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Abstract: The deep learning approach has been applied to many domains with success. We use deep learning to construct
the surrogate function to speed up simulation based optimization in epidemiology. The simulator is an agent-
based stochastic model for influenza and the optimization problem is to find vaccination strategy to minimize
the number of infected cases. The optimizer is a genetic algorithm and the fitness function is the simulation
program. The simulation is the bottleneck of the optimization process. An attempt to use the surrogate function
with table lookup and interpolation was reported before. The preliminary results show that the surrogate
constructed by deep learning approach outperforms the interpolation based one, asionligiesases of the
testing set have been available in the training set. The average of the absolute value of relative error is less
than 0.7 percent, which is quite close to the intrinsic limitation of the stochastic variation of the simulation
software 0.2 percent, and the rank coefficients are all above 0.99 for cases we studied. The vaccination strategy
recommended is still to vaccine the school age children first which is consistent with the previous studies. The
preliminary results are encouraging and it should be a worthy effort to use machine learning approach to
explore the vast parameter space of simulation models in epidemiology.

1 INTRODUCTION might depend on an amount of available vaccines. In-
stead of comparing a few strategies selected by do-
Simulation models are built so that we can experiment main experts, we formulate it as an optimization prob-
with them to gain insight about subjects investigated. lem and employ genetic algorithms to search for the
With the current success of machine learning, espe-best vaccination priority. The search space can po-
cially deep learning, it is worth exploring about using tentially contain many dimensions, for example, the
machine learning technique to learn from the simula- house-hold structure is one of the important dimen-
tion models. We explore the possibility by using the sions (Chang et al., 2015). In this paper, we focus on
deep neural network to construct a surrogate function the dimension of vaccination allocation.
as the cost function instead of running real simulation The supply of the vaccine is usually limited, the
when applying the genetic algorithm to search for ef- disease control agency has to decide the amount of
fective vaccination strategy in the domain of public vaccine allocated to various groups. Without a doubt,
health. the health care professionals should get the highest
Agent-based stochastic simulations have been ap-priority. Then the agency determined how much to
plied widely for the study of infectious diseases (Ger- distribute to different age groups. How to determine
mann et al., 2006)(Chao et al., 2010). Comparing to the number of doses to each age group is an impor-
the mathematical models, the flexibility to easily in- tantissue. The objective can also be complicated, for
corporate detailed disease control strategies into sim-example, one can search for a strategy to minimize
ulation model is one of its strength. However, it still economic impact, or to minimize the total number of
needs a significant amount of computing resources.infected cases. In this paper, the goal is to minimize
Epidemiologists usually have to carefully craft the the total number of infected cases.
scenarios to demonstrate their points. Vaccination  For a given scenario, that is the setting of our sim-
can effectively mitigate the impact of the pandemic ulation module, the gene encodes the vaccine distribu-
flu with an appropriate vaccinating strategy which tion among age groups and the fitness function is the
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total number of infected cases. The fitness evaluationvidual in the state S and an individual in the state I,
is done by running the simulation module. the susceptible individual will become exposed with
Each simulation run takes about 3 minutes, thus probability pirans. According to the disease natural
the fitness evaluation becomes the bottleneck of thehistory, an exposed individual becomes infectious and
optimization process. Using a faster approximation an infectious individual becomes recovered, in our
in place of the true fitness function, in our case the setting the average incubation period is 1.9 days and
simulation program, is called surrogated-assisted evo-the average infectious period is 4.1 days (Germann
lutionary computation (Jin, 2011). The idea was first et al., 2006). A contact group is a daily close associ-
suggested in the mid-1980s (J.J. Grefenstette, 1985)ation of individuals, where every member has a con-
A surrogate function combines table lookups and lin- tact probability to have effective contact with all other
ear interpolation was suggested in (Jian et al., 2016). members in the same group. There are eleven such
In this study, we use the deep neural network to con- contact groups in the model, they are communities,
struct the surrogate function and compare it with the neighborhood, household cluster, household, work-
previous interpolation based one. group, high school, middle school, elementary school,
The accuracy is measured by the relative error, daycare center, kindergarten, and playgroup (Chang
that is the difference between the output of surrogate et al., 2015). The population size of Taiwan is about
function and the simulation divided by the output of 22.12 million. There are about 1.72 milligmeschool
the simulation. The average of the absolute value children(0-5 years old), about 2.36 millioalemen-
of the relative errors of the surrogate functions con- tary school childrer{6-12 years old), about 0.99 mil-
structed by the deep neural network approach rangelion middle school childrer{13-15 years old), about
from 0.18 percent to 0.68 percent for different train- 0.97 million high school childrer{16-18 years old),
ing sets and testing sets. When the training sets haveabout 3.86 millionyoung adults(19-29 years old),
cases similar to the testing sets, the surrogate con-about 10.28 millionadults (30-64 years old), and
structed by deep neural network usually performs bet- about 1.94 millionelders(65+ years old).
ter than the interpolation based one. The search re-  Each individual can belong to several contact

sults with the surrogate in place of the simulation Sys- groups simu|tane0us|y at any time. The duration of
tem have error margin less than one percent. Thega simulation run is set at 365 days. Each day has
rank correlation coefficients of the surrogates are bet- two 12-hour periods, daytime and nighttime respec-
ter than 99 percent. tively. Behaviors of individuals are depicted in Fig-

ure 1. During daytime, contact occurs in all contact

group. School aged children go to schools. There
2 MATERIAL AND METHOD are around 7.8% school aged children do not go to
school in Taiwan. They stay home in our simulation.
Preschool children go to a daycare center, kinder-
garten or playgroup. Young adults and adults go to
workgroup. In the nighttime, contact occurs only in
communities, neighborhoods, household clusters, and
household.

Our approach to search for the optimal vaccina-
tion strategy belongs to the general category of
simulation-based optimization (Gosavi, 2015). We
first introduce our simulation software, followed by
a description of our optimization procedure. o )
We use the simulation software developed in our ~ 1he model parameters are similar to ones in a
laboratory (Tsai et al., 2010). Below is a brief de- Study by (Germannetal., 2006), with modifications to
scription of how the simulation works. It is a stochas- fit Taiwan situation better with the help of study out-
tic discrete time agent-based model. The mock pop- €OMe in contact diary study (Fu et al., 2012). We re-
ulation of the model is constructed according to na- call t_hat the stochastic variation of the S|mulat|0.n sys-
tional demographics from Taiwan Census 2000 data tem is reported to be around 0.2 percent (Tsai et al.,
(http://eng.stat.gov.tw/). The connection between any 2010
two individuals indicates the possibility of daily and In this paper, our setting is similar to our previous
relatively close contact which could result in a suc- study about surrogates functions (Jian et al., 2016):the
cessful transmission of the flu virus. An important piransis set at 01, the vaccine is available 30 days af-
virus-dependent parameter is the transmission proba-ter the index case occurred, totabnillion of doses
bility, denoted bypians. It is the probability that an  are applied to different age groups according to the
effective contact results in an infection. An individ- priority.. However, we only focus on the case that the
ual can be in one of the following four states, suscep- vaccine efficacyy Ei andV Es are fixed at 0.9 (Basta
tible(S), exposed(E), infectious(l), and recovered(R). et al., 2008). The vaccine is available 30 days after
when an effective contact happens between an indi-the index case occurred, total available vaccine are all
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Figure 1: Contact behavior.
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Figure 2: Process of HSAGA.

administered to individuals.

A vaccination priority is denoted byp =
(X1,%2,...,X7), wherex; is the amount of vaccine for
the age groupand it is less than the population of age
groupi. We usepq to denote vectors with only those
value ofxq are nonzero and is a set with numberings
of each age group. For exampbez denote the set
of vaccination priority with non-zero entries for age
group 2 and age group 3 am;  to denote the set of

vectors with 3 non-zero entries. Lpt= 0 denote the
baseline case with no vaccination. We &ie(p) to

P4 =(30,70,91, 103, 205, 240, 250)
P8 =(10,20, ,210,250)
Random select two numbers: [ 35,150] @

4 = (30, , 205,240,250 )
P8’ = (10,20,70,91, 103,210,250 )

Figure 3: Crossover of HSAGA.

p = (3,25,70,90, 150, 200, 250 )

Random select a index, change a random number [83],
and re-sort the chromosome.

P = (3,25,70, 83,90, 200, 250 )
Figure 4: Mutation of HSAGA.

We use the genetic algorithm to search for the
optimal vaccine strategy. A simulated annealing
step is introduced to speedup the process. In
the hybrid simulated annealing genetic algorithm
(HSAGA), the population is consists of vaccine al-
locations represented in prefix sum format. That
is p=(20,50,50,70,20,30,10) can be rewritten as
p = (20,70,120,190,210 240 250), since the total
amount of vaccine is always 2.5 millions the last co-
ordinate can be dropped. The population size is ten,
and each iteration begins with simulated annealing
step to perturb each candidate, followed by the se-
lection, crossover, and mutation steps. Figure 2 is the
flow-chart of the process. For a given allocation, we
carried out 5 simulation runs, and the fitness score is
the average of the values of the objective function of
each run. The best solution of the previous generation
and the first nine solutions for this generation become
the candidates of next generation. At the beginning
of each iteration, we carry out a simulated annealing
step for each candidate. It is a temperature controlled
mutation, i.e., we mutate each candidate according to
the temperature (that is the number of iterations up to
the point in our case). The process stops at 200 itera-
tions and the early stop condition is that five consec-
utive iterations consist of the same candidates. Given
two genes (vaccine priorities), the crossover operation
is the following: Randomly generate a pair of num-
bersgi, g2 where 0< g1 < g < 250, if the interval
[01,02] covers the same number of chromosomes in
both genes, then we exchange the covered part. The
segment of chromosomesx; is covered by interval
(01,00 if and only if xi—1 < g2 < x andxj < g» <
Xj+1. Figure 3 is an example of the crossover oper-
ation. We randomly increasg or decrease) if a
direct exchange is invalid, that is the length of cov-
ered segments differ. A more detailed description can
be found in (Jian et al., 2016).

The mutation operation is defined as following:
Randomly pick index and randomly generate a num-

denote the number of infected cases reported by thePer, replaces with xand sort the resultant sequence.

simulation program with vaccination priority.

Figure 4 is an illustration of the mutation operation.
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Figure 5: The model oBur? (p). Figure 6:Sim(p3) with ps € P.

2.1 Surrogateswith Deep Learning

Deep learning gained a lot of attention with a few
highly publicized success. It is a branch of machine
learning, and one of its basic ingredients is the ar-
tificial neural network. The word deep referring to
the fact that the model is built with multilayer per- ,
ceptrons(MLP). Each perceptron has a transformation
function to produce output to next perceptrons with ) \3. \.,
the inputs from connected perceptrons at the previous ‘ @ )
stage. During the training phase, the prediction er-  inputlayer Hidden layers Output layer
ror is determined by the loss function, and the error Figure 7: The model aSui (p).
triggering a weight adjustment procedure, backprop-

agation is the most commonly applied method. network is denoted bu? (p). Itis a fully connected

In our research, we use deep neuron networks o chitecture, that is the outputs of every neuron in this
(DNN) as the model of the surrogate function. In |ayer are inputs for every neuron in next layer. We add
this study, we use Keras on Theano running on Nvidia {0 hidden layers, and each layer lyds, C7 = 127
GeForce GTX 1080 Graphics Card (Keras, 2015).  perceptrons, which corresponding to the number of
~ The surrogate function takes the vaccine alloca- 5| the combinations of the seven age groups. The ac-
tion of seven age groupp, as the inputand the output 4 ation function is exponential linear units (ELUS),

is the total number of infected cases. _ it can handle non-linear relations and outperform the
_ We first applied single perceptron model with the 5itional rectified linear unit(ReLU)(Clevert et al.,
linear function to check if there exist good linear sur- 2015).

rogates. The single perceptron model is shown in Fig-
ure 5, in whichw; denotes the weight, analis the
bias. We let the activation function to be a linear func-
tion, i.e., f(z) = zand the output of the single percep-
tron model is denoted bSur?

(D—swt)

2.2 Surrogateswith Interpolation

We compare the surrogates learnt by neural networks
with the interpolation based ones we constructed be-

7 fore. We first give a brief description of the previ-
Sul(p)=f(z) =z= Zl(vvixa) +b Q) ous work, and the details can be found in (Jian et al.,
i= 2016).

As shown in Figure 6, the slope approaching zero  To apply interpolation, we need a set of reference
when the vaccine allocation is approaching the size points, denoted by, the values of these points are
of the population of that age group. As expected, we the simulation results. In other words, pointgirare
can see that the number of infected cases of other ageentries of the lookup table. j € Rthe resultSim(p),
groups is also affected by the amount allocated to oneis the total number of infected cases by simulation. If
specific age group. p ¢ R, thenSim(p) denote the estimated total number

We next move on to the deep neural network of infected cases by interpolation. We first sampled
with nonlinear activation function. The architecture 26 points for each age group, there are 182 points in
is shown in Figure 7. The output of the deep neural total. The 26 points are evenly spaced up to 2.5 mil-
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1,500,000
Ses

lion doses of vaccine. Figure 8 shows the value of
each point. We then define the effect of introducing
strategyp;, denoted by\(p;) as following:

A(pi) = Sim(pi) — Sim(0) 2

To approximate the effect of a poipf we add the
effect of each component and denote it (p):

7
> Api) ©)

Suty(p) = Sin(0) +
i=1

If the value ofp; is not sampled, the linear interpo-
lation is applied to estimat&(p;). As expected, this
simple surrogate does not capture the interaction be-
tween age groups well. We build a lookup table with
entries in the form ofy;  to capture the interactions
between age groups. For each age grofipe evenly
spaced values are determined. Given two age groups
we take one value from each group to form a vacci-
nation strategy and carry out the simulation. There
are total 21x 5 x 5 = 525 such points. For a point
p = (X1,X2,...,X7), we slightly abuse the notation and
use pjk denote the point with the same value @s
in j'" andk" dimensions and all other dimensions are
zero. The adjustment term for the interaction between
dimensionj andk, denoted byd(pj k), is defined as
following:

8(pj k) = Sim(pj k) — Sur(p; k) 4)
Whenpj x is not sampled, a bilinear interpolation
is applied. The surrogate with the two age group in-
teraction adjustment, denoted By, (p), is defined
as following:

7

;A(Pi)Jr

6

7
> 8(pix) (5)

Sub(p) = Sim) +
i =1k=]+1

I J

3 RESULTS

We collected two sets of points in our previous study.
First, the set of base pointg;, which are the points
serve as the sampled points while developing interpo-
lation based surrogate. Second, the set of points eval-
uated during the execution of HSAGA and we denote
the set byP,. For this study, we further evaluate a
set of points, denoted bly;, which are points have

3 age groups assigned none zero entries. There are
C] = 36 combinations and for each dimension, we
evenly sampled 4 points up to the population size of
that age group. In other words, the incrementid 1

of the size of the age group. We also limit the total
amount is no more than 4 million doses and each age
group gets at most 2.5 million. We note that because
of the choice of incremer® Py = 0. There size of

R is 707,P, is 988, andPy is 1557. Our training and
testing data are drawn from these three sets. We set
epoch to be 10 thousand, mini-batch to be 10 and we
use mean absolute error (MAE) as our loss function
and Nadam as optimizer (Dozat, 2015).

We compare surrogates learnt by DNN with inter-
polation based surrogates. There are several settings.
We always usd, to denote the training set aria},
to denote the testing set. The interpolation based sur-
rogate does not have the training phase, only testing
set matters for their evaluation. We use the relative er-
ror between the output of surrogate and the simulation
result and use box plot to visualize the results.

In Figure 9(a), there is no error f@ur,(p) be-
cause the testing data B which are the reference
base for interpolation. Similarly, the error f8ur, (p)

is from points with pattermp; . From the fact that
Suf(p) is the result of a thorough training phase and
that it has much larger error comparing w8k (p),

it is safe to say that the relation between vaccine allo-
cation and the total number of infected case reduced
is not a simple linear one.

In Figure 9(b), we note tha®, contains points
with many non-zero dimensions because the ge-
netic algorithm starts with random points and grad-
ually converge to points concentrating on vaccinat-
ing school children. We can see thau?(p) and
Sur(p) obviously over-estimate the value, although
the spreading patterns are more or less similar in all
four cases.

In Figure 9(c), the testing daf, contains points
with 3 non-zero entries. Compared with Figure 9(a)
the over-estimating phenomenon is even more obvi-
ous, evenSur(p) can not remedy the fact that the
interaction among three age groups is not captured.

We can see thaBuk(p) is outperformed by
Sur‘23(P) in Figure 9(a) and 9(c) . The reason is that
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Figure 9: Box plot with different surrogates.

Table 1: Detail data of Figure 9.
| || surrogate|| avg of abs| maxofabs|| avg [ SD || Q1 | @ | Q3 [ IQR]

Sur’(p) 0.80 8.00 0.11 [ 1.25] -0.38 ] 0.09 | 0.57 |[ 0.95
Figure 9(a) Sui; (p) 0.23 1.71 0.05 | 0.31] -0.14 | 0.08 | 0.21 || 0.34
Sur;(p) 0.77 11.32 0.48 | 1.43] 0.00 | 0.08 | 0.70 || 0.70
Sur(p) 0.00 0.04 0.00 [ 0.00] 0.00 | 0.00 | 0.00 || 0.00
Sur’(p) 2.65 4.69 2.61]1.06] 2.04[ 2.82 ] 3.35[[ 1.30
Figure 9(b) Sui; (p) 0.68 2.79 0.01 [ 0.88] -0.52| -0.01| 0.60 || 1.11
Suf;(p) 416 5.87 416 | 0.84| 362 | 423 | 475 || 1.13
Sun(p) 0.86 3.28 0.80 | 0.83] 0.20 | 0.58 | 1.29 || 1.09
SuP(p) 1.76 22.77 143228 015 096 [ 2.11 || 1.96
Figure 9(c) Sur (p) 0.66 13.30 0.56 | 1.00|] 0.09 | 0.36 | 0.73 || 0.64
Suf;(p) 2.42 25.77 223|284 054 | 1.52 | 3.04 || 250
Sui(p) 0.22 6.48 0.15 | 0.44 ([ -0.01| 0.08 | 0.19 || 0.20
SuP(p) 1.00 5.81 0.02[1.30] -0.66] 0.17 | 0.97 || 1.63
Figure 9(d) Sur (p) 0.19 0.73 -0.14] 019 -0.27| -0.14| -0.02 || 0.25
Suf,(p) 416 5.87 416 | 0.84| 362 | 423 | 475 || 1.13
Sui(p) 0.86 3.28 0.80 | 0.83]] 0.20 | 0.58 | 1.29 || 1.09
Suf(p) 1.20 17.81 0.21[1.85] -0.62] 0.13 | 0.88 [ 1.50
Figure 9(e) Sur(p) 0.29 3.56 -0.24] 030 -0.37| -0.24| -0.11 [ 0.26
Sur(p) 2.42 25.77 223 284 054 1.52 | 3.04 || 2.50
Sui(p) 0.22 6.48 0.15 | 0.44 ] -0.01| 0.08 | 0.19 || 0.20
Su(p) 1.30 16.21 -0.85| 1.60 || -1.58 | -0.77 | -0.04 || 1.54
Figure 9(f) Sur; (p) 0.18 3.88 -0.10] 0.25| -0.21] -0.08 | 0.04 || 0.24
Sur(p) 2.59 25.77 244 [ 250 0.44 | 2.09 | 415 ([ 3.72
Sui,(p) 0.37 6.48 0.31 ] 0.64] 0.00 | 0.07 | 0.38 ([ 0.38

the training data and testing data are in a different cat- cial categories well. In Figure 9(b) the testing set con-
egory andSuf,(P) is designed to work with those spe-  tains more randomly sampled data, we See5(p)
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Table 2: Detail data of Figure 10.

surrogate|| avg of abs| max of abs

[avg [ SO Qi [ & [ O [T1OR

Sul(p) 1.14 18.00 | 030 | 1.64] 0.46] 0.30 | 1.10 || 1.57

. Sub(p) 0.30 829 | 0.00 | 049 -0.18| 0.04 | 0.82 || 0.46

Figure 10(@)—5 3t 1) 2.60 2577 || 2.45 | 2.55| 0.43 | 2.05 | 4.15 || 3.72
Su(p) 0.38 6.48 | 0.32 | 0.65] 0.00 | 0.07 | 0.39 || 0.39

Sul(p) 1.06 1248 | 021 157 0.92] 0.15] 059 || 1.51

. Sub(p) 0.26 520 || 0.12 | 0.39 | -0.02| 0.14 | 0.30 || 0.32

Figure 10(b) |l —s ) 254 2422 || 2.39 | 249 0.39 | 1.99 | 4.11 || 3.72
Sub(p) 0.38 507 | 0.32 ] 0.65] 0.00 | 0.06 | 0.38 [ 0.38

Sul(p) 1.08 12.44 | 0.22] 1.60[ 0.93] 0.18] 057 || 1.50

. Sub(p) 0.44 240 || 0.43] 0.27 || -0.57| -0.42| -0.27 | 0.30

Figure 1000) | —5 ) 2.62 2422 || 247 | 258 0.46 | 2.01 | 4.18 || 3.72
Sub(p) 0.39 507 || 0.33 ] 0.66] 0.00 | 0.07 | 0.40 || 0.40

Sur(p) 1.13 851 | 024 | 155] -050] 0.30 | 1.07 || 1.57

. Sub(p) 0.59 173 | -057] 033 -0.81| -0.58| -0.35 | 0.46

Figure 10(e)| 5 p) 2.70 1624 || 255 | 2.53 || 0.47 | 2.14 | 431 | 3.84
Sub(p) 0.38 3.00 | 0.33]0.61] 0.00 | 0.08 | 0.44 || 0.44

performs better. In the next few experiments, we al- Table 3: The best allocation ¢ SAGAwith each fitness

low training set to contain the testing set. We are fully
aware that training set and testing set should be dis-
joint in general. But here we want to demonstrate

function.

the advantage of the machine learning approach, that

is by providing proper training set the performance
can be enhanced greatly. As expected, in Figure 9(d)
and Figure 9(f) we can se8ui®(p) learned a better
approximation function and outperforrssi,(p). In
Figure 9(e),Sur‘2(p) performs better and we suspect
that the testing set, points with three non-zero ele-
ments, is very close to the table lookup entries, points
with two non-zero elements. And this particular phe-
nomenon deserve further investigation.

A proper evaluation should have the disjoint train-
ing set and testing set. We take the unio®e#}, and
Py as the sample set. And then partition the whole
set into training and testing set. The result is shown
in Figure 10, the percentage on the left is the portion
of the training set and left is the testing set. Observ-
ing the quartileQ; andls, of Su(p) and Sui,(p),

p (x10* doses)

F €11 N EsTmMsHs
Sim(p) | 4.00] 72| 988 | 97 | 79 | 74
SuP(p) | 4.98| 75 | 1020 100 | 81 | 69
Sub(p) | 4.99] 87 | 1135] 96 | 78 | 76

" F " fitness function

' C: total cases ¢ 10°)

" | ’: total iterations

" N ": total allocations

"ES’: elementary school children
" MS’: middle school children
"HS’: high school children

we can see the effect of learning. Also, the width of
the spreading pattern decreases as the training data in-
creases. We include all the numerical data for the plot
in Table 2. There are two columns "avg” and "avg
of abs”, the former is the average of the relative error
and the latter is the average of the absolute value of

89



SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

relative error. 05 612 1315 1618 19-29 30-64 65+
We then pUBUl?(p) to the application teSt, and allocation p = (200000, 500000, 600000, 700000, 100000, 200000, 200000 )

use it as the fitness function in HSAGA to search for J—

the appropriate vaccine strategy. The training set for

2.5 million doses

the functlon ISPIUH"IUPq The result |S ShOWﬂ II’] volume schemeof p : 235 204 194 184 245 235 235
Table 3. Three methods produce similar results and
the conclusion confirms to previously reported stud- g = 255 1—&]
ies: that the best strategy is to vaccinate school chil-
dren ratio scheme ofp: 225 201 100_71 248 250 229 <
To visualize the vaccine allocations and to facil- :
itate further exploration, a method to encode the al- ; rotate =90
The gray level (ratio scheme) of allocations : . v

location by gray level was developed in (Jian et al.,

2016). We briefly recap the method. There are two 0-5
encoding schemeglume schemandratio scheme 612

For volume scheme, the color white is to denote zero 13415

doses and black for 2.5 million doses. betbe the .

16-18
number of doses for age grouphe gray level is com-

puted by the following equation: 19-29

groOume— 255 [1——————__] (6) o
! 2.5 million doseé 65+
For the ratio scheme, the color white to denote frger amaler
zero percent of the age groupaccinated and black Sorting by the number of infected cases
hundred percent and we usefi& to denote the pop- Figure 11: The gray level(Jian et al., 2016).
ulation of age group. The gray level is computed by
following equation: Table 4: The gray level of total allocations HSAGAwith
. Xi each fitness function.
g0 = 255x [1— ] ()

#HAG; | function || allocations |
After each age group is assigned a gray level accord— R
ing to the equation above, we use a line segment with Si
that gray level to represent vaccination level of each im(p) WMWW
age group, as shown in the top half of Figure 11. The L il
allocation is then represented by stacking the seven A
line segment vertically (in the middle part of Figure Su(p) -
11, we put the line segment horizontally).

For a set of ordered allocations, the line segment
for each allocation is stitched together according to ‘
the ordering. The sequence of allocations is sorted Suﬂz(p)
from left to right where the better allocations are on
the right hand side. As shown in Table 4, the visual
effect of concentration on school children is obvious.

For genetic algorithms, the rank preserving sur-
rogates are preferred. One metric to measure the fi-4 CONCLUSION AND

R \u‘ i m\nllm}n,lull:wwmrl:ln w“u\m\} T ——

delity of surrogates is rank correlation coefficiers) ( DISCUSSION
(Loshchilov et al., 2010):
o1 8X S 1 (Rali] — Rafi])? (8  We explore the feasibility of using machine leaming
s N(N2—1) approach to constructing surrogates as the cost func-

We compute the rank correlation coefficient for all tion for optimization schemes. The training data is
surrogates with all sampled points in the list. The generated by simulation system. It is natural to sus-
coefficients ofSui?(p) are all above 99 percentage pect that the cost of generating enough training points
and the numbers are shown in Table 5, the left col- would be higher than using simulation as the cost
umn indicate the domain of elements andmdzj(p) function during the optimization process. We thus try
is trained withPy = RUPLWUPy. SuiS(p) has the  to utilize the data points recorded by previous study
best coefficient except the case where all elements areand discover that those data points can be reused to
from B, produce good surrogate by the deep neural network.
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Table 5: Rank correlation coefficient. "MOST105-2221-E-001-034", "MOST104-2221-E-
001-021-MY3”, and "Multidisciplinary Health Cloud
Research Program: Technology Development and
Suf(p) | SuB(p) | Suf(p) | Suk(p) Application of Big Health Data. Academia Sinica,

T- .IT. ”.
R 0.9974 | 0.9999 | 0.9990 | 0.9999 aipei, Taiwan
P || 0.9155 | 0.9972 | 0.9516 | 0.9611
Pq

I's

0.9958 | 0.9999 | 0.9999 | 0.9999
P, || 0.9913 | 0.9998 | 0.9902 | 0.9976 REFERENCES
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