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Abstract: In order to keep its leadership in French rail market and to improve work conditions of its systems engineers 
during automation projects, the SNCF (French acronym for National Society of French Railways) wants to 
develop solutions increasing the productivity. One of these improvements focuses on the current 
methodology used by systems engineers to verify and validate PLC programs of electrical installations. This 
task remains one of the most important during an automation project because it is supposed to ensure 
installations safety, but it must be optimized. Through an industrial thesis financed by SNCF, the aim of this 
research project is to improve this method and reduce time validation of programs by providing a tool which 
will help systems engineers to verify and validate quickly and automatically PLC programs during any 
automation project, not necessarily during factory tests but directly from their office. 

1 INTRODUCTION In automated systems, most of accidents that occur 
in industry have been discovered to be the result of 

Programming errors (Mokadem et al., 2010). 
Therefore, verification of PLC program before its 
implementation remains a very important task 
during an automation project. This verification must 
concern both functional and safety parts. The first 
one ensures that the PLC programs meet the 
functional specifications, and the second one 
consists in verifying if the controlled system can be 
or not exposed to dangerous states leading to human 
and equipment damage. Nowadays, some 
verification and validation techniques like tests and 
simulation are available. 

At SNCF, the system engineers apply currently 
these methods to validate the control command 
(programs and electrical cabinets’ wiring) of PSEEL 
(Power Supply Equipment of the Electric Lines) by 
using a recipe book which contains a set of scenarios 
or sequential instructions. According to their know-
how and experience during these last decades about 
their systems, they consider that a PSEEL’s control 
command is valid once it satisfies the whole test. 
The verification consists in executing manually each 
instruction contained in the recipe book during 

factory tests, and then comparing the obtained 
results with the expected ones. This verification is 
therefore not automatic, and requires too much time 
because of the length of tests (almost 100 pages of 
instructions). Moreover, although it was used to 
validate PLC programs for several decades, this 
method is not efficient to check formally safety part 
of PLC programs insofar as it verifies only if PLC 
programs meet the requirements specifications. 

Our first task in this work is to optimize this 
current methodology of verification by making it 
faster and automatic with the use of a model-
checker. Then we propose an exhaustive method 
which will be used to verify the safety part of PLC 
programs.  

After a presentation of general context in section 
2, we detail the principle of our methodology and 
illustrate it through an application in section 3. 
Exhaustiveness of recipe book is studied in section 
4, and section 5 introduces a solution for automatic 
generation of models used for programs verification. 
We conclude finally this paper and propose some 
work prospects in section 6. 
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2 GENERAL CONTEXT 

The PSEEL are the electrical supply points of the 
electrified lines, called catenaries. Their role is to 
transform, to supply, and to rectifier in the case of 
DC supply, the tension of the High-Voltage (HV) 
network into compatible tension with traction units 
(1500 V DC or 25kV AC). They are composed of 
sub-systems (sSys) like Transformer Group, Track 
feeder, and common, and each of these sub-systems 
is composed of elements of sub-Systems (ElSys) like 
switch, circuit breaker, and so on (Figure 1). These 
electrical systems are subject to strict standards of 
railway safety (EN 50126, 2012) (IEC 60870-4, 
2013).  

 

Figure 1: Decomposition of PSEEL. 

The PSEEL are distributed automated systems 
whose control command can be done either locally 
or remotely in a centralized control station named 
Central Sub-Stations (CSS). 

The recipe book represents for SNCF the main 
reference for validation of PSEEL’s control 
command systems since many years. It contains 
several scenarios that systems engineers execute on 
PSEEL and analyze its behavior in order to validate 
or not its control command. An example of a test 
scenario is presented in Table 1. 

Table 1: Example of one test scenario in recipe book. 

 
 

During an automation project, the recipe book 
and the PLC programs are automatically generated 
with software named Odil (Coupat, 2014). For this, 
the systems engineers enter all inputs data of the 
system (like single line diagram of PSEEL, 

equipment configuration, inputs/outputs ...) and 
then, Odil generates automatically programs and 
recipe book. After a proofreading of these latter, 
they verify online the correctness of whole control 
command (PLC program and electrical cabinets) 
during factory tests, by executing all the scenarios of 
the recipe book on system. Moreover during factory 
tests, they need to connect devices simulators to 
cabinets (like switches and circuit breakers) in order 
to make tests possible. One major difficulty they can 
encounter during tests is that in case of an 
unsatisfied instruction in factory, they must analyze 
the problem and determine its cause (programming 
error or wiring error of electrical cabinets). For 
example in the test scenario described in Table 1, 
when the circuit breaker does not open after 
overcurrent (instruction N°1), there are two possible 
explanations:  
o The information “Imax” is not received by the 

PLC (because the input is not wired for 
example); 

o The information is received but the SFC program 
of the circuit breaker does not evolve (bad 
program). 

Despite their experience, this diagnosis may remain 
long and complex in some cases. The main approach 
of our methodology consists in dividing the 
validation step into two parts: offline validation of 
PLC programs with model-checker Uppaal 
(Behrmann et al., 2002), and then online validation 
of electrical cabinets during factory tests with virtual 
commissioning. Thus, PLC programs can be 
validated earlier with Uppaal and before factory 
tests. Moreover, this validation step does not require 
physical devices simulators because they are now 
included in Uppaal models. From a model of 
PSEEL, PLC programs, and recipe book, Uppaal is 
able to check automatically during the simulation if 
the PLC programs satisfy the recipe book. For this, 
the model-checker executes all scenarios of recipe 
book on the system, and verifies if there exists at 
least one instruction in the recipe book whose effect 
on the PSEEL does not correspond to the expected 
one. Then, simulation results will help to diagnose 
easily the problem if it exists, or otherwise to 
validate the PLC programs. The validation of 
electrical cabinets will be done online and also 
automatically, with the use of virtual commissioning 
connected to electrical cabinets (not presented in this 
paper). The advantage of this methodology is as 
follows: not only the validation of programs will be 
faster and automatic, but it will also facilitate the 
validation of electrical cabinets. In fact, once we 
implement valid PLC programs in the system, any 
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encountered problem during factory tests would 
necessarily result from wiring errors of electrical 
cabinets. Another objective in this work is to 
propose with model-checking an exhaustive method 
which verifies the safety part of PLC programs. 
System modeling is the first step of our approach. 

3 SYSTEM MODELING 

In this section, we present and illustrate our 
methodology through its application on a 
transformer group (PSEEL’s sub-system). System 
modeling requires careful structural analysis of 
PSEEL and PLC programs because the models must 
have the same behavior as real system. The 
transformer group is controlled by one PLC, and is 
basically composed of circuit breakers, switches, 
and transformer. Its program’s outputs correspond to 
the orders sent to devices, and inputs are the 
observed faults on operative part and the devices’ 
states (opened or closed). The programs are 
designed in STRATON (www.copalp.com) using 
some of the standardized languages (IEC 61131-3, 
2003) such as Ladder Diagram (LD), Sequential 
Function Chart (SFC) and Structured Text (ST). But 
in our Uppaal models, the whole program needs to 
be translated into ST because the model-checker 
cannot interpret the other languages. Whatever the 
programming language would be, each scan cycle 
includes three main phases: input reading, program 
execution and output updating. 

3.1 Transformer Group Modeling 

 

Figure 2: UPPAAL model of switch. 

The variables “so” and “sf” (Figure 2) represent 
respectively the information “switch opened” and 
“switch closed”, and “close” (respectively “open”) 
represents closing order (respectively opening order) 
sent by the programs. The switch can reach three 
possible states: opened (so=true and sf=false), 
moving (so=false and sf=false), and closed 
(so=false and sf=true). Initially opened, it starts 

moving once it receives closing order from the 
program. Then, after a certain duration (x==time) it 
becomes fully closed if the order was still 
maintained, or otherwise returns to the initial state if 
closing order was released or if opening order was 
activated. The switch’s behaviour is practically the 
same when it receives opening order from closed 
state. We recall here that the order sent by operator 
is not directly received by the device, but rather by 
its SFC program which will apply it or not, if the 
program allows this action. 
 

 

Figure 3: UPPAAL model of circuit breaker. 

The model of a circuit breaker presented in 
Figure 3 has some particularities compared to switch 
model: 
o To close the circuit breaker, the two orders (open 

and close) must be maintained simultaneously 
for a certain duration (x==tmpEnclDJGT);  

o To open it, just release the opening order; 
o Contrary to the switch, opening time (timeOP) is 

different from closing time (timeCL). 
Note that although the transformer has continuous 
behaviour (magnetic, thermal…), we do not take it 
into account in its model. So we represent it as a 
structure of variables (observers, parameters, and 
observed faults) because these are the only 
information we need for this model: 
 

struct {bool defBLQ, blocDef, defTemp, defBLQR, 
blocDefRed, defTempRed, wdMicom, TcMC, 
temp2TR, AMR, fuFuRC, AvDiode, imaxGT, 
OoAbsUHT, OoDjAbsUHT, deblocGT, absUBarre, 
presenceSGT, pres_Hexa; int tmpReencGT;} GT1; 

3.2 Control Program Modeling 

 

Figure 4: UPPAAL model of PLC cycle. 
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The model in Figure 4 synchronizes all the other 
models of the system thanks to broadcast channels. 
PLC cycle structured as a loop includes a clock x 
which measures the cycle time (equal to 20 time 
units here). Initialisation of SFC programs and 
parameters is required during the first PLC cycle. 
Then, the cycle is composed of 6 steps: 
o Input reading (faults and devices’ states) 
o Command reading (sent  by operators) 
o Timers evolution (synchronised with TON! 

channel) 
o Execution of main program (SFC programs 

update) followed by output writing; 
o Evolution of operative part (channel PO!) 
o End of cycle (channel end!) 
To reduce states space, most of states are declared as 
committed so that time can elapse only during 
program execution. Therefore the duration of input 
acquisition and output emission is negligible. 
 

 
Figure 5: UPPAAL model of a TON block. 

The control program contains timing operations, 
described by functional blocks called TON (Timer 
On-delay). Its behaviour is explained in IEC 61131-
3 standard. This TON block has two input variables 
(boolean variable in to start or stop counting time, 
and time parameter PT which indicates the timing 
delay) and two output variables (boolean variable Q 
which equals 1 if the delay has expired, and time 
variable x which gives the time elapsed from the last 
rising edge of in). Initially idle, its location becomes 
running when the timer has been switched on, and 
timeout when the fixed delay (PT) has been 
reached. The model in Figure 5 has been inspired in 
(Mokadem et al., 2010). 

Any SFC program can use more than two TON 
block in its different steps. So instead of using a 
TON block for any step, we declare only one TON 
block per SFC program. In fact, after a structural 
analysis of these SFC programs, we noticed that we 
can never have more than one step simultaneously 
activated. Thus, a single TON block can be used by 
all steps of one SFC program without any conflict. 
However, for two successive steps using the same 

TON, we must make sure that between the two 
steps’ activation, the TON’s output changes from 1 
to 0. For this, we must define correctly the inputs in 
and PT of the TON block used by the SFC program. 
In the example described in Figure 6, both steps x1 
and x2 use the same TON. When x1 is activated, 
time starts elapsing until it reaches 500ms. Then, 
output Q and transition ft1 change from 0 to 1, 
leading to x2’s activation and x1’s deactivation. 
Therefore, the input in (whose expression is shown 
in Figure 6) moves from 1 to 0 and resets the timer 
(thus output Q changes from 1 to 0 and input PT 
changes from 500ms to 1000ms). During the next 
PLC cycle, the value of ft1 will be updated because 
the step x1 is no more activated, so the input in will 
move again from 0 to 1 and time will start again 
elapsing for x2. But with these operations, we 
noticed a delay of one PLC scan time from x2’s 
activation to timer’s restart. To compensate this 
delay, we subtract it to the pre-set time of x2. This 
optimization will reduce the number of TON used, 
and consequently the space of reachable states. 

The whole program is not represented in our 
model because some lines of code are only dedicated 
to send information to other PLC through network 
(Factory Instrumentation Protocol). 

 

 

Figure 6: Example of TON’s use in a SFC program. 

So the control program is basically composed of: 

o SFC block programs: which command the 
equipment like switches and circuits breakers. 
The structure of the SFC program depends on the 
kind of equipment. 

o LD programs: where devices’ states are read and 
all observed faults are collected and used to 
compute observers. 
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The SFC programs will be translated into Structured 
Text language (ST), using the classical algebraic 
representation of SFC (Machado et al., 2006). The 
LD programs will also be translated into ST 
language (Figure 7). 

 

Figure 7: Example of LD programs translation into ST. 

3.3 Recipe Book Modeling 

After a structural analysis of recipe book, we 
realized that it could be translated into SFC 
programs (one per scenario) because it is composed 
of actions and transitions. In Figure 8 we present the 
translation of scenario described in Table 1. The 
variable “start elapsing” is dedicated to trigger a 
timer which counts the elapsed time in one step of 
the scenario (x1, x2, or x3 in this example). So if 
there is a step on which the elapsed time exceeds a 
certain value (which is not supposed to be reached if 
the program is valid), it will mean that program 
presents errors because the transition associated to 
that step cannot be satisfied. 

This translation will be applied for all scenarios 
of transformer group’s recipe book. 

Then, the model described in Figure 9 will call 
and execute sequentially all scenarios. The recipe 

book’s evolution state will be updated during any 
PLC scan time. Each state automaton of this model 
(except the initial and last ones) corresponds to one 
scenario. During simulation, one scenario can be 
executed only if the previous one (if it exists) was 
satisfied. Therefore the program is valid only if the 
final state automaton (named valides in Figure 9) is 
reachable, or if it does not exist a blocking 
instruction in recipe book. 

 

 

Figure 8: Translation of scenario into SFC program. 

 

Figure 9: Uppal model of recipe book. 

 

 

Figure 10: Simulation view. 
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3.4 Simulation Results 

To validate the PLC program, all scenarios must be 
executed and satisfied during simulation. For this, 
we can verify if the final state automaton is 
reachable by using the query:  

E <> recipe_book.valides (1)

However the model checker does not return any 
trace if (1) is not satisfied. Thus (1) is only useful to 
determine if programs are valid or not, but not 
sufficient for diagnosis. So instead of this property, 
we verify if there exists a blocking step of a scenario 
where the corresponding condition is not satisfied by 
using the query: 

E<>time_step.timeout (2)

Time step is a timer which counts the elapsed time 
for any step of the recipe book. If (2) is satisfied, the 
model checker will return directly the scenario and 
blocking step on which simulation stopped. 
Moreover, by analysing the current state of 
programs, it will help for diagnosis. After a first 
simulation (see results in Table 2), we realized that 
(1) is satisfied and (2) is not: this is far from being a 
surprise because the program we used here has 
already been validated during factory tests.  

In the following example, we used a modified 
program to verify if problems can be diagnosed 
during simulation. Table 2 presents simulation 
results, and gives the time and memory used for 
verification (on a windows machine with 4Gb RAM, 
Core i5).  

Table 2: Simulation results. 

 
 

As expected, (1) is not satisfied for the modified 
program, but to diagnose the problem, it is not 
sufficient. So when we verify by using (2), the 
model-checker has shown that the instruction N°1 of 
overcurrent test is blocking (step x1 of Figure 8) 
because the circuit breaker did not open after 
overcurrent. Moreover, when we analyse the current 
state of circuit breaker SFC program in simulation 
results (see in Figure 10), we notice that its 
evolution stopped in that moment on a step where it 
was waiting for opening order (step x5 of SFC 
program grafCtrCmdeDJGT1 in variables column 
of Figure 10). Thus, we conclude that the transition 
following that step is not correct because it did not 

take into account the overcurrent information. This 
result was expected because the expression “or 
Imax” was initially deleted from that transition. 
After correction and second simulation, the 
instruction N°2 of overcurrent test (transition ft2 of 
Figure 8) is not satisfied because the circuit breaker 
started closing when it received that order whereas it 
should not. In fact, the circuit breaker must stay 
opened while overcurrent does not disappear. This 
result was also expected because the expression 
“and not Imax” was also deleted from SFC 
program’s transition. In that way, we can diagnose 
quickly and correct the whole program by referring 
to the expected results of recipe book, and 
simulation does not require too much memory. Its 
efficiency has already been validated with some 
examples of wrong programs. 

4 SAFETY PART VERIFICATION 

Although recipe book has served to validate 
PSEEL’s programs for many decades, it is not 
sufficient to verify formally installations safety. In 
fact, the previous method does not study all the 
reachable states of system (meaning all the 2Ne 
possible states, with Ne = number PSEEL’s sensors 
+ number of received orders). Moreover, it has also 
been proved in (Coupat, 2014) with a specific 
PSEEL, that there exists one scenario (with low 
occurrence) not included in recipe book, but which 
can expose that PSEEL in dangerous state, meaning 
that the method is not exhaustive. So supposing that 
events like sending orders by operator or faults 
apparition can occur whenever on system, the 
principle is to check with Uppaal if each of these 
states is not dangerous (meaning does not violate a 
set of safety properties). Therefore recipe book will 
no more represent a reference of verification. We 
delete its model and we add two others ones that 
generate randomly faults (left side on Figure 11) and 
sending order (right side of Figure 11). With the first 
model, fault can take two possible boolean values 
(true or false), and with the second one a device’s 
SFC program can receive opening order from 
operator (co=true and cf=false), closing order 
(co=false and cf= true), or no order (co=false and 
cf=false). During a PLC cycle, an order sent by an 
operator would not have any effect on system if the 
SFC program of the targeted device was not in a step 
waiting for that order. Thus, to avoid ineffective 
orders and reduce states space, we added some 
guards in these models.  

ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics

572



 
 

This method is more efficient than the first one 
because all the reachable states of system are 
browsed and studied, unlike the first method. And it 
can verify not only the safety part but also the 
functional correctness of PLC programs, according 
to the set of properties we verify. 

 

 

Figure 11: Uppaal models of fault and sending order. 

With a program already validated by recipe 
book, we have to verify with this second method if 
there exists at least a path which leads system to a 
dangerous state. In that case, it would mean that the 
recipe book does not contain all required tests, and is 
therefore insufficient to guarantee safety. Currently, 
the SNCF experts help us to determine all the 
dangerous states of PSEEL in order to define all 
safety properties and complete the verification. We 
can already verify its efficiency by applying it to the 
previous modified program. An example of 
dangerous state is that a blocking fault appears 
during 300ms without the circuit breaker opens: 

E<>cycle.fin and TON_fault.timeout 
and  DG1.sf (3)

TON_fault is a timer which counts the elapsed time 
since fault’s apparition while circuit breaker stays 
closed. After simulation, we noticed that this state is 
reachable only if overcurrent fault appears for 
300ms: that is obvious because the variable “Imax” 
was deleted from that SFC program. 

This simulation requires more memory time 
(20.56s and 140Mb with (3)) because of states space 
increase, but this method is more efficient than the 
first one. All the errors detectable by recipe book are 
also detectable by this second method, meaning that 
the latter is also more exhaustive. 

5 AUTOMATIC GENERATION 
OF UPPAAL MODELS 

The methodology of formal verification must be 
applied for any new automation project. Because of 
heterogeneity of PSEEL and programs, systems 
engineers would be obliged to adapt Uppaal models 
according to installation’s structure, recipe book and 

program’s content.  This additional task goes against 
our principle in this work because it increases time 
project. As for programs and recipe book, we 
propose to generate automatically with Odil the 
Uppaal file (*.xml) which contains all required 
inputs data (PSEEL models, programs, and recipe 
book). The methodology used to generate this xml 
file is not detailed in this paper, but presented in 
(Coupat, 2014). The xml file contains exactly the 
same information as for program and recipe book, 
but in a different language. After automatic 
generation, the systems engineers have just to import 
from Uppaal the generated xml file (for any sub-
system of PSEEL), and execute it in order to analyse 
results and validate automatically programs, directly 
from their office and not necessarily in factory. 
Some examples of xml files has been generated and 
used for simulation. 

6 CONCLUSION 

The main objective of this research work was to 
optimize validation step of PSEEL’s PLC programs. 
The current method used by SNCF’s systems 
engineers consists in testing online some scenarios 
in the program by using a recipe book, and validate 
programs if all tests are satisfied. The simulation is 
necessarily done after electrical cabinets’ design and 
program’s implementation in PLC, and requires too 
much times (one week at least) because tests are 
manual. Moreover, manual tests can imply human 
errors due to mental workload (Coupat et al., 2014).  
The proposed solution in this work aims to solve 
these problems insofar as programs validation is 
faster and automatic (recipe book of transformer 
group is browsed in a few tens of milliseconds, see 
in Table 2), and can be done earlier without any use 
of physical device simulator compared to the 
previous method. Another objective in this work was 
to develop a method which verifies the safety of 
PLC programs. With model-checker Uppaal, we 
verify formally for each reachable state of system, if 
the set of dangerous states (representing the property 
to verify) is not violated. We proposed also in this 
work to generate automatically the Uppaal models of 
verification for any new project, so that systems 
engineers will not lose time in designing it 
themselves. 

The method of automatic verification has been 
presented to SNCF’s systems engineers, and was 
judged interesting insofar as it allows to verify 
quickly and automatically the correctness of any 
PLC programs. Moreover, it has been used to verify 
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a program newly developed by systems engineers 
and not tested yet during factory tests. For this we 
implemented the program in our tool, and we 
corrected all the problems detected in the new 
program. The obtained results was presented to 
systems engineers, then they were approved. 

In addition to reduce time project and human 
error during verification, these results will facilitate 
validation step of electrical cabinets’ wiring. In fact, 
systems engineers use recipe book to validate both 
programs and cabinets. When they encounter an 
instruction not satisfied in recipe book, they must 
analyze it and determine if it is due to programming 
error, or wiring error. With our method, they can 
now exclude the first hypothesis during factory tests 
because programs are validated earlier. 

Our future work will focus on the improvement 
of validation step of electrical cabinets’ wiring. As 
for program validation, we will try to make it faster 
and automatic in order to reduce at most time 
validation during any automation project.  

REFERENCES 

Behrmann, G., Bengtsson, J., David, A., Larsen, K.-G., 
Pettersson, P., Yi, W., 2002. Uppaal implementation 
secrets. 7th International Symposium on Formal 
Techniques in Real-Time and Fault Tolerant Systems. 
In Springer, Verlag London, UK 2002: 3-22. 

Coupat, R., 2014. Automatic generation of safe PLC 
program for PSEEL, Phd, Reims, University of Reims 
Champagne-Ardenne, december 2014. 

Coupat, R., Meslay, M., Burette, M.-A., Philippot, A., 
Annebicque, D., Riera, B., 2014. Standardization and 
Safety Control Generation for SNCF Systems 
Engineer. 19th IFAC World Congress 2014 (IFAC WC 
2014), Cape Town, South Africa, 2014. 

EN 50126, 2012. Applications ferroviaires - Spécification 
et démonstration de la fiabilité, de la disponibilité, de 
la maintenabilité et de la sécurité (FDMS). 

Mokadem, H.-B., Bérard, B., Gourcuff, V., De Smet, O., 
Roussel, J.-M., 2010, Verification of a timed multitask 
system with UPPAAL. IEEE Transactions on 
Automation Science and Engineering, Institute of 
Electrical and Electronics Engineers, 7 (4), pp.921 - 
932.<10.1109/TASE.2010.2050199>.<hal- 0527736>. 

IEC 60870-4, 2013. Telecontrol equipment and systems. 
Part 4: Performance requirements Ed. 1. 

IEC (International Electrotechnical Commission). IEC 
Standard 61131: Programmable controllers - Part 3, 
1993. 

Machado, J., Denis, B., Lesage, J.-J., Faure, J.-M., Ferreira 
Da Silva, J., 2006. Logic controllers dependability 
verification using a plant model In Proc. 3rd IFAC 
Workshop on Discrete-Event System Design, 

(DESDes’06), Rydzyna (Poland), Sept. 2006, pages 
37-42. 

ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics

574


