach 
(Sullivan et al., 2014). However, to support code 
generation, an easy and understandable language 
should be provided to simplify the configuration of 
each component. In previous works (Oliveira et al., 
2015; Oliveira and Belo, 2015), specific grammar 
components were described to configure patterns 
metadata. An automated approach is planned to use 
the Alloy can be used to check model consistency 
through a process that translates grammar primitives 
to Alloy primitives to check design errors. Based on 
this configuration, code generators to a specific 
language or specific file structure that can be 
interpreted by a specific commercial tool can be used 
to create the full ETL package.  

6 CONCLUSIONS AND FUTURE 
WORK 

Because of the existence of more data and more 
complex business processes, the data processing 
demands have increasing the ETL development 
complexity has been studied with the goal to simplify 
its development and reduce the potential risks to its 
implementation. The efforts did so far help in the 
identification of recurrent problems and respective 
strategies to solve them. Still, ETL systems are 
considered very time-consuming, error-prone and 
complex systems since each DW deals with their own 
data with specific requirements. With the use of 
Patterns, these strategies can be encapsulated and 
parameterized, providing a powerful groundwork for 
process validation and allowing for the identification 
of the most important parts of a system to be built. 

The Pattern-oriented approach presented relies on 
the use of software components that represent a 
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template of how a specific problem can be solved. To 
formalize the pattern structure as well its operational 
constraints, a specific Alloy model is proposed to 
guarantee some level of confidence for the generation 
of physical instances through the use of a simulation 
engine that searches for instances representing false 
assertions according to a specific set of conditions. 
Thus, since models can be checked before its 
execution, a new integrity level is sustained, ensuring 
that pattern structure is consistent with their 
specification. The DCI pattern, was presented along 
with its skeleton, keeping a specific template and 
instance as separated layers. For pattern instantiation, 
the physical objects should be described at structural 
terms. Thus, a specific generator is being developed 
(Oliveira et al., 2015) to generate the respective code 
based on the primitives previously established  

The presented specification only covers the 
patterns static representation, however, as future 
work, we intend to enrich this specification with 
behavioural specification, covering the main 
operations and states related to each pattern 
application. We intend to enrich this specification 
with behavioural specification and assertion checking 
based on the main pattern components and states, 
including the “Throwable” and ”Log” components 
configuration. 

REFERENCES 

Belo, O., Cuzzocrea, A., Oliveira, B., 2014. Modeling and 
Supporting ETL Processes via a Pattern-Oriented, 
Task-Reusable Framework. In: IEEE 26th 
International Conference on Tools with Artificial 
Intelligence. 

Biggerstaff, T.J., 1998. A perspective of generative reuse. 
Ann. Softw. Eng. 5, 169–226. 

El Akkaoui, Z., Zimanyi, E., 2009. Defining ETL 
worfklows using BPMN and BPEL. In: Proceeding of 
the ACM Twelfth International Workshop on Data 
Warehousing and OLAP DOLAP 09. pp. 41–48. 

El Akkaoui, Z., Zimànyi, E., Mazón, J.-N., Trujillo, J., 
2011. A Model-driven Framework for ETL Process 
Development. In: Proceedings of the ACM 14th 
International Workshop on Data Warehousing and 
OLAP, DOLAP ’11. ACM, New York, NY, USA, pp. 
45–52. 

Jackson, D., 2012. Software Abstractions: Logic, 
Language, and Analysis. MIT Press. 

Khalek, S.A., Yang, G., Zhang, L., Marinov, D., Khurshid, 
S., 2011. TestEra: A tool for testing Java programs 
using alloy specifications. 2011 26th IEEE/ACM Int. 
Conf. Autom. Softw. Eng. ASE 2011, Proc. 608–611. 

Köppen, V., Brüggemann, B., Berendt, B., 2011. Designing 
Data Integration: The ETL Pattern Approach. Eur. J. 
Informatics Prof. XII, 49–55. 

Losavio, F., Chirinos, L., Pérez, M.A., 2001. Quality 
Models to Design Software Architectures. In: 
Technology of Object-Oriented Languages and 
Systems. TOOLS 38. IEEE Computer Society, Zurich, 
pp. 123–135. 

Muñoz, L., Mazón, J.-N., Trujillo, J., 2009. Automatic 
Generation of ETL Processes from Conceptual Models. 
In: Proceedings of the ACM Twelfth International 
Workshop on Data Warehousing and OLAP, DOLAP 
’09. ACM, New York, pp. 33–40. 

Oliveira, B., Belo, O., 2015. A Domain-Specific Language 
for ETL Patterns Specification in Data Warehousing 
Systems. In: Springer (Ed.), 17th Portuguese 
Conference on Artificial Intelligence (EPIA‘2015). 
Coimbra, pp. 597–602. 

Oliveira, B., Belo, O., Cuzzocrea, A., 2014. A pattern-
oriented approach for supporting ETL conceptual 
modelling and its YAWL-based implementation. 3rd 
Int. Conf. Data Manag. Technol. Appl. DATA 2014 
408–415. 

Oliveira, B., Belo, O., Macedo, N., 2016. Towards a Formal 
Validation of ETL Patterns Behaviour. In: Bellatreche, 
L., Pastor, Ó., Almendros Jiménez, J.M., Aït-Ameur, Y. 
(Eds.), Model and Data Engineering: 6th International 
Conference, MEDI 2016, Almer{í}a, Spain, September 
21-23, 2016, Proceedings. Springer International 
Publishing, Cham, pp. 156–165. 

Oliveira, B., Santos, V., Gomes, C., Marques, R., Belo, O., 
2015. Conceptual-physical bridging - From BPMN 
models to physical implementations on kettle. In: 
CEUR Workshop Proceedings. pp. 55–59. 

Rahm, E., Do, H., 2000. Data cleaning: Problems and 
current approaches. IEEE Data Eng. Bull. 23, 3–13. 

Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D., 2014. 
Towards a Test Automation Framework for Alloy. In: 
Proceedings of the 2014 International SPIN 
Symposium on Model Checking of Software, SPIN 
2014. ACM, New York, NY, USA, pp. 113–116. 

Trujillo, J., Luján-Mora, S., 2003. A UML based approach 
for modeling ETL processes in data warehouses. In: 
International Conference on Conceptual Modeling. pp. 
307–320. 

Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., 
2003. A framework for the design of ETL scenarios. In: 
Proceedings of the 15th International Conference on 
Advanced Information Systems Engineering, 
CAiSE’03. Springer-Verlag, Berlin, Heidelberg, pp. 
520–535. 

Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, 
N., Sellis, T., 2000. ARKTOS: A tool for data cleaning 
and transformation in data warehouse environments. 
IEEE Data Eng. Bull 23, 42–47. 

Validating ETL Patterns Feasability using Alloy

207


