
IMU Acceleration Drift Compensation for Position Tracking in 
Ambulatory Gait Analysis 

Serhat İkizoğlu1, Kaan Şahin1, Ahmet Ataş2, Eyyüp Kara2 and Tunay Çakar1 
1Control and Automation Engineering Dept., Istanbul Technical University, Istanbul, Turkey 

2Audiology Department, Cerrahpaşa Medical School, Istanbul University, Istanbul, Turkey 
 

Keywords: Balance Disorder, Gait Analysis, Inertial Sensors. 

Abstract: This study is a part of a project where we target determining discriminative features to define diseases that 
cause disorders in the human vestibular system. For this purpose we aim to analyze the gait of the person. 
Among a number of parameters used for gait analysis, some make use of the foot- and knee positions. 
Hence the exact determination of position is of great importance. Here we use inertial sensors (IMU) placed 
on foot and knee in order to calculate the displacement by double integrating the free acceleration output 
data of the sensor. Thus, the overall position accuracy is highly dependent on the accuracy of the 
acceleration data where the offset and drift play great role in its corruption. We propose a method to 
minimize the error due to sensor offset and drift by utilizing the fact that there are gait intervals where the 
foot rests. The results are promising that the calculated average error is low; though the standard deviation 
needs some further amendment. 

1 INTRODUCTION 

The vestibular system is one of the most important 
survival skills in human life. In connection with 
others the vestibular system provides the link of the 
individual with the physical environment. (Hansson 
et al., 2010). A weakness or an interruption in the 
operation of this system would cause disruption in 
spatial orientation and thus affect the connection of 
the person with several fields of life such as work, 
education, social life etc. (Gaerlan, 2010). 
Measuring the body posture and its stability, 
processing the data collected from active gait and 
rest are hot topics in literature about human balance. 
(Chang et al., 2012; Basta et al., 2013; Galna, 2014). 

Table 1 lists some of the gait parameters that are 
examined for clinical purposes in literature (Herran 
et al., 2014). 

Table 1: Some gait parameters observed for clinical 
purposes. 

Stride velocity Stride length 
Step length Cadence 
Step Width Traversed distance 
Route Long-term monitoring of gait
Step time Stop duration 

 

There are three main approaches for gait 
analysis: Image processing, using floor sensors and 
capture data from sensors placed on the body 
(Herran et al., 2014). 

The methods based on image processing 
generally use cameras to record the gait and the 
captured data will be processed as to filter the image 
to get a black and white copy only, to count pixels 
(either light ones or dark) etc. which will help to 
analyze the gait (Pratheepan et al., 2009; Chang et 
al., 2009)  

Another popular method for gait analysis is using 
floor sensors. Here usually pressure sensors are 
positioned along a floor where the walk takes place. 
The data acquired by the sensors will then be 
processed on a digital platform to give information 
about the quality of the gait (Vera-Rodriguez et al., 
2013). 

Another group of methods for gait analysis 
makes use of wearable sensors that are positioned on 
several parts of the body (Tao et al., 2012; Abdul 
Razak, 2012). Some of the popular sensors used for 
this purpose are: Accelerometers, gyros, 
piezoelectric/piezoresistive pressure sensors, 
goniometer sensors etc.  

Each sensor has its pros and cons. For example 
one of the main problems with the goniometer is that 
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goniometers attached on the body lose their position 
during the motion (Roatenberg et al., 2013). Another 
remarkable problem is the alignment of the angle 
measuring sensor with the joints. This problem 
increases with an increase in the number of the 
degree of freedom of the joint. 

Around 38% of the methods used for gait 
analysis are based upon inertial-sensor based 
systems (Herran et al., 2014). An inertial sensor that 
houses 3D accelerometers, gyroscopes and 
magnetometers can provide accurate orientation data 
at least for short time intervals. Gyroscopes measure 
angular velocity where accelerometers provide the 
acceleration vector in sensor coordinates. 

Yavuzer, G. indicates that three dimensional 
balance and walking analysis system is the most 
important diagnosis tool to assess the integrity of 
orthopedic and vestibular system. Camera based and 
static systems that are integrated to hospital 
environment have low mobility and high charge. 
Instead, wearable sensors that help inertial 
measurement will enhance the quality of the analysis 
and free the patient from being in a special 
environment making the outdoor data acquisition 
possible (Yavuzer, 2009). Alberts, J. L. et al. studied 
center of gravity computing and postural stability 
where data was collected by the gyroscope inside 
ipad 2 and they compared the results with Neurocom 
computarized dynamic posturography. The results 
obtained from dynamic posturography and ipad 2 
were declared to be quite close. In accordance with 
this information, the authors put forth that gyroscope 
is a good means to measure center of gravity and 
postural stability (Alberts et al., 2015). Tadano S. 
et.al. studied wearable acceleration and location 
sensors where they focused on body posture, 
position and motion symmetry of body segments 
such as hip, knee and ankle. The authors announced 
that compared to systems capturing and processing  
motion with camera, this method gave a better 
qualified and real-time documentation of motion. 
They concluded that acquiring angular data and 
measuring motion speed with high precision is 
possible with wearable sensors (Tadano et al., 2013). 

The wearable sensors are usually located on feet, 
ankles, knees and waist (Roatenberg et al., 2013). In 
our project we are also using wearable sensors. A 
close look to Table 1 puts forth that determination of 
the correct position of feet is of great importance. 
On the whole of the project, data collected from 
motion sensors placed on the body and the insole 
pressure sensors will be of interest; but this study 
focuses on some vital problems faced when 
acquiring data from motion sensors positioned on 

certain locations on the leg only. We are mainly 
interested in determining the correct position of the 
foot within a limited walk-path length (11.5m). 
Thus, the frame of this study is restricted with the 
search for the solution to offset and drift problems of 
the accelerometer data in inertial sensors to give 
correct position data. 

In order to describe the way we go to reach our 
aim the rest of the paper is arranged as follows: In 
Section 2 we first define the problem with the 
acceleration data and we introduce the sensor used 
in our study. Section 2 also gives explanation about 
previous work and its reflection on this study. The 
proposed method to obtain the correct position 
information and considerations about the estimation 
of the error is handled in Section 3. This section 
further presents the experimental set-up and sample 
graphs of uncorrected and corrected data according 
to the introduced method. This section is followed 
by experimental results and error calculation. Finally 
we discuss conclusions drawn and give perspective 
about future work. 

2 CORRECTION OF THE 
ORIENTATION/ POSITION 
DATA 

Almost all inertial sensors suffer from integration 
drift. The main problem is that the position error 
accumulates in time to reach a remarkable value if it 
is not reset or compensated. Since the position 
information is obtained by double integrating the 
acceleration over time, the main source of error is 
the possible wrong data to give the acceleration that 
has its source in sensor noise, sensor signal offset 
and/or sensor orientation error. Drift may arise from 
mechanical stresses, aging, temperature changes etc. 
(Tuck, 2007). 

As explained before in this study we are 
concentrated on minimizing the effect of the offset 
and drift of the acceleration data on position 
determination. In fact even the offset wouldn’t be 
much harmful if it would not drift since cancellation 
of a constant DC shift is not much exhausting. 

In our project we use the MTW2 Wireless 3DOF 
Motion Tracker from Xsens, each sensor comprised 
of 3D accelerometers, 3D gyroscopes and 3D 
magnetometers (xsens.com). 

2.1 Brief Background 

Inside an inertial sensor, orientation data is usually 
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corrected by extended Kalman filters (Bennett et al., 
2014; Won, 2010). Nevertheless the offset and drift 
of the sensor requires continuous tracking of the 
error for compensation during the operation. Again 
the favourite technique is the use of Kalman filter to 
estimate the next value accurately by utilizing a 
reliable reference. The problem is even more 
complicated when handling with motion tracking of 
human since there are a lot of body segments which 
have to be aligned with sensors. To ease the 
mathematical complexity quaternions help a lot, but 
still there is hard work to do to overcome the 
alignment and the error problems. The body 
dimensions need to be measured to estimate joint 
positions and joint measurement updates serve for 
correction of uncertainties sourced from sensor noise 
and movement-related errors (Roatenberg et al., 
2013). 

2.2 Calibration of Accelerometer 
Output 

Though we are interested in the gait analysis we do 
not have deep concern in full human motion for the 
time being. We restrict our interest mainly with the 
position of foot. Thus the correct acceleration data of 
the inertial sensor is vital for us. 

Various studies are focused on calibrating 
accelerometer output data in literature (Bennett et 
al., 2014; Lee, 2016). A conspicuos study 
investigates the correction of the acceleration data of 
an inertial measurement unit (IMU) via various test 
beds such as optical mouse, turntable and shake 
table (Kamer and Ikizoglu, 2013). Here the authors 
used the collected data from the test beds to train 
artificial neural networks (ANN) which would 
improve the accelerometer outputs by estimating the 
reference data from the actual sensor outputs. The 
resulting goodness of fit was reached as high as 72% 
which was significantly higher than the goodness of 
fit reached with classical low-pass filters giving a 
value around 61%.  

In our study the x- and y-axes of two sensors of 
the set are also corrected with the optical mouse 
(Brand A4Tech, model X5-6AK) and a ‘Back-
propagation Levenberg – Marquardt method’ based 
ANN with two hidden layers of 8 and 4 neurons 
respectively is trained similar to the referenced study 
with a size of 28 for the train set and 13 for the test 
set. We reached a goodness of fit as 74% for a linear 
displacement of 5m. Moreover the ANN results are 
compared with several system identification 
methods using Matlab System Identification 
Toolbox 7.2.1. The results are brought together to 

form Table 2.  
Once having obtained these values for the 

goodness of fit, we wonder whether we can increase 
the accuracy in determining the position during the 
walk without using complex tools to correct the 
acceleration data. Here we take advantage of the fact 
that the human gait has its characteristic that there 
are durations where the foot is motionless; in other 
words the velocity is zero. Hence, these durations 
can be used to prevent the accumulation of the 
position error. 

Though our final aim with the project is to 
discover significant features to point sources of 
several balance disorders, in this study we have 
limited our frame with limited gait analysis along 
11.5 meters. Hence, we have got a measure to verify 
the accuracy of the proposed method. 

3 ALGORITHM OVERVIEW 

3.1 Data Acquisition Environment   

All the data is collected in Cerrahpasa Medical 
School. Care is taken that environmental conditions 
do not influence the inertial data. As an example, 
within the sensor module free acceleration data is 
constructed by referencing the magneting field of 
earth via magnetometers. This conditions that in 
order to preserve the reliability no source causing 
magnetic field should exist nearby when collecting 
data. So, data is acquired on weekends when all the 
offices were closed. Furthermore we have used a flat 
path to ensure zero final change in z-axis position 
data at the end of the walk. 

3.2 Applied Method and Error 
Estimation 

We decided to use the free acceleration data 
provided by the manufacturer of the sensor system 
since this data is expected to be compensated well 
enough against certain perturbers by Kalman 
updates (Roatenberg et al., 2013). 

The free data references the global frame, but not 
the sensor axes. Thus, for the same direction of 
movement the position of the sensor on the body 
doesn’t care to give similar values.  

In our study for each axis we calculate the mean 
of acceleration for 1 sec (between the instants 2sec 
and 3sec) when resting before starting the test and 
then subtract the mean from all the following 
instantenous acceleration values to compensate the 
acceleration offset. Now that the drift in acceleration
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Table 2: Goodness-of-fit results obtained with system identification methods. 

Model Model Structure 
Training set – 
Goodness of 

fit (%) 

Test set – 
Goodness 
of fit  (%)

Linear parametric models 

ARMAX 
[na(2) nb(2) nc(2) nk(1)] 

( ) ( ) ( ) ( ) ( ) ( )A q y t B q u t nk C q e t    65.80 61.75 

BJ (Box-Jenkins) 

[nb(4) nf(4) nc(4) nd(4) nk(1)] 
( ) ( )

( ) ( ) ( )
( ) ( )

B q C q
y t u t nk e t

F q D q
    65.90 62.10 

State space [na=nb=nk=nc=nd(4)]   ( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t Bu t Ke t

y t Cx t Du t e t

   
  

 64.95 61.20 

Nonlinear models 

Nonlinear ARX 

[na(2) nb(2) nk(1)]     ( ) ( ) ( ) ( ) ( )A q y t B q u t nk e t    

Nonlinear regression  
( 1), ( 2), ( 1), ( 2)y t y t u t u t     

63.11 57.68 

Hammerstein-Wiener  
[nb(2) nf(3) nk(1)]     ( )

( ) ( ) ( )
( )

B q
y t u t nk e t

F q
    

Nonlinear estimator -       10 piece- linear estimator

67.48 59.84 

Correlation models 

 
[m(20) n(10)]    

0 0 1

1

( ) ( ) ( ) ...

( ) ( ) ...

( )
m

n

A y t B u t B u t T

B u t mT A y t T

A y t nT

   

    
 

 
75.63 71.71 

 
can not be compensated easily, we bring the 
approach that the velocity will be reset at every rest 
of the foot to prevent the accumulation of the 
position error. 

Let us discuss the matter on a numerical example 
where the distance is 10m. This value for the path 
length is taken in order to adapt the considerations to 
the widely used clinical test techniques such as the 
‘Timed 25-Foot Walk (T25-FW)’ technique (Herran, 
A.M. et al., 2014) where the time is measured that 
elapses to walk a straight line of 7.5m distance and 
the linearity of the gait during this period is 
analyzed.  An acceleration offset drift of aoff = 
0.05m/sec2 causes in 10 seconds a position error of: 

݌߂ ൌ
ܽ௢௙௙ݐଶ

2
ൌ േ2.5݉ 

If the path taken within this time is 10m, the error 
will be 25%. Observations put forth that a full step 
period is around 1sec, where half of this time is the 
step time and the other half the rest time of the 
related foot. Hence, if the velocity offset is reset at 
every foot rest, so approximately every 0.5sec that 
nearly corresponds to a step time, the position error 
after 10m will be: Total absolute position error (Tpe) 
= (Number of steps) x (position error in each step 
length); thus giving: 

Tpe = 10 · aoff·t2 /2 = 10·0.05·0.52 /2 = ±0.0625m 

That is the relative position error will be around: 
0.0625/10 ≈ 0.63% 

The above calculation assumes that the 
movement is along a single global axis only. In fact 
the movement direction on a flat path is the resultant 
of global x- and y-axis components. Thus the 
acceleration along the movement direction is 
calculated as: 

ܽ௠ௗ ൌ ටܽ௫ଶ ൅ ܽ௬ଶ (1)

where ܽ௠ௗ, ܽ௫and ܽ௬represent the accelerations 
along the movement direction, global x-axis and 
global y-axis respectively. The combined 
uncertainty ݑ௔௠ௗ in ܽ௠ௗcan be calculated in terms 
of the uncertainties of ܽ௫and ܽ௬as: 

௔௠ௗݑ

ൌ ඨሺ
߲ܽ௠ௗ

߲ܽ௫
ሻଶݑ௔௫ଶ ൅ ሺ

߲ܽ௠ௗ

߲ܽ௬
ሻଶݑ௔௬ଶ ൅ 2ሺ

߲ܽ௠ௗ

߲ܽ௫
ሻሺ
߲ܽ௠ௗ

߲ܽ௬
ሻݑ௔௫௔௬ (2)

where ݑ௔௫௔௬ is the covariance between ܽ௫ and ܽ௬. 
Assuming no correlation between the uncertainties 
of the variables ܽ௫ and ܽ௬ yields: 

௔௠ௗݑ

ൌ ටܽ௫ଶ/ሺܽ௫ଶ ൅ ܽ௬ଶሻݑ௔௫ଶ ൅ ܽ௬ଶ/ሺܽ௫ଶ ൅ ܽ௬ଶሻݑ௔௬ଶ  (3)

IMU Acceleration Drift Compensation for Position Tracking in Ambulatory Gait Analysis

585



Hence for the case that ݑ௔௫ approximately equals 
௔௠ௗݑ ௔௬ we haveݑ ൌ  ௔௫√2 which results in 0.9%ݑ
of position error for the numerical values given 
above. On the other hand for some sensors the offset 
on one axis is extremely small compared with the 
offset on the other one. For these cases the 
movement path could be directed to the appropriate 
global axis to reduce the total error. 

3.3 Experimental Set-up & 
Experiments Conducted 

Our tests have pointed out that one of the best 
locations is the front part of the foot to detect that 
the foot rests. Our experimental results show that a 
value around 0.15m/sec2 for the resultant 
instantenous acceleration of all the three axes for 
successive 5 samples can be defined as a threshold 
that the foot is motionless. Figure 1 pictures a 
sample for free acceleration data together with the 
visual information of the resting intervals of foot 
that they are marked as pulses in black. The 
corresponding velocity graphs for both the 
uncorrected and corrected data are presented in 
Figure 2. Figure 3 demonstrates the uncorrected and 
corrected data for the corresponding position. 
 

 

Figure 1: Sample free acceleration data. 

 
 

 
Figure 2: Velocity data (Above: uncorrected, 
below:corrected). 

 
 

 

Figure 3: Foot position data (Above: uncorrected, below: 
corrected). 

For the gait/balance analysis the position and/or 
direction of the foot only wouldn’t give enough 
information. There is also need for information from 
other parts of the body to monitor the sway of the 
person. In this manner we have to know about the 
movement of the knee especially while the related 
foot rests. This obviously requires that the data 
received from the sensor located around the knee is 
reliable. On the other side for a healthy person the 
knee never rests during the walk. So, the offset 
correction of the sensor around the knee cannot be 
performed by resetting the velocity offset at certain 
intervals the same way we did it with the foot. So 
there is need for another reference for correction of 
the knee position information. In our study the 
following recognition helped us to find a suitable 
method to apply: The ith step length ݈௜ (i>1) of a foot 
is approximately the same as the difference between 
the positions of the related knee corresponding to 
instants when the pivot foot leaves (i-1)st and ith 
restings (Figure 4). This explanation holds for both 
the x- and y- axis position values. So we correct the 
knee position every gait cycle by resetting the 
velocity offset according to the recognition 
explained above. Figure 5 describes the flow 
diagram for position-data correction of the knee. 
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Figure 4: References to correct knee position data. 

 

Figure 5: Flow diagram for position-data correction of the 
knee. 

Figure 6 shows the locations of inertial sensors 
on the body. 

 

Figure 6: Sensor locations on the body. 

Figure 7 & 8 picture a sample uncorrected and 
corrected velocity and position graphs -together with 

the corrected position graph of the pivot foot- 
respectively. 

 

 
 

 

Figure 7: Knee velocity graphs (Above: uncorrected, 
below: corrected). 

4 EXPERIMENTAL RESULTS 
AND COMMENTS 

We collected data from 42 people with 33 being 
healthy and 9 suffering from several problems to 
cause balance disorder. The mean (݈)̅ and the 
standard deviation (ߪ௟) of the measurements of the 
path length via the sensors is calculated as 11.41m 
and 36cm respectively using the formulae 

݈ ̅ ൌ
1
42

෍݈௜

ସଶ

௜ୀଵ

 (4)

௟ߪ ൌ ඩ
1
41

෍ሺ݈௜ െ ݈ሻ̅ଶ
ସଶ

௜ୀଵ

 (5)

 

Hence the average relative error of the length 
measurement is calculated as: 

௟ߝ ൌ
݈௧ െ ݈ ̅

݈௧
ൌ 0.8% (6)

where the true length is ݈௧ ൌ 11.5݉ . 
The average error is acceptable; but the standard 

deviation is a little large. We bring the following 
comments on the results: 

 
 
 
 
 
 

(i-1)st 

ith 

݈݅  

݈݅  

Yes 
No 

Calculate an offset velocity from 
Δpi =Δt∙voff(i‐1)st 

Determine the instants ti‐1 and ti

Determine the positions of the foot (pf) and 
the knee (pk) of the same leg at ti‐1 and ti with     

Δt= ti ‐ ti‐1 

Calculate the difference of the foot‐ 
and knee positions at ti as Δpi 

Is Δpi=0 ? 

Correct the position data for the time 
interval ti‐1 ... ti accordingly 

İ=i+1 

Start 
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Figure 8: Knee position (Above: uncorrected, mid: 
corrected) & pivot foot position graphs. 

Comparing the results with those achieved by the 
methods used for acceleration data correction points 
that the proposed method gives much higher 
accuracy than optical mouse- or system 
identification based methods. This is obviously 
because we reference the ground connection of the 
foot where the velocity is zero; thus, having a 
reference to refer to ‘frequently enough’ to avoid 
accumulation of the error is more effective than 
relying on calibration for long-term operation.  

Besides the drift in acceleration offset following 
points are also worth to mention to influence the 
error and the standard deviation in the 
measurements:  
‐ Error in determination of the resting period of the 

foot and accordingly filtering the acceleration 
data. 

‐ Error in observing the start and stop points of the 
walk.  

‐ Error in calculating the acceleration offset prior 
to starting the walk that is subtracted from all the 
instantenous acceleration data.  

In our study the sampling rate of the sensors was 
100Hz limited by the specifications of the sensor. 
Increasing this frequency would obviously help for 
higher accuracy that the offset at the beginning and 
the resting durations of the foot can be determined 
more precisely. 

5 CONCLUSIONS AND FUTURE 
WORK 

This study is a part of the project where we aim to 
discover features decribing several sources of 
balance disorders. In this manner we are interested 
in certain parameters used for gait analysis such as 
the change of the difference between the feet 
positions, step length, sway of the legs etc. These 
parameters condition the correct determination of 
foot- and knee positions. In our study we use inertial 
sensors placed on foot and knee and the position is 
determined by double integrating the free 
acceleration data of the related sensor. Since the 
offset and the drift of the sensor is significantly 
effective on position determination we propose a 
method to minimize this effect that we make use of 
the durations where the foot rests. The results put 
forth that the proposed method is a satisfactory 
solution giving reasonable relative error in average; 
nevertheless the standard deviation still needs some 
correction. 

So far we have applied our method mainly on 
healthy people (33 out of 42) where the walk path 
was a straight line. So as future work, first of all we 
consider to increase the number of subjects suffering 
from several balance disorders and draw a curved 
path in order to verify the general applicability of the 
method. Besides that we plan to develop methods to 
reduce the standard deviation. In this context we 
care determining the offset at the beginning more 
precisely, because it influences all the durations 
where movement exists. Considering the overall 
frame of the project we also need to detect the sway 
of the upper part of the body. So we will investigate 
for methods to monitor the whole body within 
acceptable error limits. 
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