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Abstract: Nowadays, software has to be designed and developed as fast as possible, while maintaining quality 
standards. In this context, developers tend to adopt a component-based software engineering approach, 
reusing own implementations and/or resorting to third-party source code. This practice is in principle cost-
effective, however it may lead to low quality software products. Thus, measuring the quality of software 
components is of vital importance. Several approaches that use code metrics rely on the aid of experts for 
defining target quality scores and deriving metric thresholds, leading to results that are highly context-
dependent and subjective. In this work, we build a mechanism that employs static analysis metrics extracted 
from GitHub projects and defines a target quality score based on repositories’ stars and forks, which 
indicate their adoption/acceptance by the developers’ community. Upon removing outliers with a one-class 
classifier, we employ Principal Feature Analysis and examine the semantics among metrics to provide an 
analysis on five axes for a source code component: complexity, coupling, size, degree of inheritance, and 
quality of documentation. Neural networks are used to estimate the final quality score given metrics from all 
of these axes. Preliminary evaluation indicates that our approach can effectively estimate software quality. 

1 INTRODUCTION 

The continuously increasing need for software 
applications in practically every domain, and the 
introduction of online open-source repositories have 
led to the establishment of an agile, component-
based software engineering paradigm. The need for 
reusing existing (own or third-party) source code, 
either in the form of software libraries or simply by 
applying copy-paste-integrate practices has become 
more eminent than ever, since it can greatly reduce 
the time (and, thus, cost) of software development 
(Schmidt, 2015). 

In this context of fast development times and 
increased source code reuse, developers often need 
to spend considerable time and effort to integrate all 
components and ensure software performance. And 
still, this may lead to failures, since the reused code 
may not satisfy basic functional or non-functional 
system requirements. Thus, early assessment of the 
quality of reusable components is important and 
poses a major challenge for the research community. 

An important aspect of this challenge is the fact 
that quality is highly context-dependent and may 
mean different things to different people 
(Kitchenham and Pfleeger, 1996). Hence, a 
standardized approach for measuring software 
quality has been proposed in the latest ISO/IEC 
25010:2011 (2011) which defines a quality model 
that comprises eight quality characteristics: 
Functional Suitability, Usability, Maintainability, 
Portability, Reliability, Performance and Efficiency, 
Security and Compatibility, out of which the first 
four are usually assessed using static analysis tools 
and often evaluated by developers in an intuitive 
manner. To accommodate easy reuse, developers 
usually structure their source code (or assess third-
party source code) so that it is modular, exhibits 
loose coupling and high cohesion, and provides 
information hiding and separation of concerns 
(Pfleeger and Atlee, 2009). 

Current research efforts assess the quality of 
software components using static analysis metrics 
(Diamantopoulos et al., 2016; Taibi, 2014; Le Goues 
and Weimer, 2012; Washizaki et al., 2007), such as 
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the known CK metrics (Chidamber and Kemerer, 
1994). Although in certain cases these efforts can be 
effective for the assessment of a quality 
characteristic (e.g. [re]usability, maintainability or 
security), they do not actually provide an 
interpretable analysis to the developer, and thus do 
not inform him/her about the source code properties 
that need improvement. Moreover, the approaches 
that are based on metric thresholds, whether they are 
defined manually (Diamantopoulos et al., 2016; Le 
Goues and Weimer, 2012; Washizaki et al., 2007) or 
derived automatically using a model (Zhong et al., 
2004), are usually constrained by the lack of 
objective ground truth values for software quality. 
As a result, these approaches typically resort to 
expert help, which may be subjective, case-specific 
or even at times unavailable (Cai et al., 2001). An 
interesting alternative to expert involvement is 
proposed by Papamichail et al. (2016) that employ 
user-perceived quality as a measure of the quality of 
a software component. 

In this work, we employ the concepts defined in 
(Papamichail et al., 2016) in order to build a 
mechanism that aspires to associate the extent to 
which a software component is adopted (or 
preferred) by developers with component source 
code quality. We define a ground truth score for the 
user-perceived quality of source code components 
based on popularity-related information extracted 
from their GitHub repos, in the form of stars and 
forks. After that, we employ a one-class classifier 
and build a model based on static analysis metrics 
extracted from a set of popular GitHub projects. By 
using Principal Feature Analysis and examining the 
semantics among metrics, we provide the developer 
with not only a quality score, but also with a 
comprehensive analysis on five axes for the source 
code of a component, including scores on its 
complexity, coupling, size, degree of inheritance, 
and the quality of its documentation. Finally, we 
construct five Neural Networks models, one for each 
of these code quality properties, and aggregate their 
output to provide an overall quality scoring 
mechanism for software components. 

The rest of this paper is organized as follows. 
Section 2 provides background information on static 
analysis metrics and reviews current approaches on 
quality estimation. Section 3 describes our 
benchmark dataset and designs a scoring mechanism 
for the quality of source code components. The 
constructed models are shown in Section 4, while 
Section 5 evaluates the performance of our system. 
Finally, Section 6 concludes this paper and provides 
valuable insight for further research. 

2 RELATED WORK 

According to Miguel et al. (2014), research on 
software quality is as old as software development. 
As software penetrates everyday life, assessing 
quality has become a major challenge. This is 
reflected in the various approaches proposed by 
current literature that aspire to assess quality in a 
quantified manner. Most of these approaches make 
use of static analysis metrics in order to train quality 
estimation models (Samoladas et al., 2008; Le 
Goues and Weimer, 2012).  

Estimating quality through static analysis metrics 
is a non-trivial task, as it often requires determining 
quality thresholds (Diamantopoulos et. al, 2016), 
which is usually performed by experts who manually 
examine the source code (Hegedus et al., 2013). 
However, the manual examination of source code, 
especially for large complex projects that change on 
a regular basis, is not always feasible due to 
constraints in time and resources. Moreover, expert 
help may be subjective and highly context-specific. 

Other approaches require multiple user-defined 
parameters for constructing the quality evaluation 
models (Cai. et. al., 2001), which are again highly 
dependent on the scope of the source code and are 
easily affected by subjective judgment. As a result, a 
common practice involves deriving metric 
thresholds by applying machine learning techniques 
on a benchmark repository. Ferreira et al. (2012) 
propose a methodology for the estimation of metric 
thresholds by fitting the values of metrics into 
probability distributions, while Alves et. al. (2010) 
follow a weight-based approach to derive thresholds 
by applying statistical analysis on the metrics values. 
Other approaches involve deriving thresholds using 
bootstrapping (Foucault et. al., 2014) and ROC 
curve analysis (Shatnawi et. al., 2010). Still, these 
approaches are subject to the type of projects 
selected to comprise the benchmark repository. 

An interesting approach that refrains from the 
need to use certain metrics thresholds and proposes a 
fully automated quality evaluation methodology is 
that of Papamichail et al. (2016). The authors design 
a system that reflects the extent to which a software 
component is of high quality as perceived by 
developers. The proposed system makes use of 
crowdsourcing information (the popularity of 
software projects) and a large set of static analysis 
metrics, in order to provide a single quality score, 
which is computed using two models: a one-class-
classifier used to identify high quality code and a 
neural network that translates the values of the static 
analysis metrics into quantified quality estimations. 
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Although the approaches discussed in this 
section can be effective for certain cases, their 
applicability in real-world scenarios is limited. The 
use of predefined thresholds (Diamantopoulos et al., 
2016; Hegedus et al., 2013) results in the creation of 
models unable to cover the versatility of today’s 
software projects, and thus applies only to restricted 
scenarios. On the other hand, systems that overcome 
threshold issues by proposing automated quality 
evaluation methodologies (Papamichail et al., 2016) 
often involve preprocessing steps (such as feature 
extraction) or regression models (e.g. neural 
networks) that lead to a quality score which is not 
interpretable. As a result, the developer is provided 
with no specific information on the targeted changes 
to apply in order to improve source code quality. 

Extending previous work, we build a generic 
source code quality estimation mechanism able to 
provide a quality score at a class level, which 
reflects the extent to which a given class is adopted 
by developers. Our system refrains from expert-
based knowledge and employs a large set of static 
analysis metrics and crowdsourcing information 
from GitHub stars and forks in order to train five 
quality estimation models, each one targeting a 
different property of source code. The individual 
scores are then combined to produce a final quality 
score that is fully interpretable and provides 
necessary information towards the axes that require 
improvement. By further analyzing the correlation 
and the semantics of the metrics for each axis, we 
are able to identify similar behaviors and thus select 
the ones that accumulate the most valuable 
information, while at the same time describing the 
characteristics of the source code under examination. 

3 DEFINING QUALITY 

In this section, we quantify quality as perceived by 
developers using information from GitHub stars and 
forks as ground truth. In addition, our analysis 
describes how the different categories of source code 
metrics are related to major quality characteristics as 
defined in ISO/IEC 25010:2011 (2011). 

3.1 Benchmark Dataset 

Our dataset consists of a large set of static analysis 
metrics calculated for 102 repositories, selected from 
the 100 most starred and the 100 most forked 
GitHub Java projects. The projects were sorted in 
descending order of stars and subsequently forks, 

and were selected to cover more than 100,000 
classes. Certain statistics are shown in Table 1. 

Table 1: Dataset Description. 

Statistics Dataset 

Total Number of Projects 102 

Total Number of Packages 7,372 

Total Number of Classes 100,233 

Total Number of Methods 584,856 

Total Lines of Code 7,985,385 

We computed a large set of static analysis 
metrics that cover the source code properties of 
complexity, coupling, documentation, inheritance, 
and size. Current literature (Kanellopoulos et. al., 
2010; Heitlager et al., 2007) indicates that these 
properties are directly related to the characteristics 
of Functional Suitability, Usability, Maintainability, 
and Portability, as defined by ISO/IEC 25010:2011 
(2011). Metrics were computed using SourceMeter 
(2017) and are shown in Table 2. All metrics were 
computed at class level, except for McCC that was 
computed at method level and then averaged to 
obtain a value for the class. 

3.2 Quality Score Formulation 

As already mentioned, we use GitHub stars and 
forks as ground truth information towards 
quantifying quality the way it is perceived by 
developers. According to our initial hypothesis, the 
number of stars can be used as a measure of the 
popularity for a software project, while the number 
of forks as a measure of its reusability. We make use 
of this information in order to define our target 
variable and consequently build a quality scoring 
mechanism. Towards this direction, we define a 
quality score for each class included in the dataset. 

Given, however, that the number of stars and 
forks refer to repository level, they are not 
representative as is for defining a score that reflects 
the quality of each class individually. Obviously, 
equally splitting the quality score computed at the 
repository level among all classes is not optimal, as 
every class has different significance in terms of 
functionality and thus must be rated as an 
independent entity. Consequently, in an effort to 
build a scoring mechanism that is as objective as 
possible, we propose a methodology that involves 
the values of static analysis metrics for modeling the 
significance of each class in a repository. 

The quality score for every class of the dataset is 
defined using the following equations: 
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Table 2: Overview of the Computed Static Analysis Metrics.
 

Category Name Description 

Co
m

pl
ex

ity
 

McCC McCabe’s Cycl. Complexity 

NL Nesting Level 

NLE Nesting Level Else-If 

WMC Weighted Methods per Class 

Co
up

lin
g 

CBO 
Coupling Between Object 
classes 

CBOI CBO classes Inverse 

NII Number of Incoming Invocations 

NOI Number of Outgoing Invocations 

RFC Response set For Class 

Si
ze

 

LOC Lines of Code 

LLOC Logical Lines of Code 

TNA Total Number of Attributes 

TNG Total Number of Getters 

NOS Number of Statements 

TLOC Total Lines of Code 

TLLOC Total Logical Lines of Code 

NPA Number of Public Attributes  

NM Number of Methods 

 

Category Name Description 

Si
ze

 
(c

on
t.)

 

NPM Number of Public Methods 

NUMPAR Number of Public Attributes 

In
he

rit
an

ce
 DIT Depth of Inheritance Tree 

NOA Number of Ancestors 

NOC Number of Children 

NOD Number of Descendants 

NOP Number of Parents 

D
oc

um
en

ta
tio

n 

AD API Documentation 

CD Comment Density 

CLOC Comment Lines of Code 

DLOC Documentation Lines of Code 

PDA Public Documented API 

PUA Public Undocumented API 

TAD Total API Documentation 

TCD Total Comment Density 

TCLOC Total Comment Lines of Code 

TPDA Total Public Documented API 

TPUA 
Total Public Undocumented 
API 

 ܵ௦௧௔௥௦(݅, ݆) = ൫1 + 	൯(݆)ܯܲܰ ௖ܰ௟௔௦௦௘௦(௜) (1)(݅)ݏݎܽݐܵ

௙ܵ௢௥௞௦(݅, ݆) = ൫1 + (݆)ܦܣ + 	൯(݆)ܯܰ ௖ܰ௟௔௦௦௘௦(௜) (2)(݅)ݏ݇ݎ݋ܨ

ܳ௦௖௢௥௘(݅, ݆) = log	(ܵ௦௧௔௥௦(݅, ݆) 	+ 	 ௙ܵ௢௥௞௦(݅, ݆)) (3)

where ܵ௦௧௔௥௦(݅, ݆) and ௙ܵ௢௥௞௦(݅, ݆) represent the 
quality scores for the ݆-th class contained in the ݅-th 
repository based on the number of GitHub stars and 
forks, respectively. ௖ܰ௟௔௦௦௘௦(௜) corresponds to the 
number of classes contained in the ݅-th repository, ܵݏݎܽݐ(݅) to its number of GitHub stars and ݏ݇ݎ݋ܨ(݅) to its number of GitHub forks. Finally, ܳ௦௖௢௥௘(݅, ݆) is the final quality score computed for 
the ݆-th class contained in the ݅-th repository. 

Our target set also involves the use of the values 
of three metrics as a measure of the significance for 
every individual class contained in a repository. 
Different significance implies different contribution 
to the number of GitHub stars and forks of the 
repository and thus different quality score. ܰܲܯ(݆) 
is used to measure the degree to which the ݆-th class 
contributes to the stars of the repository as it reflects 
the number of methods and thus the functionalities 
exposed by the class to the outside world. 

For the contribution of each class in the number 
of forks of the repository, we use ܦܣ(݆), which 

refers to the ratio of documented public methods out 
of all the public methods of the ݆-th class, and ܰܯ(݆), which refers to the number of methods of 
the ݆-th class therefore is used as a measure of its 
functionalities. Those two metrics are closely related 
with the reusability degree of the class and thus are 
used as a contribution criterion to forks. It is worth 
noting that the provided functionalities pose a 
stronger criterion for determining the reusability 
score of a class compared to the documentation 
ratio, which contributes more as the number of 
methods approaches to zero. Lastly, as seen in 
equation (3), the logarithmic scale is applied as a 
smoothing factor for the diversity in the number of 
classes among different repositories. This smoothing 
factor is crucial, since this diversity does not reflect 
the true quality difference among the repositories.  

Figure 1 illustrates the distribution of the quality 
score (target set) for the benchmark dataset classes. 

 

Figure 1: Distribution of the Quality Score. 
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Figure 2: Overview of the Quality Estimation Methodology.

The majority of instances are accumulated in the 
interval [0.1, 0.5] and their frequency is decreasing 
as the score reaches 1. This is expected, since the 
distributions of the ratings (stars or forks) provided 
by developers typically exhibit few extreme values. 

4 SYSTEM DESIGN 

In this section we design our system for quality 
estimation based on static analysis metrics. We split 
the dataset of the previous section into two sets, one 
for training and one for testing. The training set 
includes 90 repositories with 91531 classes and the 
test set includes 12 repositories with 8702 classes. 
For the training, we used all available static analysis 
metrics except for those used for constructing the 
target variable. In specific, AD, NPM, NM, and 
NCL were used only for the preprocessing stage and 
then excluded from the models training to avoid 
skewing the results. In addition, any classes with 
missing metric values are removed (e.g. empty class 
files); hence the updated training and test sets 
contain 88180 and 7998 class files respectively. 

4.1 System Overview 

Our system is shown in Figure 2. The input is given 
in the form of static analysis metrics, while the stars 
and forks of the GitHub repositories are required 
only for the training of the system. As a result, the 
developer can make use of our methodology by 
providing a set of classes (or a full project), and 
receive a comprehensible quality analysis as output. 

Our methodology involves three stages: the 
preprocessing stage, the metrics selection, and the 
model estimation. During preprocessing, the target 
set is constructed using the analysis of Section 3, 

and the dataset is cleaned of duplicates and outliers. 
Metrics selection determines the metrics that will be 
used for each metric category, and model estimation 
involves training 5 models, one for each category. 
The stages are analyzed in the following paragraphs. 

4.2 Data Preprocessing 

The preprocessing stage is used to eliminate 
potential outliers from the dataset in order to make 
sure that the models are trained as effectively as 
possible. Thus, we developed a one-class classifier 
using Support Vector Machines (SVM) and trained it 
using metrics that were selected by means of 
Principal Feature Analysis (PFA). 

At first, the dataset is given as input in a PFA 
model. The model performs Principal Component 
Analysis (PCA) to extract the most informative 
principal components (PCs) from 54 metrics. In 
specific, we keep the first 12 principal components, 
preserving 82.8% of the information. Figure 3 
depicts the percentage of variance for each principal 
component. We follow a methodology similar to that 
of Lu et al. (2007) in order to select the features that 
shall be kept. The transformation matrix generated 
by the PCA includes values for the participation of 
each metric in each principal component. 

 

Figure 3: Principal Components Variance for Preprocessing. 

Model Estimation 

Preprocessing Code 
Metrics 

GitHub 
Stars & Forks 

Quality 
Score 

Complexity 

Size 

Coupling 

Documentation 

Inheritance 
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We first cluster this matrix using hierarchical 
clustering and then select a metric from each cluster. 
Given that different metrics may have similar trends 
(e.g. McCabe Complexity with Lines of Code), 
complete linkage was selected to avoid large 
inhomogeneous clusters. The dendrogram of the 
clustering is shown in Figure 4. 

 
Figure 4: Dendrogram of Metrics Clustering. 

The dendrogram reveals interesting associations 
among the metrics. The clusters correspond to 
categories of metrics which are largely similar, such 
as the metrics of the local class attributes, which 
include their number (NLA), the number of the 
public ones (NLPA), and the respective totals 
(TNLPA and TNLA) that refer to all classes in the 
file. Our clustering reveals that keeping one of these 
metrics results in minimum information loss. Thus, 
in this case we keep only TNLA. The selection of 
the kept metric from each cluster (in red in Figure 4) 
was performed by manual examination to end up 
with a metrics set that conforms to the current state-
of-the-practice. An alternative would be to select the 
metric which is closest to a centroid computed as the 
Euclidean mean of the cluster metrics. 

After having selected the most representative 
metrics, the next step is to remove any outliers. We 
use an SVM one-class classifier for this task. The 
classifier uses a radial kernel function, gamma and 
nu are set to 0.01 and 0.1 respectively, and the 
training error tolerance is set to 0.01. Given that we 
our dataset contains popular high quality source 
code, outliers in our case are actually low quality 
classes. These are discarded since the models of 
Figure 2 are trained on high quality source code. As 
an indicative assessment of our classifier, we use the 
number of code violations (SourceMeter, 2017). 

In total, the one-class classifier ruled out 8815 
classes corresponding to 9.99% of the training set. 
We compare the mean number of violations for 
these rejected classes and for the classes that were 
accepted, for 8 categories of violations. The results, 
which are shown in Table 3, indicate that our 
classifier successfully rules out low quality source 
code, as the number of violations for the rejected 
classes is clearly higher than that of the accepted. 

For instance, the classes rejected by the classifier 
are typically complex since they each have on 
average approximately one complexity violation; on 
the other hand, the number of complexity violations 
for the accepted classes is minimal. Furthermore, on 
average each rejected class has more than 8 size 
violations (e.g. large method bodies), whereas 
accepted classes have approximately 1. 

Table 3: Violations of Accepted and Rejected Files. 

Violation 
Types 

Mean Violations 

Rejected Classes Accepted Classes 

WarningInfo  83.0935  18.5276 

Clone  20.9365  4.3106 

Cohesion  0.7893  0.3225 

Complexity  1.2456  0.0976 

Coupling  1.5702  0.1767 

Documentation  49.9751  12.5367 

Inheritance  0.4696  0.0697 

Size  8.1069  1.0134 

4.3 Model Preprocessing 

Before model construction, we use PFA to select the 
most important metrics for the five categories: 
complexity metrics, coupling metrics, size metrics, 
inheritance metrics, and documentation metrics. We 
also perform discretization on the float variables 
(TCD, NUMPAR, McCC) and on the target variable 
and remove any duplicates to reduce the size of the 
dataset and thus improve the training of the models. 
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4.3.1 Complexity Model 

The dataset includes four static analysis metrics that 
are related to the complexity of class files: NL, NLE, 
WMC, and McCC. Using PCA and keeping the first 
2 principal components (84.49% of the information), 
the clustering algorithm split the features in 3 
clusters. Thus, the selected metrics are NL, WMC, 
and McCC. Figure 5 depicts the correlation of the 
metrics with the first two principal components, 
where the selected metrics are shown in red. 

 

Figure 5: Visualization of Complexity Metrics in 2 PCs. 

4.3.2 Coupling Model 

The coupling metrics of the dataset are CBO, CBOI, 
NOI, NII, and RFC. By keeping the first 2 principal 
components (84.95% of the information), we were 
able to select three of them, i.e. CBO, NII, and RFC, 
so as to train the ANN. Figure 6 shows the metrics 
in the first two PCs, with the selected metrics in red. 

 

Figure 6: Visualization of Coupling Metrics in 2 PCs. 

4.3.3 Documentation Model 

The dataset includes five documentation metrics 
(CD, CLOC, DLOC, TCLOC, TCD), out of which 
DLOC, TCLOC, and TCD were found to effectively 
cover almost all valuable information (2 principal 
components with 98.73% of the information). Figure 
7 depicts the correlation of the metrics with the kept 
components, with the selected metrics in red. 

 

Figure 7: Visualization of Documentation Metrics in 2 PCs. 

4.3.4 Inheritance Model 

For the inheritance metrics (DIT, NOA, NOC, NOD, 
NOP), the PFA resulted in 2 PCs and two metrics, 
DIT and NOC, for 96.59% of the information. 
Figure 8 shows the correlation of the metrics with 
the PCs, with the selected metrics in red. 

 

Figure 8: Visualization of Complexity Metrics in 2 PCs. 

4.3.5 Size Model 

The PCA for the size metrics indicated that almost 
all information, 83.65%, is represented by the first 6 
principal components, while the first 2 (that cover 
53.80% of the variance) are visualized in Figure 9. 
Upon executing the clustering algorithm, we select 
NPA, TLLOC, TNA, TNG, TNLS, and NUMPAR 
in order to cover most information for the metrics. 

 

Figure 9: Visualization of Size Metrics in 2 PCs. 
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4.4 Model Validation 

We trained five Artificial Neural Networks (ANN), 
one for each metric category. The ANN architecture 
was determined with respect to each category. They 
all have one input, one hidden, and one output layer. 
The number of nodes is shown in Table 4. 

Table 4: Artificial Neural Networks Architectures. 

Metrics 
Category 

Input 
Nodes 

Hidden 
Nodes 

Output 
Nodes 

Complexity 3 1 1 
Coupling 3 2 1 
Documentation 3 2 1 
Inheritance 2 2 1 
Size 6 4 1 

10-fold cross-validation was performed on the 
training set to assess the effectiveness of the selected 
architectures. The validation error for each of the 10 
folds and for each model is shown in Figure 10. 

 

Figure 10: 10-fold Cross-Validation Error for the 5 ANNs. 

The performance of the models across different 
folds is stable, while the error percentages are low, 
indicating that the ANN architectures are effective. 

4.5 Model Construction 

Model construction involves training the five ANNs 
using the architectures of the previous subsection. 
Each model provides a quality score for a metrics 
category, and all the scores are aggregated to 
provide a final quality score for class files. Although 
simply using the mean of the metrics is reasonable, 
we use weights to effectively cover the requirements 
of each individual developer. For instance, a 
developer may be more inclined towards finding a 
well-documented component even if it is somewhat 
complex. In this case, the weights of complexity and 
documentation could be adapted accordingly. 

The default weight values are set according to 
the correlations between the metrics of each ANN 

and the target score. Thus, for the complexity score, 
we first compute the correlation of each metric with 
the target score (as defined in Section 3), and then 
calculate the mean of the absolutes of these values. 
The weights for the other categories are computed 
accordingly and all values are normalized so that 
their sum is 1. The weights are shown in Table 5, 
while the final score is calculated by multiplying the 
scores with the weights and computing their sum. 

Table 5: Quality Score Aggregation Weights. 

Metrics Category Weights 
Complexity 0.207 
Coupling 0.210 
Documentation 0.197 
Inheritance 0.177 
Size 0.208 

Figure 11 depicts the error distributions for the 
training and test sets for the each of the five models, 
as well as for the final aggregated model. The mean 
error percentages are shown in Table 6. The ANNs 
seem to be trained effectively, given that the error 
rates of Figure 11 are low and concentrate mostly 
around 0. The differences in the distributions 
between the training and test sets are also minimal, 
indicating that the models avoided overfitting. 

Table 6: Mean Error Percentages of the models. 

Metrics Category Training Error Test Error 
Complexity  10.44%  9.55% 
Coupling  10.13%  8.73% 
Documentation  11.13%  10.22% 
Inheritance  13.62%  12.04% 
Size  9.15%  8.73% 
Final  11.35%  8.79% 

5 EVALUATION 

In this section we evaluate our methodology for 
estimating software quality. 

5.1 One-class Classifier Evaluation 

The one-class classifier is evaluated using the test 
set as defined in Section 4 and using the code 
violations data described in Section 3. Our classifier 
ruled out 1594 classes corresponding to 19.93% of 
the test set. The mean number of violations for the 
rejected classes and the accepted classes are shown 
in Table 7, for 8 categories of violations. 
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 (a) (b) (c) 

    
 (d) (e) (f) 

Figure 11: Error Histograms for (a) the Complexity Model, (b) the Coupling Model, (c) the Documentation Model, (d) the 
Inheritance Model, (e) the Size Model, and (f) the Final Aggregated Model. 

Table 7: Violations of Accepted and Rejected Files. 

Violation Types 
Mean Violations 

Rejected Classes Accepted Classes

WarningInfo  57.6481  17.4574 

Clone  18.8338  4.1953 

Cohesion  0.5922  0.3003 

Complexity  1.5772  0.0963 

Coupling  1.4737  0.2099 

Documentation  26.2083  11.4102 

Inheritance  1.2516  0.2854 

Size  7.7114  0.9599 

The results indicate that the SVM successfully 
rules out low quality source code, as the number of 
violations for the rejected classes is clearly higher 
than that of the accepted. Similar observations can 
be made per category of violations; concerning e.g. 
complexity, the rejected classes are quite complex, 
with more than 1.5 violations per class; on the other 
hand, the complexity violations of an accepted class 
are minimal. Other outliers include classes with size 
violations (more than 7 per class) or documentation 
issues (more than 25 violations per class), etc. 

5.2 Quality Estimation Evaluation 

The error values for the quality scores provided by 
our system are quite low (see Figure 11), however 
we also have to assess whether these scores are 

reasonable from a quality perspective. This type of 
evaluation requires examining the metric values, and 
studying their influence on the quality scores. To do 
so, we use a project as a case study. The selected 
project, MPAndroidChart, was chosen at random as 
the results are actually quite similar for all projects. 
For each of the 195 class files of the project, we 
applied our methodology to construct the five scores 
corresponding to the five source code properties and 
then aggregate them in the final quality score. 
We use Parallel Coordinates Plots combined with 
Boxplots to examine how quality scores are affected 
by the static analysis metrics (Figures 12a to 12e). 
For each category, we first calculate the quartiles for 
the score and construct the Boxplot. After that, we 
split the data instances (metrics values) in four 
intervals according to their quality score: [min, qଵ), [qଵ,݉݁݀), [med, qଷ), [qଷ,݉ܽݔ], where min and ݉ܽݔ 
are the minimum and maximum score values, ݉݁݀ 
is the median value, and qଵ and qଷ are the first and 
third quartiles, respectively. Each line in the Parallel 
Coordinates Plot represents the mean values of the 
metrics for a specific interval. For example, the blue 
line in Figure 12a refers to the instances with scores 
in the [qଷ,݉ܽݔ] interval. The line is constructed by 
the mean values of the metrics NL, McCC, WMC 
and the mean quality score in this interval, which are 
1.88, 1.79, 44.08, and 0.43 respectively. The red, 
orange, and cyan lines are constructed similarly 
using the instances with scores in the [min, qଵ), [qଵ,݉݁݀), and [med, qଷ) intervals, respectively. 
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Figure 12: Parallel Coordinates Plots for the Score generated from (a) the Complexity Model, (b) the Coupling Model, (c) 
the Documentation Model, (d) the Inheritance Model, (e) the Size Model, and (f) plot depicting the Score Aggregation. 

Figure 12a refers to the complexity model. This 
plot results in the identification of two dominant 
trends that influence the score. At first, McCC 
appears to be crucial for the final score. High values 
of the metric result in low score, while low ones lead 
to high score. This is expected since complex classes 
are prone to containing bugs and overall imply low 
quality code. Secondly, the metrics WMC and NL 
do not seem to correlate with the score individually; 
however they affect it when combined. Low WMC 
values combined with high NL values result in low 
quality scores, which is also quite rational given that 
more complex classes with multiple nested levels are 
highly probable to exhibit low quality. 

Figures 12b and 12c refer to the coupling and the 
documentation models, respectively. Concerning 
coupling, the dominant metric for determining the 
score appears to be RFC. High values denote that the 
classes include many different methods and thus 
many different functionalities, resulting in high 
quality score. As for the documentation model, the 
plot indicates that classes with high comment 
density (TCD) and low number of documentation 
lines (DLOC) are given a low quality score. This is 
expected as this combination probably denotes that 
the class does not follow the Java documentation 
guidelines, i.e. it uses comments instead of Javadoc. 

Figures 12d and 12e refer to the inheritance and 
size models, respectively. DIT appears to greatly 
influence the score generated by the inheritance 
model, as its values are proportional to those of the 

score. This is expected as higher values indicate that 
the class is more independent as it relies mostly on 
its ancestors, and thus it is more reusable. Although 
higher DIT values may lead to increased complexity, 
the values in this case are within acceptable levels, 
thus the score is not negatively affected. 

As for the size model, the quality score appears 
to be mainly influenced by the values of TLLOC, 
TNA and NUMPAR. These metrics reflect the 
amount of valuable information included in the class 
by measuring the lines of code and the number of 
attributes and parameters. Classes with moderate 
size and many attributes or parameters seem to 
receive high quality scores. This is expected as 
attributes/parameters usually correspond to different 
functionalities. Additionally, a moderately sized 
class is common to contain considerable amount of 
valuable information while not being very complex. 

Finally, Figure 12f illustrates how the individual 
quality scores (dashed lines) are aggregated into one 
final score (solid line), which represents the quality 
degree of the class as perceived by developers. The 
class indexes (project files) are sorted in descending 
order of quality score. The results for each score 
illustrate several interesting aspects of the project. 
For instance, it seems that the classes exhibit similar 
inheritance behavior throughout the project. On the 
other hand, the size quality score is diverse, as the 
project has classes with various size characteristics 
(e.g. small or large number of methods), and thus
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Table 8: Static Analysis Metrics per Property for 10 Classes (separated by double line border) with different Quality Scores. 

Static Analysis Metrics Class with High Quality 
Score per Category 

Class with Low Quality 
Score per Category Category Name Min Value Max Value 

Complexity 
McCC 1 39 2.3 8.5 

WMC 0 498 273 51 

NL 0 55 4 28 

Coupling 
NII 0 3,195 88 0 

RFC 0 360 65 7 

CBO 0 191 5 35 

Documentation 
TCD 0 1 0.3 0.8 

DLOC 0 3,163 917 2 

TCLOC 0 4,515 1,019 19 

Inheritance 
DIT 0 9 8 0 

NOC 0 65 1 16 

Size 

NUMPAR 0 423 27 3 

TNG 0 327 86 0 

TNA 0 404 69 0 

NPA 0 254 36 0 

TLLOC 0 4,049 189 10 

TNLS 0 129 13 2 

 

their score may be affected accordingly. Finally, the 
trends of the individual scores are in line with the 
final score, while their variance gradually decreases 
as the final score increases. This is expected as a 
class is typically of high quality if it exhibits 
acceptable metric values in several categories. 

5.3 Example Quality Estimation 

Further assessing the validity of our system, for each 
category we manually examine the values of the 
static analysis metrics of two sample classes that 
received high and low quality scores, respectively 
(Table 8). Note that the presented static analysis 
metrics refer to different classes for each category. 
For the complexity model, the class that received 
low score appears to be much more complex than 
the one that received high score. This is reflected in 
the values of McCC and NL, as the low-scored class 
includes more complex methods (8.5 versus 2.3), 
while it also has more nesting levels (28 versus 4). 

For the coupling model, the high-quality class 
has significantly higher NII and RFC values when 
compared to those of the low-quality class. This 
difference in the number of exposed functionalities 
is reflected in the quality score. The same applies for 
the inheritance model, where the class that received 
high score is a lot more independent (higher DIT) 
and thus reusable than the class with the low score. 

Finally, as for the documentation and size 
models, in both cases the low-quality class appears 
to have no valuable information. In the first case, 
this absence is obvious from the extreme value of 
comments density (TCD) combined with the 
minimal documentation (TCLOC). In the second 
case, the low-quality class contains only 10 logical 
lines of code (TLLOC), which indicates that it is of 
almost no value for the developers. On the other 
hand, the high-quality classes seem to have more 
reasonable metric values. 

5.4 Threats to Validity 

The threats to the validity of our approach and our 
evaluation involve both its applicability to software 
projects and its usage by the developers. Concerning 
applicability, the dataset used is quite diverse; hence 
our methodology can be seamlessly applied to any 
software project for which static analysis metrics can 
be extracted. Concerning expected usage, developers 
would harness the quality estimation capabilities of 
our approach in order to assess the quality of their 
own or third-party software projects before (re)using 
them in their source code. Future work on this aspect 
may involve integrating our approach in a system for 
software component reuse, either as an online 
component search engine or as an IDE plugin. 

Towards Modeling the User-perceived Quality of Source Code using Static Analysis Metrics

83



6 CONCLUSIONS 

In this work, we proposed a new software quality 
estimation approach, which employs information 
about the popularity of source code components to 
model their quality as perceived by developers. 
Upon removing outliers using a one-class classifier, 
we apply Principal Feature Analysis techniques to 
effectively determine the most informative metrics 
lying in five categories: complexity, coupling, 
documentation, inheritance, and size metrics. The 
metrics are subsequently given to five neural 
networks that output quality scores. Our evaluation 
indicates that our system can be effective for 
estimating the quality of software components as 
well as for providing a comprehensive analysis on 
the aforementioned five source code quality axes. 

Future work lies in several directions. At first, 
the design of our target variable can be further 
investigated for different scenarios and different 
application scopes. In addition, various feature 
selection techniques and models can be tested to 
improve on current results. Finally, we could assess 
the effectiveness of our methodology by means of a 
user study, and thus further validate our findings. 
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