
A Selection of Development Processes, Tools, and Methods
for Organizations that Share a Software Framework

between Internal Projects

Ciprian I. Paduraru
Department of Computing Science, University of Bucharest, Bucharest, Romania

Electronic Arts, Bucharest, Romania

Keywords: Framework, Shared, Software Development, Collaboration, Object Oriented Programming.

Abstract: One of the ways organizations are saving development costs nowadays is to share code between internal
projects. Shared frameworks with highly reusable components are usually desired, but their development and
maintenance processes usually generate important challenges. This paper describes development processes
and methodologies that can be used to reduce costs in developing and maintaining this kind of shared frame-
work inside an organization considering distributed development and collaboration between teams which have
limited resources. Technical aspects for providing extensibility, components reusing and tools that assist the
process of integration, release, and development are also presented. The work is sustained by the experiments
and best practices taken from the development of such a shared framework inside a real organization.

1 INTRODUCTION

One of the main solutions used inside organizations to
reduce development costs is to improve the reusability
of the code across internal projects. This can be done
by creating a common framework base code with
highly reusable components and have different devel-
opment teams inside organization reuse them. Be-
cause the capacity and resources are always limited,
the team behind framework would quickly become a
bottleneck when individual teams require changes or
new features for the existing framework components.
One of the solutions to eliminate this bottleneck is to
create a distributed development for the framework’s
source code, where internal teams developing projects
using the framework can also contribute to it. An-
other aspect that needs to be mentioned is that projects
can be at different stages in their lifecycle (e.g. one
project might be in its final stages, while another in
a prototyping phase) and this could dramatically in-
fluence the time needed to do changes over frame-
work’s code. Considering this, the conclusion is often
that the framework repository needs to be branched in
each development team repository (Figure 1), let them
do the changes at the needed pace, and after changes
are done, processes that do code sync should start.

The main roles of the framework development
team are to maintain a clear architecture of its reposi-

Figure 1: Development teams sharing the framework (i.e.
projects inside an organization) are branching the frame-
work code to make changes at their own pace.

tory, integrate the changes made by different projects
over its branched repository, make code reusable
among projects (e.g. Team A could implement a fea-
ture on top of the framework that can be reused by
Team B), and at the same time be pro-active by de-
veloping new features that prepares the organization
for the future. In this paper, by divergence we mean
a piece of code that differs in a framework branched
repository (hold by one of the teams) compared to the
main branch of the framework. The purpose of the
code sync processes is to make sure that divergences
are as low as possible. In the rest of the paper, we’ll
denote the main framework development team with

294
Paduraru, C.
A Selection of Development Processes, Tools, and Methods for Organizations that Share a Software Framework between Internal Projects.
DOI: 10.5220/0006426602940301
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 294-301
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



framework team while the teams branching and using
the framework are called project teams.

The contribution of this paper is to analyze the de-
velopment process in the use case mentioned above,
with the clear target of reducing costs, and more
specifically:

• Suggest a workflow collaboration protocol among
teams that works under limited resources and aims
at reducing the bottlenecks.

• Investigation of current object-oriented practices
that help reducing divergences and promote code
reusability.

• Presentation of tools and protocols that can assist
the framework’s maintenance process.

This paper is structured as follows. Related work
in the field is presented in Section 2. A suggestion
for a collaboration and communication model is de-
scribed in Section 3. Applications of object-oriented
programming paradigms, principles, and patterns that
helps code reusability and aims at reducing diver-
gences, together with tools that assist the maintenance
and integration process are presented in Section 4. A
release methodology that could help the integration
process is described in Section 5. Finally, Section
6 gives conclusion and future work ideas. Evalua-
tion and comparison between methods are presented
at the end of Sections 3,4,5 since they discuss aspects
from different views. The data used for evaluating the
methods considered in this paper was collected manu-
ally at certain points of the framework’s lifetime (ap-
proximately 8 years in a real organization), by storing
statistics from internal tools and metadata about the
methods used at each point.

2 RELATED WORK

There are many papers discussing high-level or low-
level aspects of framework development, but only
a selection of them are mentioned in this section,
mainly because of the limited space. Papers and con-
tent discussing object oriented programming princi-
ples that are useful for framework development are
presented mostly in Section 4, together with how we
used those techniques in our experiments.

In (Mattsson and Bosch, 1997) and (Bosch et al.,
2000) authors are describing possible problems and
solutions that stem when having more than one frame-
work to reuse and integrate. It is a problem that inter-
sects with the one discussed in this paper since devel-
opment teams occasionally develop small or medium
sized components that can be shared by the rest of

the teams inside an organization. Their paper dis-
cusses object-oriented techniques such as inversion of
control and adapters, which are being reused in our
approach. A design decision tool that can sim-
plify the design decision process in a framework by
writing code for the design patterns employed is de-
scribed in (MacDonald et al., 2009). The target of
the paper is to start with a good design framework,
while our target is to continuously design, adapt and
evolve the framework with a focus on reducing over-
all costs. Metrics that can be used for structural sta-
bility of framework architecture are given in (Jagdish,
2000) and (Sant’Anna et al., 2007).
High-level ideas about object oriented framework de-
velopment are sketched in (Fontoura et al., 2000). Au-
thors are naming the points of flexibility of a frame-
work, hot spots while the points of immutability,
frozen spots’ and show how to glue code from differ-
ent domains of applications to the framework. From
this point of view, our approach tries to get into more
details and analyze general object-oriented program-
ming principles and how they fit into a framework ar-
chitecture.

From a distributed development perspective,
(Spichkova and Schmidt, 2015), presents a formal
framework for analyzing, structuring and optimizing
requirements that come from different countries and
organization. The process can be reused in our work-
flow since we deal with a similar one when integrat-
ing the divergences from development teams’ reposi-
tories back to the main repository. Open source soft-
ware communities (OSS) have similar targets with the
ones described in this paper: a collaboration model
and code reuse methods targeted to cut costs of devel-
opments. In (Yuan-Hsin Tung, 2014) and (Haefliger
et al., 2008), authors are analyzing different frame-
works and strategies for code reuse in OSS. To cal-
culate the costs, the open source reuse processes are
split into three stages: search, integration, and main-
tenance. The solutions proposed in their paper are
reused and extended in our usage by going deeper into
different problems and aspects to optimize the devel-
opment costs even more.

3 COLLABORATION MODEL

Because of the limited resources in the framework
team (i.e. development capacity over a period of
time), requests that are coming from various projects
using the framework product could easily create im-
portant delays in terms of delivery. Even if the core
team would know better how to implement or fix
various features, to reduce bottlenecks such a model

A Selection of Development Processes, Tools, and Methods for Organizations that Share a Software Framework between Internal Projects

295



Figure 2: Communities and collaboration between projects
and framework team.

needs work distribution. Distributed development
of a shared framework needs an efficient collabora-
tion protocol between the internal projects using con-
stantly the product and the main team that holds its
repository and releases. First, one efficient way that
worked in our organization is to establish communi-
ties: people from each project were assigned to hold
the communication with the framework team in term
of issues or needed features (Figure 2). More, the
community can be split into domains of knowledge
(e.g. systems, databases, web design, etc.). To make
sure that projects’ interests are considered in the prod-
uct strategy and development activities of the frame-
work team, the community can have constant meet-
ings to discuss the needs of each project (e.g. defects
in existing implementation or new features needed).

In the distributed model, project teams can im-
plement both new features or fix issues with the ex-
isting ones. The key however in distributed devel-
opment is the correct coordination and having the
framework team implementing a technical design be-
fore starting the collaboration on tasks. The process
when resources are not enough to implement the re-
quested tasks on its own by the deadline is depicted
in Figure 3. When a project requests a new feature or
fixes to the Framework team the request is analyzed
by them, creating first a technical design document
(TDD) for implementation and testing. If the Frame-
work team doesn’t have resources (time) to finish the
request in an acceptable time (specified by the Project
team), then the TDD is sent to back to the Project
team and they can start the implementation. There is
even the possibility of a mix (both team working at the
same time) since the TDD usually contains the work
breakdown and tasks’ estimations. After rounds of
code reviews and evaluations, the code can be merged
back to the Framework team. What differs from the
GitHub and other OSS adopted solutions, is that in-
stead of forking/branching the code and working on
its own, the collaboration model proposed here has a

Figure 3: Protocol for distributed task coordination when
framework team doesn’t have time to finish the requested
work in time.

Figure 4: Average total hours per employee to execute dif-
ferent requests entered in the framework’s database.

better rate of time-saving since once a development
team starts an implementation in its own branch, it
has a technical design adopted by specialists on the
field. Also, this workflow for requesting changes in
the framework’s code is automated by some internal
tools.

To compare between monolithic (i.e. requests
handled only by the framework development team)
versus distributed implementation (the collaboration
model mentioned above), we recorded the time taken
to implement a different number of requests in both
models and how much the deadline per request was
exceeded on average. Each request was considered
to have a deadline set by the initial requester which
translates to the time when that request is needed
to avoid bottlenecks for the project needing it (of
course, the deadline could be current time of request
creation). As expected (and shown in Figure 4),
the total cost in hours per employee is increased in
the distributed development, mainly because of the

ICSOFT 2017 - 12th International Conference on Software Technologies

296



Figure 5: Average exceeded deadline per request (days) by
their total number at once in the database.

overhead of code reviews and sync between differ-
ent teams (Figure 3). The real advantage of the dis-
tributed development comes when comparing the av-
erage exceeded deadline (Figure 5) because the re-
quests’ deadlines usually affect the project delivery
time and in the end, the organization’s business.

The requests considered could be both defects re-
ported or feature requests (i.e. different time to im-
plement), but the comparison still holds since their
percent distribution was similar over time. A pos-
sible different solution would be to scale the capac-
ity of the framework team (in terms of employees
per domain), but similar to distributed programming
concepts, a static allocation of resources could easily
create unused resources. The results captured in Fig-
ures 4, 5 (and later in Section 4.6 evaluation) implied
data captured automatically from our project manage-
ment tools during approximatively 8 years of continu-
ous development. There were on average 6-7 projects
working in this environment, with a team size of 15-
20 software engineers per each project team and 10
on the framework development team (each software
engineer being expected to work on average 8 hours
a day). The projects’ average length was of 2-3 years
and involved entertainment software applications.

4 TECHNICAL ASPECTS FOR
REDUCING DIVERGENCES
AND MAKE CUSTOM CODE
REUSABLE BETWEEN
DEVELOPMENT TEAMS

The global task of reducing code divergences gener-
ates some technical challenges that must be well ad-
dressed to reduce costs. A simple example situation
is presented in Figure 6, where N development teams
needed to modify the functionality of a core frame-
work function (i.e. either its interface or its seman-

Figure 6: Showing teams changing one of the core functions
of the framework inside their local branched depot.

tics).
Consider the following costs:

• C1 = Cost to analyze divergence for a single team

• C2 = Cost to create a plan to unify divergences
into framework code and implement the needed
changes.

• C3 = cost to integrate back unified code into each
team depot, and N teams using the framework,
then the total overhead is: O = N ∗C1+C2+N ∗
C3.

The ideal overhead cost would be 0, but it is difficult
to imagine an ideal architecture of modules and com-
ponents that would allow extensibility without any
code divergence. Divergences need to be taken back
from teams’ depots to the framework depot as soon
as possible otherwise individual costs C1, C2, C3 can
grow exponentially. This order of magnitude comes
from the fact that the entire components hierarchy is a
graph of dependencies and instead of integrating back
changes from local nodes, software engineers would
have to consider a set of logical paths with nodes that
have divergences. This process of observing, refactor-
ing then integration back was named in our workflow
harvesting. The rest of this section presents high-level
ideas on how to identify divergences and solutions for
increasing modularity, extensibility and testability of
the software in the presented use case.

4.1 Identifying Divergences

It is important to focus the effort of adding extensi-
bility where it matters most. To do this we must find
the spots with the highest divergence first and refactor
them for extensibility. Being a difficult process to do
by hand, a solution is to build a tool that can analyze
the framework source code in projects’ depots against
the base version of the framework repository. In our
implementation, the tool compares file by file and out-
puts metrics that looks like in Figure 7. The tree-view
control returned as output can be used to identify the
number of lines changed per file, class, function and

A Selection of Development Processes, Tools, and Methods for Organizations that Share a Software Framework between Internal Projects

297



Figure 7: Showing output of the divergence tool execution:
the number of lines changed per file, class, and function in
a tree view, for each project using the framework.

project. This can be a good hint for software engi-
neers where to focus their efforts and refactor things
first.

When analyzing the changes that each team has,
for instance on a class, it makes sense to have some
comments that describe the change and the author of
it. A change causing divergence can spread through
various files. To promote divergences documenta-
tion, a plugin for the source control tool used by
projects’ depots can be created. In our case, this
tool was not allowing any code commit that changed
the framework’s code without divergence tags and its
proper format. This documentation was of a great
help for our use-cases because the software engineer
that needed to analyze, converge and integrate back
changes could understand better the purpose and ar-
eas (files, components) affected by the change. With-
out these, it would be difficult to understand the pur-
pose and how changes are spread through the entire
code.

4.2 Base Code Modularity and
Extensibility Principles

In Software engineering, the basic design principle of
modularity implies the decomposition of a software
architecture into modules characterized by high co-
hesion and low coupling. Elements with low cohe-
sion often suffer from being hard to comprehend, hard
to reuse, hard to maintain and averse to change (Lar-
man, 2005). The base design principles to get a mod-
ular and easy to extend framework code are known
as SOLID ((Myers, 1978) and (Cesare and Wilde,
2014)). The usage of these principles proven to be es-
sential in any refactoring decision. Framework’s com-
ponents should have interfaces and ideally, the aggre-
gation and communication between them should be
done using interfaces instead of concrete objects’ in-
stantiations, i.e. avoiding hard-dependencies. This
would let users inject dependencies dynamically and
allow them to reuse components between different
projects while keeping the framework code intact.

The concept is known in theory as Dependency in-
version principle or dependency injection (Martin,
2000), (Schwarz et al., 2012). The intent behind is
to have both higher-level modules (in our case this is
the framework code) and lower level modules (usu-
ally customized by development teams) depend on
common interfaces. An example can be seen in list-
ing code below and Figure 8. Both client and frame-
work know the interface of these components at com-
pile time and does not depend on any concrete im-
plementation. In our implementation, a repository
with common components was created to facilitate
the reuse of concrete components between projects.
This way, when a project needs a certain functionality
it checks first if something from the common compo-
nents repository can be reused or customized. When
finishing the implementation of a customized compo-
nent, a sync with the community would decide if their
component worths added to the common components
depot. This sync implies regular meetings (online or
live) between the members of the community (Fig-
ure 3) or open discussion on communication chan-
nels (currently our solution is to create Slack chan-
nels www.Slack.com - per development area, project
or whatever make sense).

void Framework::Main::update(float deltaTime)
{
// Internal call, not overridden by client code
startLogging();

// Gather all jobs first
const Job* jobs =

m_aiComp->gatherJobs(deltaTime,nullptr);
mPhysicsComponent->gatherJobs(deltaTime, jobs);
mAnimationComponent->gatherJobs(deltaTime, jobs);

// Run the tasks graph
runScheduler(); // internal framework call

// Call after update functionality
mAnimationComponent->postUpdate(deltaTime);
mPhysicsComponent->postUpdate(deltaTime);
sendNetworkUpdate(); // Internal framework call

}
%\end{verbatim}

4.3 Solutions to Keep Clean Interfaces
in Framework’s Components

Interface segregation principle (Martin, 2002) ensures
that clients won’t have to inherit and use interfaces
with functions that are not needed by them. This
could happen frequently after a bad refactoring and
can cause difficulties in understanding the new inter-
face and what piece of code projects should provide
when implementing their custom concrete object. The

ICSOFT 2017 - 12th International Conference on Software Technologies

298



Figure 8: An example where framework uses components that are injected by client code. Projects can use or contribute to
the components in the Common Components depot.

need to provide more boilerplate code just to make
things compile or work together is known in the lit-
erature as “fat implementation” (Martin, 2002). The
refactoring process must decide at some point if one
interface should be split in two (or even more) inter-
faces or concrete implementers are requested to im-
plement all operations in there. Instead of modifying
the core code with adding data or methods to exist-
ing classes, an approach that works better sometimes
is to use proxy, adapter or mediator patterns (Gamma
et al., 1994), thus not changing the interfaces or core
functionality at all.

These are used to make the framework’s code
compile and semantically compatible with new or
modified API in the client project. This is valid es-
pecially if changes requested are specific to a single
development team. Since these can remove code di-
vergences, it might hide reusable work done by dif-
ferent teams. In our implementation, a set of com-
ment tags is used by the teams to suggest that they
are using an interface in an interesting way from a
reusability point of view. At each code commit with
such a tag, the source control plugin sends a message
to a database with suggestions. This database is an-
alyzed from time to time (manually, in this moment)
and checked if it worth doing a convergence and make
changes reusable between teams

4.4 Testing Components

The techniques mentioned above in this section that

suggest how to work with interfaces or inject dy-
namically new functionality without affecting frame-
work code are highly compatible with the process of
unit testing and mocking components. Having mocks
and unit tests for each framework component can re-
duce testing and integration costs. The reason is that
when the process of harvesting and integrating back
changes from clients to framework repository starts,
ideally clients’ code affecting framework’s compo-
nents should be bug free. To ensure that the local
correctness of the code is maintained, the code com-
mit workflows should perform automatic testing over
a database of tests that is continuously updated. More,
after integration is finished, unit testing of individ-
ual framework component in its main depot must take
place because local correctness doesn’t imply correct-
ness after integration. Without unit testing in place
for the framework components on both sides (projects
and framework’s depots), the code taken back might
contain bugs that would require integration back and
forth before fixing all problems. This would induce
important costs on the overall process. Design by con-
tract and its follow-ups suggested in (Meyer, 1997)
and (McNeile, 2010) represent important topics to ap-
ply in the discussed use-cases. On short, functions
should have pre and post conditions (implemented
in many common programming languages used these
days by asserts on input and output). Derived classes
overriding functions must have the post conditions as
least as strong as the overridden function in the base
class. This ensures that Liskov substitution principle

A Selection of Development Processes, Tools, and Methods for Organizations that Share a Software Framework between Internal Projects

299



((Liskov and Wing, 1994) and (Leavens et al., 2000))
holds for the client customized objects.

4.5 Evaluation

Before each release, the framework team should
check divergences and take back changes that make
sense from the framework branched repository of
each project. In Table 1, we compare the average time
needed for this process considering the initial mo-
ment when there was no comment rule on framework
code changing, versus the version when we enforced
the rules through automatic scripts that checked every
code commit. The results show that the comments us-
ing the description of the change and author were very
efficient in terms of cutting costs, integration being
approximately 50% faster due to a quicker collabora-
tion between the author of the change and integration
software engineer, and overall an easier way to under-
stand the change and put it into a context.

Table 1: Average harvesting and convergence time (average
hours for a single software engineer).

Initial version (no code
comment rules)

Enabling automatic
code commit checks

125 67

SOLID principles were strongly suggested and
somehow enforced between teams by using code re-
views. When working on a project team, the change
affects only that team but when you share a compo-
nent with N teams, then someone’s work will impact
everybody. The divergence tool provided an easier
way to check the divergence hot spots and consider
them for refactor. This is shown in Table 2. The
comparison was made between the version where a
software engineer had to manually compare branches
using source compare tools, and the version with the
divergence tool enabled. Not only that the divergence
metric is more exact, but the results show, as expected,
an improved overall cost in identifying the hot spots.

Table 2: Average time (hours for a single software engineer)
to analyze the divergence hot spots (and priorities for ex-
tensibility refactoring). There were on average 6-7 projects
sharing the framework.

Manual repository
compare Using divergence tool

21 4

5 RELEASE AND PACKAGE
UPDATES

As mentioned in Sections 1 and 4, aside from contin-
uous integration, maintenance and sharing code be-
tween projects, the framework team has another two
important roles:

• Refactor the existing code and provide more flex-
ibility in areas that are subject to divergence.

• Implement new features that prepare the frame-
work used inside the organization for the future.

All these changes are performed in the main
repository of the framework team (Figure 1) and at
certain moments of time, a new framework package
is released. This package must be integrated by the
clients to take advantage of an improved framework
code base and new features. Integrations are always
costly especially for the client who needs to recon-
sider pieces of code that were interacting with frame-
work code that has recently changed. Efforts must be
put in making the integration process easier. The pro-
cess of refactoring existing code in the framework can
be split into two parts: announce deprecation (through
compile warnings) in release N, then in release N+T
(in our organization T was 1, but it might adapt by
the frequency of releases) make changes mandatory
by removing deprecated functionality at all. This way,
not only that teams sharing the framework have time
to allocate resources and plan for an upgrade, but they
could also take position if the changes are not good for
their project. Also, at each release of the framework,
the main development team responsible for releases
can provide a collection of scripts to assist the integra-
tion of the new version inside projects. For instance,
if a core function doesn’t need one of its parameters
anymore, a script can iterate over all client code and
automate this change. In our organization, by creat-
ing scripts for automatizing the integration process as
much as a machine can do straightforward, and en-
abling the deprecation technique, the integration time
of a new framework release was reduced by approxi-
mately 30%, as shown in Table 3.

Table 3: Average integration time (average hours for a sin-
gle software engineer) to a new framework release. Projects
were allowed to integrate at their own pace, in the table we
show integration cost at each 4 weeks (every framework re-
lease) or 8 weeks (every other iteration). Integration at ev-
ery iteration scales better because divergences can add and
integration complexity grows (as mentioned in Section 4).

Integration
cycle

Integration
time before

Integration
time after

4 weeks 117 79
8 weels 253 172

ICSOFT 2017 - 12th International Conference on Software Technologies

300



6 CONCLUSION AND FUTURE
WORK

This paper presented a collection of processes, tools
and development methodologies that can help organi-
zations to improve the distributed development and
integration costs of a framework shared by inter-
nal project teams and which is subject to frequent
changes. Many of the things discussed in this paper
could be improved in the future. In the first place, a
more formal and detailed metrics system which eval-
uates the framework processes against costs should
be developed. At each modification and adoption of
processes, metrics could show if the organization is
stepping in the right direction or not. Apart from the
object-oriented techniques for extensibility and mod-
ularity, which will probably always remain an area of
improvement, another aspect that might worth more
efforts in the future is the automatism of the integra-
tion processes (e.g. using artificial intelligence mech-
anism to provide automatic smart agents that can do
integrations with automatic code reviews from human
software engineers).

REFERENCES

Bosch, J., Molin, P., Mattsson, M., and Bengtsson, P.
(2000). Object-oriented framework-based software
development: problems and experiences. In ACM
Computing Surveys, volume 32, number 1.

Cesare and Wilde, E. (2014). Why is the web loosely cou-
pled? a multi-faceted metric for service design. In
Proceedings, WEBIST 2014, Barcelona.

Fontoura, M., Braga, C., de Moura, L. M., and Lucena, C.
(2000). Using domain specific languages to instantiate
object-oriented frameworks. In IEEE Proceedings -
Software, volume 147, number 4, pp. 109-116.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).
Design Patterns, second edition, Template method, pp.
325330. Addison-Wesley, pp. 325-330.

Haefliger, S., von Krogh, G., and Sebastian, S. (2008). Code
reuse in open source software. In Management Sci-
ence Journal, Volume 54, no 1, pp 180-193.

Jagdish, B. (2000). Evaluating framework architecture
structural stability. In ACM Computing Surveys, vol-
ume 32, number 1.

Larman, C. (2005). Applying UML and Patterns An Intro-
duction to Object-Oriented Analysis and Design and
Iterative Development 3rd edition. Prentice Hall.

Leavens, G., Dhara, K., and Krishna, K. D. (2000). Con-
cepts of Behavioral Subtyping and a Sketch of their
Extension to Component-Based Systems.

Liskov, B. and Wing, J. M. (1994). A behavioral notion
of subtyping. In ACM Transactions on Programming
Languages and Systems, volume 16, number 6, pages
1811-1841.

MacDonald, S., Tan, K., Schaeffer, J., and Szafron, D.
(2009). Deferring design pattern decisions and au-
tomating. In ACM Transactions on Programming Lan-
guages and Systems, volume 31, number 3.

Martin, R. (2000). Design Principles and Design Patterns.
objectmentor.com.

Martin, R. (2002). Agile Software Development: Principles,
Patterns and Practices. Pearson Education.

Mattsson, M. and Bosch, J. (1997). Framework compo-
sition: Problems, causes and solutions. In Proceed-
ings of 23rd International Conference on Technology
of Object-Oriented Languages and Systems.

McNeile, A. (2010). Framework composition: Problems,
causes and solutions. In A framework for the seman-
tics of behavioral contracts, In Proceedings BM-FA
’10. ACM, New York, NY, USA.

Meyer, B. (1997). Object-Oriented Software Construction,
second edition. Pretience Hall.

Myers, G. J. (1978). Composite/Structured Design. Van
Nostrand Reinhold.

Sant’Anna, C., Figueiredo, E., Garcia, A. F., and Pereira, J.
(2007). On the modularity of software architectures:
Concern-driven measurement framework. In Proceed-
ings of Software Architecture, First European Confer-
ence, ECSA 2007, Spain, pages 207-224.

Schwarz, N., Lungu, M., and Nierstrasz, O. (2012). Seuss:
Decoupling responsibilities from static methods for
fine-grained configurability. In Journal of Object
Technology, Volume 11, no. 1, pp. 3:1-23.

Spichkova, M. and Schmidt, H. (2015). Requirements
engineering aspects of a geographically distributed
architecture. In Proceedings of the ENASE 2015,
Barcelona, pp. 276-281.

Yuan-Hsin Tung, Chih-Ju Chuang, H.-L. S. (2014). Frame-
work of code reuse in open source software. In n Pro-
ceedings of APNOMS 2014.

A Selection of Development Processes, Tools, and Methods for Organizations that Share a Software Framework between Internal Projects

301


