
(In) Security in Graph Databases
Analysis and Data Leaks

Miguel Hernández Boza1 and Alfonso Muñoz Muñoz2

1Innovation 4 Security - BBVA , Av. Burgos 16D 28036, Madrid, Spain
2Innovation 4 Security Labs - BBVA, Av. Burgos 16D 28036, Madrid, Spain

Keywords: Graph Database, Privacy, Neo4j, OrientDB, Grafscan.

Abstract: Graph databases are an emerging technology useful in the field of cybersecurity, especially in the detection of
new threats based on the correlation of diverse sources of information. In our research, we had reviewed the
design of the most widespread graph databases, for example Neo4J and OrientDB, detecting several security
problems, improper default configurations and leaks, scanning the Internet during 9 months. To repeat our
proofs, we are releasing the first hacking tool for testing and detecting (in) secure graph databases, GraFScaN.

1 INTRODUCTION

The current knowledge society has a clear dependence
on the creation of new contents, in multiple formats,
that will be consumed anywhere and at any time. This
need as a society generates that the creation of new
data increases every day. This can be observed in
any social network, blog or instant messaging appli-
cation at present: new photos, new videos, new links,
etc. In this environment, the form and the means used
for its storage and subsequent processing are critical,
especially in today’s society where free and massive
services are required, where the presence of adver-
tisements and the extraction of information through
the analytics techniques or data mining are crucial for
new business models.

In this context, the management of the temporal
component in the creation, storage or consumption
of such information, especially with the addition of
new sources of information, is not negligible. This
problem is significant in fields such as astronomy or
genomics, and of course in information search tech-
nologies on the Internet, for example search engines
or financial systems (Zachary, 2015).

For all these reasons, Big Data technologies have
been focusing on the collection, storage, search, anal-
ysis and visualization of large amounts of data. Such
is the interest of these technologies that in the last
decade a multitude of tools have been developed for
the treatment of large volumes of information cen-
tered on three types of data: structured data (data
well defined length and format, typically stored in re-

lational databases), unstructured data (data without
specific format and is stored as it was collected) and
semi-structured data (data that is not limited to cer-
tain fields but has markers to separate information, for
example the JSON standard).

At the same time, the different types of data can
be stored considering different formats. The most
typical are: key-value storage (they are stored in
a similar way to a data dictionary where the data
is accessed from a single key), document storage
(the structure of the data stored are very similar to
key-value storage, differing in the data they keep),
column-oriented storage (it is oriented to scale hor-
izontally with what allows to save different objects
and attributes on a same key) and storage in graph.
The latter breaks with the idea of tables and are based
on graph theory, where it states that information are
nodes and relations between information are edges.
Its greater use is contemplated in cases of relating
large amounts of highly variable information, for ex-
ample in social networks.

In this point, and after a brief understanding of
the different types of data and their nature, it was op-
portune to delve into a specific type of data storage,
the graph databases. Its ability to relate information
defines it as an excellent technology in different ar-
eas of cybersecurity (fraud detection, authentication
process management, threat management, etc.) and,
therefore, it is necessary to understand its design and
analyse if they present security failures that could af-
fect other systems within an organization.

Boza, M. and Muñoz, A.
(In) Security in Graph Databases - Analysis and Data Leaks.
DOI: 10.5220/0006419003030310
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 303-310
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

303

2 GRAPH DATABASES.
ANALYSIS AND
VISUALIZATION

2.1 Introduction

The beginning of graph theory (Godsil, 2001) took
place in 1736, in an article by Leonhard Euler (Euler,
1736). The work arose from a problem known as the
Königsberg bridge problem. The problem was to go
through all the bridges once and go back to the same
starting point.

Figure 1: The bridge problem of Königsberg.

Euler proved that it was not possible. To do this, it
replaced each starting zone by a point and each bridge
by an arc, thus creating the first graph, designed to
solve a problem. This case gave rise to graph theory.

Nowadays, the current technology has allowed to
take these principles to new type of database, in this
case oriented to graphs. The information is stored as
nodes or entities and the relationships between them
allow to obtain an additional information of great
value. Although, it is true that this technology is rela-
tively recent, the most significant technological mile-
stones start from 2013, however there are already cer-
tain databases that can be used in real systems with
success. The most famous graph database, by its evo-
lution and community, is Neo4j, followed by far by
OrientDB (Figure 2).

Figure 2: Ranking of graph DBMS (Db-engines, 2017).

Up to our knowledge, scientific literature did not re-
port yet any research about the specific topics cov-
ered in this paper. For that reason, in the follow-
ing sections, the security of the most important graph
databases will be deepened.

2.2 Case Studies: Neo4j and OrientDB

Neo4j (Todd, 2009) is a graph-oriented database and
free software, implemented in Java. This database
stores the information natively in nodes and relations
instead of tables. Among its features, it has the pos-
sibility of adding several tags to the nodes and an
unique one to the relations, besides being able to add
properties or indexes. The biggest feature of this
database is its query language, Cypher.

Cypher (Cypher, 2017) is a declarative language
to describe patterns in graphs visually using ASCII-
Art syntax. It allows to indicate what one wants to
consult, to insert, to update or to eliminate of the data
in the graph without the necessity to describe it with
precision. To select the nodes the parentheses are used
because of their similarity to the circles, for example,
a node p would be represented as (p). In addition, you
can add a series of tags that facilitate the search of the
nodes, as it can be (p: Person). Within each node,
a property can be accessed by using the dot, for ex-
ample p.name. All of these values are case sensitive.
Therefore, the general structure of a query can be seen
as follows:

MATCH (node:Label) RETURN node.property
MATCH (node1:Label1)-->(node2:Label2)
WHERE node1.propertyA = {value}
RETURN node2.propertyA, node2.propertyB

You can consult relations between nodes using ar-
rows, which can be directional, and additional infor-
mation can be added using brackets inside the arrow.
An example of the structure:

MATCH (n1:Label1)-[rel:TYPE]->(n2:Label2)
WHERE rel.property > {value}
RETURN rel.property, type(rel)

It is advisable to consult the technical manual of
this database to understand in detail this query lan-
guage (Cypher, 2017).

OrientDB (Orientdb, 2017) is a non-relational
open source database management system written in
Java. This system supports documents, key / value,
and object models but relationships are managed as in
graph-oriented databases with direct connections be-
tween registers.

OrientDB incorporates a key-value and object-
oriented search engine. Its query language is SQL,

SECRYPT 2017 - 14th International Conference on Security and Cryptography

304

with some extra functionality to enable functionality
with graphs. Queries are case sensitive. The SQL
engine automatically recognizes whether any of the
indexes can be used to improve execution, although
can be explicitly added.

3 SECURITY IN Neo4j.
STRENGTHS AND
LIMITATIONS

3.1 Versions

In 2013 (Neo4j, 2013) Neo4j presents the first ver-
sion 1.9 with serious design flaws, including the pos-
sibility of executing remote code (CVE-Neo4j, 2013),
using a public exploit, CVE-2013-7259. At the end
of that year appeared the first version 2.0 (Neo4j 2.0,
2013) where the visual section began to have more
importance. It was solved the problem of remote
code execution and was added the possibility of hav-
ing HTTPS. Until 2016 it was not evolved to new ver-
sions.

In April 2016, in Graph Connect, version 3.0 was
introduced (Neo4j 3.0, 2016), adding a multitude of
functionalities, new connection protocols and the web
administration panel disappeared. This last point in-
troduces the possibility to an attacker, by using fin-
gerprinting techniques, know the version of a Neo4j
database without having to be authenticated in it. If
the panel exists the version of the database will be
less than 3.0 and if not higher. At the end of 2016 ap-
peared the new version 3.1 with the great novelty of
the implementation of user management.

The configuration and design of each of these ver-
sions can be used by an attacker to try to access a
database without credentials in it and to be able to in-
sert, steal, manipulate or delete information as will be
shown below.

3.2 Configuration

The default configuration and version management of
this graph database is vital from an attacker’s point of
view. Therefore, the configuration (configuration path
and files) is analysed depending on the versions:

Version 2.x: In this case the configuration in-
formation is located in the following path: {path-
neo4j}/config/neo4j-server.properties, within which
the configuration settings to be detailed.

#org.neo4j.server.webserver.address=0.0.0.0

This line configures which addresses can access
the service running Neo4j. The reader can observe
that by default is commented out and only the lo-
cal user can connect to it. On the contrary, remov-
ing the comment would mean that if you expose your
IP and is accessible from the Internet, that the ser-
vice (database) would be exposed and any user (legit-
imate or otherwise) would have visibility of the Neo4j
database.

Also, it is possible to disable the login password
authentication in user’s access (default enabled). It is
not recommended in any case but in some connectors
to the database is recommended because there is no
implementation of the authentication process (Neo4j
connector, 2017).

dbms.security.auth enabled=true

The default port for remote connection is port
7474/7473. There is the possibility of changing this
port for less exposure to unsophisticated attackers.
Obviously, it is not a sophisticated protection mea-
sure.

org.neo4j.server.webserver.port=7474
org.neo4j.server.webserver.https.port=7473

In some versions for Windows operating system
is only possible to connect via HTTP, appearing the
HTTPS line commented (Neo4j conf, 2017).

Neo4j implements a remote shell on the default
port 1337. This configuration is for the remote shell
to the database, to be able to query it by Cypher.
This shell presents security problems because an user
can connect without authentication. Luckily, it is not
enabled by default and it is only possible to access
through the computer itself. It is important to monitor
the change of this configuration.

#remote shell enabled=true
#remote shell host=127.0.0.1
#remote shell port=1337

Version 3.x: Unlike the previous versions, the
configuration of these comes enclosed within a same
file, with the same parameters as the previous version.
The configuration is in the following path: {path-
neo4j}/conf/neo4j.conf.

3.3 Protection and Storage of the
Password

In all versions, the key storage is stored in a file
on the following path: $path-neo4j$/data/dbms/auth.
This file is created when Neo4j is started the first
time and at the end of the file appears: pass-
word change required. When the user by the browser

(In) Security in Graph Databases - Analysis and Data Leaks

305

access to the portal, it asks for the initial authentica-
tion (default-user neo4j / neo4j) and asks to change
it. The limitation of the password is that it contains at
least one character, but it does not have a maximum
character and complexity limit, also it is not allow to
put the same default password neo4j. It is certainly
not the best robust password management policy.

The password is stored using the sha256 + salt al-
gorithm, that without being a bad option it is not the
best mechanism against dictionary attacks / rainbow-
tables / brute force off-line attacks. It would be advis-
able to use PBKDF2 (Burt, 2015).

3.4 User Authentication. Design
Failures

The system that implements Neo4j at the time of au-
thenticating is an HTTP Basic (Basic Auth, 2017).
The key of a user is sent to the database, encoded in
base64, in the header of each request that requires au-
thentication. This is especially sensitive when setting
up the connection via HTTP.

The authentication system has protection against
brute-force attacks that blocks by IP source. Neo4j
detects the third attempt to access with bad credentials
by entering a constant delay of 5 seconds to accept the
following request (key stretching). This protection is
simple to override by using different intermediate de-
vices or proxies to change the source IP and avoid
this restriction. In the tests performed, counting the
network delay, using 5 IPs (5 open proxies) it is pos-
sible to run a dictionary / brute force attack without
limitations.

Additionally, another attack from a design flaw
was detected. Neo4J versions 2.x and 3.x allow ac-
cess to an end-point that allows changing the user’s
key if the current key is provided. This is a prob-
lem since an attacker could send requests by trying
different current keys and force the change always to
the same key (new key). By designing the database,
an attacker does not need to receive a response from
this request, which means that an intermediate system
(e.g. IoT) could be used without having to control
the response. The attacker from time to time, does
not know when a request will hit the key change, will
connect to the database, for example via Tor, with the
new key. If the brute force attack was successful you
will have full access to the database.

3.5 Licenses

Neo4j has two types of licenses (Neo4j lic, 2017),
Community (free) and Enterprise (paid). The En-
terprise license includes a twenty-four-hour support

system, high availability, backups around the mainte-
nance and a whole series of security measures (logs,
limitation of execution time, etc.). The difference be-
tween licenses is a security problem added to Neo4j.
The cost is a problem in the use of the Enterprise li-
cense and the Community license does not present ba-
sic security options such as a log. This will facilitate
attacks and leaks of information.

3.6 Injections

If access to Neo4j is achieved, either by not having
authentication enabled, incorrect validation in the
input of information to the database (would facilitate
injection of queries cypher) or by discovery of
the credentials, we would have full access to the
information of the database. At this point, it makes
sense to analyse how the use of Cypher language can
allow different injections with security implications.
The most classic would be those that can be done in
the most common languages, such as SQL, down-
load, delete or edit the information contained in the
database. In addition, it is proposed to analyse the
impact of different queries that would allow denial
of service or new forms of encryption of the en-
tire database as a new ransomware (Mehmood, 2016).

Disc Denial

One of the techniques investigated to deny the use of
storage (disk) would be, for example, by using a re-
quest that begins to import data to occupy all avail-
able free space, data that can be imported from exter-
nal sources, via url. This attack takes advantage of
the current configuration in which the amount of disk
that the database can reserve is not limited. The ex-
ample query to import an external file would be the
following:

USING PERIODIC COMMIT 1000 LOAD CSV
FROM URL AS row CREATE (A:N1{a:row[0]})-
[:RE]->(B:N2{b:row[1]});

It is possible to accelerate this type of attacks and
get the disk to fill before, using a misuse of Neo4j
(Cypher T, 2017) creating indexes in the database
without control, because the space needed for each
index is greater for each data that you have to index.
Therefore, if you create a large volume of indexes, it
is possible to do it in a single query, you can make the
data import operation more efficient and fill the disk
before.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

306

RAM Denial

The attacks investigated to deny the use of RAM,
causing a maximum reservation of the same, take
advantage of the fact that when loading information
from Cypher accumulates all the entities and relation-
ships that are created to insert them all to the same
time. A possible attack can force, by one or more re-
quests, to store a large amount of information in mem-
ory by importing a huge number of nodes through a
loop, using the term that provides Cypher FOR EACH
for them. An example of request would be:

FOREACH (x in range(1,10000000000000) —
CREATE (:Person {name:name+x, age: x%100}));

Neo4j allows to limit the execution time of
queries of this type in the database. Although this
feature could be used as a countermeasure to this type
of attacks, it would be necessary to know very well
the queries and data in the database (data that can be
dynamic) so that this alleged countermeasure does
not impede the normal operation with the database.

Ransomware

Currently, ransomware attacks on databases are based
on the possibility of exploiting a vulnerability or con-
figuration failure to export-import the database and
encrypt its contents to request a later rescue (re-
trieve the information in clear). A significant exam-
ple of this has been the recent breach of MongoDB
databases (Pauli, D, 2017).

In addition to this possibility, which is viable
if one has access to import and export the Neo4j
database (database without authentication, query in-
jection or authentication violated), the possibility of
new attacks of ransomware was analysed, taking ad-
vantage of specific features of this database. In fact, it
was observed how the Cypher language itself and its
query engine allows not only replace values (with the
function replace), which would allow, for example, a
homophonic cipher (Hammer, 1981), if not, in addi-
tion, eliminate the relations between the nodes, with
which in practice the database would be useless (al-
though it is reversible on the part of the attacker). For
example, the following query in Cypher encrypts the
prop1 of the graph by doing concatenation of replace-
ments:

MATCH (n) where n.prop1 set n.prop1 = re-
place(replace(a,81)...) z,12)

To remove the relationships, it is necessary to keep
a copy of these to be able to reverse the process. This
can be done with the following query:

MATCH (n)-[r]->(m) RETURN ID(n), ID(m),
type(r), properties(r)

And, finally, the elimination of the relationships
that exist in the database:

MATCH ()-[r]->() DELETE r

It is noteworthy that most databases exposed on
the Internet (as will be seen later) were licensed Com-
munity (without the option of logs) so that Neo4j it-
self (without the help of external technology) could
not know the queries made by the attacker or pro-
tect itself easily even if the cryptographic attack is not
very sophisticated. In theory, from the calculations
made, when doing the research, it would have been
possible to encrypt all databases exposed on the Inter-
net without security (more than 400) in less than 10
minutes.

At the following link we published a demo
video of how an attack of this type would work:
https://youtu.be/jwXS3muRkx0.

4 SECURITY IN OrientDB.
STRENGTHS AND
LIMITATIONS

Unlike Neo4j, OrientDB is a server that facilitates the
management of different graph-oriented databases.

4.1 Versions

There are a lot of versions, which are appearing
monthly. The Table 1 describes the number of ver-
sions per year (new features are constantly added).
Versions prior to 2.0.15 and 2.1.1 have the follow-
ing CVE: CVE-2015-2918 (remote attack of click-
hacking), CVE-2015-2913 (to predict session num-
bers) and CVE-2015-2912 (CSRF attacks).

Table 1: Versions of OrientDB.

Years

Versions

2013 2014 2015 2016 2017

1.x 9 4 0 0 0

2.0 0 2 7 1 0

2.1 0 0 4 18 0

2.2 0 0 0 14 2

Total 9 6 11 33 2

(In) Security in Graph Databases - Analysis and Data Leaks

307

4.2 Configuration

The configuration information is stored in the instal-
lation folder, {path-OrientDB}/config, where the fol-
lowing files are located:

orientdb-server-config.xml. In this file are the
necessary parameters to establish connection and the
users of the server of OrientDB with the summaries
of their passwords. This configuration is by default,
and unlike Neo4j, allowing the connection from any
source IP to the OrientDB server, exposing it to the In-
ternet. The strange thing is that the documentation in-
dicates the opposite (OrientDB expo, 2017). It is sig-
nificant, in addition, how to work with the user root,
making it more vulnerable against brute-force attacks,
especially since it is possible to remotely connect to
the root account.

security.json. This file shows the security settings
of the OrientDB server, changes can be made to im-
prove security. Highlight that three default users are
created for access to any database. The users cre-
ated by default are: admin:admin, writer:writer and
reader:reader. Similarly, a default database, named
Gratefuldeadconcerts, is created.

Finally, authentication is enabled by default just
like in Neo4j and it would be necessary to disable the
credentials manually.

4.3 User Authentication. Design
Failures

Initially, when the server is started, it asks to be as-
signed a password for the user root, which will have
full access to all the databases and the management
portal. If the password is left blank, a random is cre-
ated.

The authentication is based on HTTP Basic as
in Neo4j, in this case you have credentials for each
database that is inside the server. As seen in the con-
figuration, if not changed, three users are generated
to access each database, which initially have a default
credentials to try to access. It is possible to manage
from the browser the creation of more users and as-
sign them the roles that appear in the documentation
(OrientDB rol, 2017), some of them allow to cross-
wise access to all the databases of the server.

The OrientDB server does not deploy any system
against brute-force attacks, either to attack access to a
particular database or to take root credentials and ac-
cess them all. This point is significant especially if it
joins an additional vulnerability detected. The docu-
mentation explains that from the server of OrientDB
can not list the databases that are inside the server

without authentication (AuthOrientDB, 2017), but if
a request is sent to the end-point/listdatabases, for ex-
ample http://10.0.0.1:2480/listdatabases, you can see
that it returns a list with the names of the databases,
and in the response header, the version of the Ori-
entDB server is sent, all without requiring credentials.
All this greatly simplifies the fingerprinting.

4.4 Licenses

As in the case of Neo4j, OrientDB has two types of
licenses, Community and Enterprise. This last one
adds different functionalities for the management of
the databases but the security characteristics are equal
in both licenses, which is a better defensive approach
than in Neo4j, at least if it thinks in global terms.

5 EXHIBITION OF PRIVATE
INFORMATION. DATA LEAKS
AND INTERNET

In order to verify the impact of some of the secu-
rity problems detected, among the most spread graph
databases, a verification process was required. With
this purpose, a specific fingerprinting tool, called
GraFScaN (Hernández, M; Muñoz, A., 2017), was
designed. Using this tool, different active attacks
were implemented (brute force attacks and DoS), and
Internet (IPv4) was monitored from May 2016 until
January 2017. The tool uses IP addresses of inter-
est obtained from the search engine Shodan (Shodan,
2017) and scanning tools such as Zmap (Zmap, 2017)
or Masscan (Masscan, 2017). These scanning tools
have the capability of scanning the whole Internet
within few minutes. If further information is required,
we strongly recommend reading the user guide in-
cluded with the tool (Hernández, M; Muñoz, A.,
2017).

In the case of Neo4J, more than 1275 databases
were found, 298 without any authentication. In the
databases without authentication, all the privileges
could be used for the implementation of different
types of attacks. For example, a denial of service
for both Neo4j and the whole machine containing it
(Neo4J does not manage neither the RAM memory
nor the disk storage efficiently). This problem was
even more significant when the machine itself offered
a web service through port 80, most of the cases cor-
porative webs.

For the cases without authentication in Neo4J (e.g.
Figure 3 and Figure 4), it was possible to obtain the
specific version used (v1.9/17, v2.x/251 and v3.0/30).

SECRYPT 2017 - 14th International Conference on Security and Cryptography

308

Figure 3: Example of information contained in Neo4j.

Figure 4: Example of a social network based on Neo4j.

This information makes much easier choosing an op-
timal type of attack. For example, in 17 cases could
be used a public exploit to obtain full control over the
machine. A relevant fact was the 5:1 ratio between the
Community and Enterprise licenses. It is important to
keep in mind that this fact does have security impli-
cations, because the Community license does not acti-
vate neither logs nor monitor of the Cypher queries.

For the OrientDB case, 214 servers were found ex-
posed, among them 553 databases. An analysis was
run with the aim of evaluating how often the default
credentials were enough, and in 187 the result was
positive. Besides, it appears the default database 104
times, that could allow the introduction of queries that
provokes DoS attacks or any other kind of misuse of
the database (hosting illegal information, cover chan-
nel, etc.).

Figure 5: Listing of databases in OrientDB associated with
a web.

Altogether, 42 servers are vulnerable to the CVEs
mentioned in the configuration. There was no authen-
tication or the default authentication was activated,
the format of the existing files was accessible and in
several cases this information could be linked to spe-

cific websites in the same IP address, arising the iden-
tity of the companies. Regarding information leaks,
the implications of this fact are obvious.

During the monitor of these databases was pos-
sible to obtain information from more than 600
databases with different sensitivity levels, some of
them closely related with public institutions in Spain.
In general, sensitive corporative information was
found: information about commercial products, hun-
dreds of thousands personal dates (names, e-mails,
telephone numbers, etc.), login-passwords, etc. All
the discovered information was conveyed to the
Guardia Civil’s group of telematic crimes (gdt, 2017)
and to specific CERTs, who helped to fix and mini-
mize attacks to the vulnerable devices.

6 CONCLUSION

Graph databases are an incipient technology. Never-
theless, they are having an increasing impact on com-
panies and on the management of diverse information,
especially in the context of cybersecurity. Hence,
and seeking to minimize possible attacks in the future
as a consequence of the missuse of these technolo-
gies, during this research the configuration and secu-
rity components implemented within these databases
were investigated.

Regarding Neo4J, the most spread database, bad
configuration habits of the database are observed,
making them vulnerable on the Internet. Measures to
prevent force brute attacks are not enough, the key
management can be improved and there is not ad-
vanced counteractions against attacks that inject bad
queries (DoS, ransomware, etc.). In this sense, the
decision of not implementing key security features,
such as logs or monitor in the Comunnity version is
not the best approach. This evidence was observed on
the exposed databases.

In the case of OrientDb there are security prob-
lems due to the default configuration. When the
server initiates, the server exposes on the Internet
the databases by default. Moreover, three users are
always created by default, and they have to be re-
moved to prevent improper access. In the same
way implements deficient protection measures against
brute force attacks and the detection of the version or
databases. The security problems discovered forces to
release a new version of the analysed graph databases,
Neo4j and OrientDB. This is the best recommenda-
tion to remedy the discovered security problems.

As a conclusion, excluding the new issues de-
tected, it has to be enhanced how the same design mis-
takes and dangerous default configurations are sys-

(In) Security in Graph Databases - Analysis and Data Leaks

309

tematically carry out. Once again, it is necessary keep
in mind the need of audit the emergent technologies
for dismissing an eventual negative impact on our or-
ganizations. The graph databases are proof of it.

REFERENCES

AuthOrientDB (2017). List databases on orientdb. http://
orientdb.com/docs/2.1/Console-Command-List-
Databases.html.

Basic Auth (2017). Basic authentication. https://en.
wikipedia.org/wiki/Basic access authentication. last
access 05/22/2017.

Burt, K. (2015). Pkcs #5: Password-based cryptogra-
phy specification version 2.0. https://tools.ietf.org/
html/rfc2898.

CVE-Neo4j (2013). Cve-2013-7259. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2013-7259. last ac-
cess 05/22/2017.

Cypher (2017). Intro to cypher. https://neo4j.com/
developer/cypher-query-language/. last access
05/22/2017.

Cypher T (2017). Tuning your cypher: Tips and tricks for
more effective queries. https://neo4j.com/blog/tuning-
cypher-queries/. last access 05/22/2017.

Db-engines (2017). Ranking of graph dbmd 2017. http://db-
engines.com/en/ranking/graph+dbms. last access
05/22/2017.

Euler, L. (1736). Solutio problematis ad geome-
triam situs pertinentis. http://eulerarchive.maa.org/
pages/E053.html.

gdt (2017). Gdt. https://www.gdt.guardiacivil.es/. last ac-
cess 05/22/2017.

Godsil, C; Royle, G. (2001). Algebraic graph theory.
Hammer, C. (1981). Higher-order homophonic ciphers.

http://dx.doi.org/10.1080/0161-118191856075.
Hernández, M; Muñoz, A. (2017). Tool grafscan.

https://github.com/grafscan/GraFScaN.
Masscan (2017). Port scanner masscan. https://github.com/

robertdavidgraham/masscan. last access 05/22/2017.
Mehmood, S. (3 May 2016). Enterprise survival guide

for ransomware attacks. https://www.sans.org/
readingroom/whitepapers/incident/enterprise-
survival-guide-ransomwareattacks-36962.

Neo4j (2013). Neo4j 1.9. https://neo4j.com/release-
notes/neo4j-1-9/. last access 05/22/2017.

Neo4j 2.0 (2013). Neo4j 2.0. https://neo4j.com/release-
notes/neo4j-2-0/. last access 05/22/2017.

Neo4j 3.0 (2016). Neo4j 3.0. https://neo4j.com/whats-new-
in-neo4j-3-0/. last access 05/22/2017.

Neo4j conf (2017). Https configuration. https://github.com/
neo4j/neo4j/commit/c9030e5a2efb2c3f43c0f69bebd
67ae67e54a286. last access 05/22/2017.

Neo4j connector (2017). Neo4j connector. https://
github.com/se38/Neo4a. last access 05/22/2017.

Neo4j lic (2017). Neo4j licenses. https://neo4j.com/
licensing/. last access 05/22/2017.

Orientdb (2017). Tutorial about graph-model. http://
orientdb.com/docs/last/Tutorial-Document-and-
graph-model.html. last access 05/22/2017.

OrientDB expo (2017). Orientdb server. http://
orientdb.com/docs/2.2/DB-Server.html.

OrientDB rol (2017). Orientdb security. http://
orientdb.com/docs/2.0/orientdb.wiki/Security.html.

Pauli, D (2017). Mongodb ransom attacks soar, body
count hits 27,000 in hours. https://www.theregister.
co.uk/2017/01/09/mongodb/.

Shodan (2017). The search engine for the web.
https://www.shodan.io/. last access 05/22/2017.

Todd, H. (13 de junio de 2009). Neo4j - a graph database
that kicks buttox. http://highscalability.com/neo4j-
graph-database-kicks-buttox.

Zachary, D. (2015). Big data: Astronomical or ge-
nomical? http://journals.plos.org/plosbiology/article/
file?id=10.1371.

Zmap (2017). Port scanner zmap. https://zmap.io/. last
access 05/22/2017.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

310

