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Abstract: Due to its wide applicability, the problem of semi-supervised classification is attracting increasing attention 
in machine learning. Semi-Supervised Support Vector Machines (SVM) are based on applying the margin 
maximization principle to both labelled and unlabelled examples. A new collective bionic algorithm, 
namely fuzzy controlled cooperation of biology related algorithms (COBRA-f), which solves constrained 
optimization problems, has been developed for semi-supervised SVM design. Firstly, the experimental 
results obtained by the two types of fuzzy controlled COBRA are presented and compared and their 
usefulness is demonstrated. Then the performance and behaviour of proposed semi-supervised SVMs are 
studied under common experimental settings and their workability is established. 

1 INTRODUCTION 

One of the most important machine learning tasks is 
classification that consists in identifying to which of 
a set of categories a new instance belongs. If 
sufficient labelled training data are given, there 
exists a variety of techniques, for example, artificial 
neural networks (Bishop, 1996), fuzzy logic 
classifiers (Kuncheva, 2000) or Support Vector 
Machines (SVM) (Vapnik and Chervonenkis, 1974), 
to address such a task. However, labelled data are 
often rare in real-world applications. Therefore, 
recently semi-supervised learning has attracted 
increasing attention among researchers (Zhu and 
Goldberg, 2009). 

In contrast to supervised methods, the latter class 
of techniques takes both labelled and unlabelled data 
into account to construct appropriate models. A 
well-known concept in this field is semi-supervised 
support vector machines (Bennett and Demiriz, 
1999), which depict the direct extension of support 
vector machines to semi-supervised learning 
scenarios. 

In this study semi-supervised SVMs generated 
by a new collective bionic optimization algorithm, 
namely fuzzy controlled cooperation of biology 
related algorithms or COBRA-f, are described. 

Initially, a meta-heuristic approach called Co-
Operation of Biology Related Algorithms or 
COBRA (Akhmedova and Semenkin, 2013 (1)) was 
developed for solving unconstrained real-parameter 
optimization problems. Its basic idea consists in the 
cooperative work of different nature-inspired 
algorithms, which were chosen due to the similarity 
of their schemes. However, there are still various 
algorithms which can be used as components for 
COBRA as well as previously conducted 
experiments demonstrating that even the bionic 
algorithms already chosen can be combined in 
various ways. 

Thus, to solve the described problem, in this 
work COBRA was modified by implementing 
controllers based on fuzzy logic (Lee, 1990). The 
aim of this was to determine in an automated way 
which bionic algorithm should be included in the co-
operative work. The proposed modification also 
allows resources to be allocated properly while 
solving unconstrained optimization problems. And 
finally the obtained modification COBRA-f was 
adopted for solving constrained optimization 
problems. 

Therefore, in this paper firstly a brief description 
of the semi-supervised SVM is presented. Then the 
COBRA meta-heuristic approach and the fuzzy 
controller are described. In the next section, the 
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experimental results obtained by two types of fuzzy 
controller are discussed. And after that the 
implementation of the best obtained fuzzy controlled 
COBRA was applied for solving constrained 
optimization problems as well as training the semi-
supervised SVM. For experiments several datasets 
have been chosen, among which there are synthetic 
and real datasets. In particular, we have used a 
popular two moons problem, two datasets from the 
UCI repository (namely Breast Cancer Wisconsin 
(BCW) and Pima Indian Diabetes (PID)) with only 
the 10 labels used available, and the gas turbine 
dangerous vibrations detection problem. Finally, 
some conclusions are given in the last section. 

2 SEMI-SUPERVISED SUPPORT 
VECTOR MACHINES 

In Support Vector Machines (SVM), the intuition is 
to try to create a separating hyperplane between the 
instances from different classes (Vapnik and 
Chervonenkis, 1974). SVM is based on the 
maximization of the distance between the 
discriminating hyperplane and the closest examples. 
In other words since many choices could exist for 
the separating hyperplane, in order to generalize 
well on test data, the hyperplane with the largest 
margin has to be found. 

Suppose ( ) ( ){ }ll yxyxL ,,...,, 11= , m
i Rx ∈  is a 

training set with l examples (instances), each 
instance ix  has m attributes and is labelled as iy , 

where li ,1= . Let v be a hyper-plane going through 

the origin, δ  be the margin and
δ
v

w = . The margin 

maximizing hyperplane can be formulated as a 
constrained optimization problem in the following 
manner: 

min
2

1 2 →w  (1)

( ) 1≥⋅ ii xwy  (2)

To solve the given optimization problem, the 
proposed fuzzy controlled cooperation of biology 
related algorithms or COBRA-f was used.  

However, in this study semi-supervised SVMs 
were considered. Thus, given the additional set 

{ }ull xxU ++= ,...,1  of unlabelled training patterns, 

semi-supervised support vector machines aim at 
finding an optimal prediction function for unseen 
data based on both the labelled and the unlabelled 

part of the data (Joachims, 1999). For unlabelled 
data, it is assumed that the true label is the one 
predicted by the model based on what side of the 
hyperplane the unlabelled point ends up being. 

In this study, self-training was used to learn from 
the unlabelled data. Namely, the idea is to design the 
model with labelled data and then use the model’s 
own predictions as labels for the unlabelled data to 
retrain a new model with the original labelled data 
and the newly labelled data and then iteratively 
repeat this process. 

The problem with this method is that considering 
its own predictions as true labels can cause the 
model to drift away from the correct model if the 
predictions were wrong initially. The model would 
then continue to mislabel data and use it again and 
continue to drift away from where it should be. 
Therefore, to prevent this problem the technique 
described in (Ravi, 2014) was used. More 
specifically, the model’s predictions were used to 
label the data only when there is a high confidence 
about the predictions. 

The notion of confidence used for the SVM 
model is the distance from the found hyperplane. 
The larger the distance from the hyperplane, the 
higher the probability that the instance belongs to 
the corresponding side of the separating hyperplane. 

Consequently, the following basic steps were 
performed: 
 Train SVM on the labelled set L by the 

proposed meta-heuristic approach COBRA-f; 
 Use obtained SVM to classify all unlabelled 

instances from U by checking the confidence 
criteria from (Ravi, 2014); 

 Label instances from the set U if this is 
possible; 

 Repeat from the first step. 

Thus, the simplest semi-supervised learning 
method was used for examining the workability of 
COBRA-f. 

3 CO-OPERATION OF BIOLOGY 
RELATED ALGORITHMS 

The meta-heuristic approach called Co-Operation of 
Biology Related Algorithms or COBRA 
(Akhmedova and Semenkin, 2013) was developed 
based on five optimization methods, namely Particle 
Swarm Optimization (PSO) (Kennedy and Eberhart, 
1995), Wolf Pack Search (WPS) (Yang et al., 2007), 
the Firefly Algorithm (FFA) (Yang, 2009), the 
Cuckoo Search Algorithm (CSA) (Yang and Deb, 
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2009) and the Bat Algorithm (BA) (Yang, 2010) 
(hereinafter referred to as “component-algorithms”). 
Also, the Fish School Search (FSS) (Bastos and 
Lima, 2009) was later added as COBRA’s 
component-algorithm. 

The main reason for the development of a 
cooperative meta-heuristic was the inability to say 
which of the above-listed algorithms is the best one 
or which algorithm should be used for solving any 
given optimization problem (Akhmedova and 
Semenkin, 2013). Thus, the idea was to use the 
cooperation of these bionic algorithms instead of any 
attempts to understand which one is the best for the 
problem in hand. 

The originally proposed approach consists in 
generating five populations, one population for each 
bionic algorithm (or generating six populations with 
the FSS algorithm added) which are then executed in 
parallel, cooperating with each other. The COBRA 
algorithm is a self-tuning meta-heuristic, so there is 
no need to choose the population size for each 
component-algorithm. The number of individuals in 
the population of each algorithm can increase or 
decrease depending on the fitness values: if the 
overall fitness value was not improved during a 
given number of iterations, then the size of each 
population increased, and vice versa, if the fitness 
value was constantly improved during a given 
number of iterations, then the size of each 
population decreased. 

There is also one more rule for population size 
adjustment, whereby a population can “grow” by 
accepting individuals removed from other 
populations. The population “grows” only if its 
average fitness value is better than the average 
fitness value of all other populations. Therefore, the 
“winner algorithm” can be determined as an 
algorithm whose population has the best average 
fitness value. This can be done at every step. The 
described competition among component-algorithms 
allows the biggest population size to be allocated to 
the most appropriate bionic algorithm on the current 
generation. 

The main goal of this communication between 
all populations is to bring up-to-date information on 
the best achievements to all component-algorithms 
and prevent their preliminary convergence to their 
own local optimum. “Communication” was deter-
mined in the following way: populations exchange 
individuals in such a way that a part of the worst 
individuals of each population is replaced by the 
best individuals of other populations. Thus, the 
group performance of all algorithms can be 
improved. 

The performance of the COBRA algorithm was 
evaluated on a set of various benchmark problems 
and the experiments showed that COBRA works 
successfully and is reliable on different benchmarks 
(Akhmedova and Semenkin, 2013). Besides, the 
simulations showed that COBRA is superior to its 
component-algorithms when the dimension grows or 
when complicated problems are solved. 

Then COBRA’s modification for solving 
constrained optimization problems COBRA-c was 
developed (Akhmedova and Semenkin, 2013 (2)). 
Three constraint handling methods were used for 
this purpose: dynamic penalties (Eiben and Smith, 
2003), Deb’s rule (Deb, 2000) and the technique 
described in (Liang, Shang and Li, 2010). The 
method proposed in (Liang, Shang and Li, 2010) 
was implemented in the PSO-component of 
COBRA; at the same time other components were 
modified by implementing Deb’s rule followed by 
calculating function values using dynamic penalties. 

The performance of this modification was 
evaluated with a set of various test functions. It was 
established that COBRA-c works successfully and is 
sufficiently reliable. Finally, COBRA’s modification 
outperforms all of its component-algorithms. 

4 FUZZY CONTROLLER 

The size control of the COBRA populations was 
performed by the fuzzy controller, which received 
algorithms’ success rates as inputs, and returned the 
populations’ size modification values. Overall, there 
were 7 input variables, i.e. one variable for each of 
COBRA’s 6 component-algorithms, showing its 
success rate, plus the overall success rate of all 
components. 

The success rate for all input variables except for 
the last one was evaluated as the best fitness value of 
its population. The last input variable was 
determined as the ratio of the number of iterations, 
during which the best-found fitness value was 
improved, to the given number of iterations, which 
was a constant period. 

The number of outputs was equal to the number 
of components. 

The fuzzy rules had the following form: 

Rq: IF x1 is Aq1 and … and xn is Aqn THEN y1 is 
Bq1 and … yk is Bqk 

(3)

where Rq is the q-th fuzzy rule, ( )nxxx ,...,1=  are the 

input values (components’ success rate) in n-
dimensional space ( 7=n in this study), 
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( )kyyy ,...,1=  is the set of outputs ( 6=k ), Aqi is the 

fuzzy set for the i-th input variable, Bqj is the fuzzy 
set for the j-th output variable. The Mamdani-type 
fuzzy inference with a centre of mass calculation 
was used as the defuzzification method. 

For the purposes of this study two variants of the 
fuzzy controller, which differed in the number of 
terms for output variables, have been implemented. 
All inputs were values in the range [ ]1;0 , so that the 
input fuzzy terms were equal for all variables. Also, 
3 basis triangular fuzzy terms were used, and in 
addition the A4 term combining A2 and A3, as well as 
the “Don’t Care” condition (DC) have been included 
to decrease the number of rules. The term shapes are 
shown in Figure 1. 

 

Figure 1: Fuzzy sets for inputs. 

The first fuzzy controller’s 3 fuzzy terms, which 
were used for the output, are demonstrated in Figure 
2. 

 

Figure 2: Fuzzy terms for all 6 outputs, first controller. 

The adjustable parameters of the first fuzzy 
controller are the values encoding positions of 
output fuzzy terms, i.e. the position of central term 
and side terms. For the example shown in Figure 2, 
these values are -20, -10, 10 and 20, i.e. four values 
were encoded, so that the terms may appear to be 
non-symmetric after optimization. 

A part of the rule base for the first controller is 
presented in Table 1. 

Table 1: Part of the first controller’s rule base. 

№ IF THEN 

1 X1 is A3 
X2-X6 is 

A4 
X7 is 
DC 

Y1 is 
B5 

Y2-Y6 is 
B2 

2 X1 is A2 
X2-X6 is 

A4 
X7 is 
DC 

Y2 is 
B5 

Y2-Y6 is 
B2 

3 X1 is A1 
X2-X6 is 

A4 
X7 is 
DC 

Y3 is 
B5 

Y2-Y6 is 
B2 

…  
19 X1-X6 is DC X7 is A1 Y1 is B1 

20 X1-X6 is DC X7 is A2 Y1 is B3 
21 X1-X6 is DC X7 is A3 Y1 is B5 

The second controller had 7 terms for output 
variables instead of 5. Two additional terms were 
used for the last part of the rule base, which defined 
the influence of the overall success rate, i.e. the 7-th 
variable. The fuzzy terms for the second controller 
are shown in Figure 3. 

 

Figure 3: Fuzzy terms for all 6 outputs, second controller. 

Terms 1 and 5 in the second controller have 
different shapes, which allows the size control of 
overall populations to be tuned more accurately. 

The rule base is also different; it uses different 
terms for the output. A part of the rule base is 
presented in Table 2. 

Table 2: Part of the second controller’s rule base. 

№ IF THEN 

1 X1 is A3 
X2-X6 is 

A4 
X7 is 
DC 

Y1 is B6 
Y2-Y6 is 

B3 

2 X1 is A2 
X2-X6 is 

A4 
X7 is 
DC 

Y2 is B6 
Y2-Y6 is 

B3 

3 X1 is A1 
X2-X6 is 

A4 
X7 is 
DC 

Y3 is B6 
Y2-Y6 is 

B3 
…  
19 X1-X6 is DC X7 is A1 Y1 is B1 

20 X1-X6 is DC X7 is A2 Y1 is B4 
21 X1-X6 is DC X7 is A3 Y1 is B7 
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The second controller tends to be more flexible, 
although it requires the tuning of 6 parameters 
instead of 4 for the first one. For the case shown in 
Figure 3 the parameter values are -30, -20, -10, 10, 
20, 30, but terms may end up non-symmetric 
afterwards. 

5 EXPERIMENTAL RESULTS 

In this section, the methodology employed in this 
study to validate the proposed approach is presented. 
The next sections describe the techniques used for 
comparison purposes, the benchmark functions and 
the statistical analysis. 

5.1 Constrained Optimization 
Problems 

In this study 6 benchmark problems taken from 
(Whitley, 1995) were used in experiments for 
comparing the constrained optimization algorithms. 
Optimal solutions for these problems are already 
known, thus the algorithm’s reliability was estimated 
by the achieved error value. 

The given benchmark functions were considered 
to evaluate the robustness of the fuzzy controlled 
COBRA, which was modified for solving 
constrained optimization problems in two ways: 
 By using dynamic penalties (Eiben and Smith, 

2003); 
 By using Deb’s rule (Deb, 2000). 

Consequently, firstly test problems were used to 
determine the best parameters for the four types of 
fuzzy controllers:  
 Controller with 4 parameters, constraint 

handling technique is dynamic penalties; 
 Controller with 4 parameters, constraint 

handling technique is Deb’s rule; 
 Controller with 6 parameters, constraint 

handling technique is dynamic penalties; 
 Controller with 6 parameters, constraint 

handling technique is Deb’s rule. 

The standard Particle Swarm Optimization 
algorithm was used for this purpose. Therefore, the 
individuals were each represented as parameters of 
the fuzzy controlled COBRA, namely the positions 
of the output fuzzy terms. The following objective 
function was optimized by the PSO algorithm: 

( ) ( ) =
= =

6

1 1
,

1

6

1

i

T

t

t
i xf

T
xF  (4)

where 10=T  is the total number of program runs 
for each benchmark problem listed earlier. Thus, on 
each iteration all test problems were solved T times 
by a given fuzzy controlled COBRA and then the 
obtained results were averaged. Calculations were 
stopped on each program run if the number of 
function evaluations exceeded D10000 . The 
population size for the PSO algorithm was equal to 
50 and the number of iterations was equal to 100; 
calculations were stopped on the 100-th iteration for 
the PSO heuristic. 

Accordingly, the following parameters for the 
fuzzy controllers were obtained:  

 [ ]27;5;5;9 −− ; 

 [ ]34;27;10;33 −− ; 

 [ ]29;24;1;0;0;14− ;  

 [ ]21;16;14;3;6;23 −−− ; 

On the following step, the obtained parameters 
were applied to the fuzzy controlled COBRA and it 
was tested on the mentioned benchmark functions. 
There were 51 program runs for each constrained 
optimization problem, and calculations were stopped 
if the number of function evaluations was equal to 

D10000 . Also, for example, a change in population 
sizes was obtained while testing on the benchmark 
problems. This change for the third problem is 
presented in Figure 4. 

 

Figure 4: Change in population sizes. 

Based on the results received for other functions, 
it was concluded that the algorithm with Deb’s rule 
exhibits strange behaviour, i.e. it tends to increase 
the size of all populations, while dynamic penalties 
show more complicated cooperation. More 
specifically, for the second fuzzy controller with 6 
variables, for example, CSA is one of the worst 
algorithms for the first 20000 calculations (it has 
around 3 points available), but after 20000 it rapidly 
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increases its population size to 300 and more, 
because it shows a much better ability to optimize 
the function. At the same time, BA and WPS, who 
were winners at the first phase, gradually decrease 
their resource. 

In Table 3 and Table 4 the results obtained by the 
fuzzy controlled COBRA, the controller of which 
has 4 parameters, are presented with the best 
parameters. The following notations are used: the 
best found function value (Best), the function value 
averaged by the number of program runs (Mean) and 
the standard deviation (STD). 

Table 3: Results obtained by the fuzzy controlled COBRA 
(4 parameters) with dynamic penalties. 

 Best Mean STD 

1 0.000222883 0.000450223 0.000269495 

2 4.44089e-016 1.20453e-006 5.73208e-006 

3 0.0168729 0.0861003 0.106644 

4 0.00246478 0.0270861 0.0240794 

5 0.000349198 0.00205344 0.00184918 

6 4.07214e-005 0.00012163 7.28906e-005 

Table 4: Results obtained by the fuzzy controlled COBRA 
(4 parameters) with Deb’s rule. 

 Best Mean STD 

1 0.000194127 6.48378 12.6967 

2 1.37668e-014  0.0508509 0.153545 

3 0.241445  1.59201 1.35446 

4 0.093186  6.36309 6.95277 

5 0.0646682  5.93762 7.14939 

6 0.00463816  3.50586 19.3554 

Table 5: Results obtained by the fuzzy controlled COBRA 
(6 parameters) with dynamic penalties. 

 Best Mean STD 

1 0.000222799  0.0023863 0.00386538 

2 4.44089e-016  5.45027e-006 1.14566e-005 

3 0.0265527  0.249473 0.645633 

4 0.0114249  0.0379335 0.0643213 

5 0.000159134  0.0380605 0.125444 

6 0.000236098  0.000955171 0.00178648 

Table 6: Results obtained by the fuzzy controlled COBRA 
(6 parameters) with Deb’s rule. 

 Best Mean STD 

1 1.47682e-009  0.00234639 0.0054576 

2 3.10862e-015  0.000577974 0.00155304 

3 0.015536  0.055806 0.0984222 

4 0.00559601  0.038134 0.113326 

5 0.000160994 0.0656134 0.130952 

6 6.15548e-006 0.000296266 0.000680345 

In Table 5 and Table 6 the results obtained by the 
fuzzy controlled COBRA, the controller of which 
has 6 parameters, are presented with the best 
parameters. The same notations as in the previous 
tables are used. 

For comparison, in Table 7 the results obtained 
by COBRA-c with six component-algorithms with 
the standard tuning method are given. 

Table 7: Results obtained by COBRA-c with six 
component algorithms. 

 Best Mean STD 

1 2.54087e-005  0.00710629 0.0177543 

2 2.08722e-014 0.000114461 5.15068e-005 

3 6.39815e-005 0.0477759 0.0422946 

4 0.0267919 0.0324922 0.00119963 

5 0.000341288 0.0678906 0.0331402 

6 1.21516e-005 0.000278707 0.000268217 

Thus, the comparison demonstrates that the 
fuzzy controlled COBRA with dynamic penalties 
outperformed the same algorithms with Deb’s rule. 
Aside from this, there is no significant difference 
between the results obtained by the fuzzy controlled 
COBRA with either 4 or 6 parameters. However, the 
4-parameter fuzzy controlled COBRA with dynamic 
penalties also outperformed the COBRA with six 
components without a controller. Therefore, it can 
be used for solving the optimization problems 
instead of the given algorithm’s versions. 

5.2 Classification Performance 

Several artificial and real-world data sets described 
in Table 8 were considered in this study, namely the 
well-known two-dimensional “Moons” data set and 
data sets for two medical diagnostic problems (Frank 
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and Asuncion, 2010). Each data set instance was 
split into a labelled part and an unlabelled one, and 
the different ratios for the particular settings were 
used. 

Table 8: Data sets considered in the experimental 
evaluation, each consisting of n patterns having d features. 

Data Set n d 

Moons  200 2 
Breast Cancer Wisconsin 699 9 

Pima Indians Diabetes 768 8 

For the sake of exposition, firstly the well-known 
“Moons” data set was considered. This choice is 
conditioned by the fact that the given data set is a 
difficult training instance for semi-supervised 
support vector machines due to its non-linear 
structure. The “Moons” problem is a classical semi-
supervised problem for testing algorithms. It consists 
of two groups of moon-like sets of points, which are 
easily recognized as two classes by a human, but 
represent significant difficulty for modern 
algorithms. In the conducted experiments only 2 
labelled points for every class were known, and the 
rest of the points were classified using the semi-
supervised SVM described above. The results 
obtained on the “Moons” problem are shown in 
Figure 5. 

 

Figure 5: Semi-supervised classification of “Moons”. 

As can be seen, the algorithm does not recognize 
all points correctly, i.e. it builds an almost linear 
classification. However, most of the points are in the 
right class. 

Then two medical diagnostic problems, namely 
Breast Cancer Wisconsin (BCW) and Pima Indian 
Diabetes (PID), were solved. Both problems are 
binary classification tasks. For these data sets, 10 
examples were randomly selected to be used as 
labelled examples, and the remaining instances were 

used as unlabelled data. The experiments are 
repeated 10 times and the average accuracies and 
standard deviations are recorded. The results are 
shown in Table 9. Alternative algorithms (linear 
SVMs) for comparison are taken from (Li and Zhou, 
2011). 

Table 9: Performance comparison of semi-supervised 
methods. 

 BCW PID 

TSVM 89.2±8.6 63.4±7.6 
S3VM-c 94.2±4.9 63.2±6.8 
S3VM-p 93.9±4.9 65.6±4.8 
S3VM-us 93.6±5.4 65.2±5.0 
This study 95.5±1.8 69.3±1.5 

The gas turbine dangerous vibrations problem 
includes 11 input variables, which are process 
parameters, potentially connected to the vibration 
level, and the output is the class number – 
dangerous/stable vibration level. The vibration 
signal is one of the most important diagnostic 
instruments when measuring the turbine wear. 

For the experiments with this dataset, we have 
used 5%, 10% and 15% of the labelled data for 
training, while the rest of the training set was 
unlabelled. The total size of the dataset is 1000 
instances, 900 were used for training, while 100 
instances were left for a test set. In 3 experiments, 
the number of labelled examples was 45, 90 and 135 
instances. The average classification quality on the 
test set obtained after 10 experiments is presented in 
Table 10. 

Table 10: Performance comparison, gas turbine dataset. 

Labelled 
COBRA Semi-

supervised 
SVM 

5% 86.2±1.7 
10% 87.8±0.4 
15% 88.2±0.6 

The classification quality is relatively high even 
with only 5% of labelled examples in the training 
set. This result provides the possibility to use a vast 
amount of available unlabelled data for model 
improvements in future. 

Consequently, the inference should be drawn that 
the suggested algorithm successfully solved all the 
problems of designing semi-supervised SVM-based 
classifiers with competitive performance. Thus, the 
study results can be considered as confirming the 
reliability, workability and usefulness of the fuzzy 
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controlled cooperative algorithm in solving real 
world optimization problems. 

6 CONCLUSIONS 

The problem of semi-supervised classification is 
important due to the fact that obtaining labelled 
examples is often very expensive. However, using 
this data during classification may be helpful. In this 
paper, the semi-supervised SVM was trained using a 
cooperative algorithm, whose components were 
automatically adjusted by a fuzzy controller. The 
fuzzy controller itself was tuned to deliver better 
results for constrained optimization problems. This 
tuning of the meta-heuristic allowed better results of 
SVM training to be achieved, compared to other 
studies. The proposed approach, combining biology-
related algorithms and fuzzy controllers could be 
applied to other complex constrained optimization 
problems. 
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