
Investigating Differences and Commonalities of
Software Metric Tools

Lerina Aversano, Carmine Grasso, Pasquale Grasso and Maria Tortorella
Department of Engineering, University of Sannio, Benevento, Italy

Keywords: Software Metrics, Measurement, Reliability, Validation.

Abstract: The availability of quality models and metrics that permit an objective evaluation of the quality level of a
software product is a relevant aspect for supporting software engineers during their development tasks. In
addition, the adoption of software analysis tools that facilitate the measurement of software metrics and
application of the quality models can ease the evaluation tasks. This paper proposes a preliminary
investigation on the behaviour of existing software metric tools. Specifically, metrics values have been
computed by using the different software analysis tools for three software systems of different sizes.
Measurements show that, for the same software system and metrics, the software analysis tools provide
different values. This could impact on the overall software quality evaluation for the aspect based on the
selected metrics.

1 INTRODUCTION

The software quality concept has evolved over time,
including several important requirements for the
correct implementation of the product and its use by
users. Therefore, develop and/or select software
products of good quality represents a relevant
activity. The availability of a quality model and
metrics that permit an objective evaluation of the
quality level of a software product is very important.

In this context, the adoption of software analysis
tools that facilitate the measurement of software
metrics and application of the quality models can
ease the evaluation tasks. For this purpose, many
software analysis tools supporting the evaluation of
the software quality have been developed. They
have different characteristics with reference to the
programming language they analyze and
measurements they perform, and the evaluator is
often unable to identify the tool that better addresses
his/her needs

The aim of this paper is to analyze a set of
software analysis tools and verify which metrics
they consider and how they perform their
assessment. The goal is to understand at which
extent the software analysis tools provide a similar
evaluation of an analyzed software project, and if
choosing one over another can influence the final
evaluation. To this aim, a set of software analysis

tools have been analyzed and the set of metrics they
measure have been identified. This preliminary
process has allowed selecting the set of metrics to be
measured on some software systems. Then, the
results of the measurement were compared.

Next section of the paper describes some related
works. Section 3 illustrates the experimental setup
that has been executed. The subsequent section
discusses the software analysis tools that have been
chosen and the selected metrics. Then, results of the
evaluation will be presented, and final
considerations will be given in the last section.

2 PRELIMINARIES AND
RELATED WORK

A large number of software metrics have been
proposed in the literature for measuring and
assessing software systems. Metrics can be used for
addressing different software management tasks,
such as software quality evaluation, software process
improvement, and so on. They can be measured by
analyzing software artifacts, such as source code.
The simplest source code metric is the number of
lines of code (LOC). While, the most popular
metrics are the CK metrics suite (Chidamber and
Kemerer, 1994), which indicate features of object-

Aversano, L., Grasso, C., Grasso, P. and Tortorella, M.
Investigating Differences and Commonalities of Software Metric Tools.
DOI: 10.5220/0006416602490256
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 249-256
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

249

oriented systems. Another widely diffused metric is
the cyclomatic complexity, which represents an
internal complexity of the software modules, and is a
good indicator to assume for identifying the
presence of buggy modules.

However, many widely used software metrics
exist that do not have a complete definition. For
example, metric WMC (Weighted Methods for
Class), which is part of the CK metrics suite,
represents the weighted sum of the class methods,
but its definition does not suggest how methods are
weighted. Such ambiguities in the definitions of
metrics unintentionally have impacts on their
measurement.

Several research works have been proposed to
analyze the behavior of software metrics tools.
Specifically, an analysis of tools evauating OO
metrics has been performed in (Lincke, 2007),
(Lincke et al., 2008). The authors considered the
tools supporting the CK metrics and concluded that
the analysed metric tools outputs different values for
the same metrics. This is due to the difference in
interpretation of the metric. A similar study has been
proposed in (Codesido, 2011), where the authors
observe that the metrics supported by the tools
complement each other. In (Rutar et al., 2004) five
tools making static analysis of Java source code
have been compared, concluding that the usability of
the results is difficult.

In (Bakar and Boughton, 2012), a further
comparison is performed and the authors concluded
that the values of the metrics obtained by the tools
are different. The values obtained through manual
calculation and metric tools were also different. In
addition, in (Tomas, 2013), an analysis of open
source tools that analyse Java language and evaluate
the supported metrics is discussed, but the authors
do not provide an empirical validation.

The aim of the proposed comparative study is to
further investigate the behaviour of a set of selected
software metric tools and supported features, for
understanding if they interpret and evaluate in the
same manner. Differently from the previous papers,
the presented study focus on a wider set of software
metric tools.

3 EXPERIMENTAL SETUP

This section presents the planning of the performed
analysis. The main steps are:

Scope Definition. The aim is to analyze and
compare a set of software analysis tools evaluating

software quality metrics, with the goal of verifying if
they consider the same set of metrics and interpret
and evaluate them in the same manner. Then, a
selection of software analysis tools will be
performed, and they will be compared respect to the
metrics they consider and the measurement they
perform. The paper investigates the following
aspects: Do the software analysis tools consider the
same set of metrics? Do the software analysis tools
evaluate a metric in the same manner?

Selection of the Evaluation Tools. The goal of this
phase is to select the software tools to be analyzed
and compared.

Metrics Selection. The execution of this step
requires the analysis of both standards and quality
models and selected tools for selecting a
comprehensive set of metrics. The selected metrics
have to be analyzed in the context of the chosen
tools for understanding the adopted interpretation
and measurement modality.

Selection of the Software Systems to Be
Evaluated. The step aims at identifying a set of
software systems to be analyzed by using the
selected analysis tools. As many metrics that have
been selected for being evaluated consider the
source code for performing their measurement, open
source software systems were considered. Their
selection had to take into account the license, as
many tools are just partially open source and their
code cannot be completely analyzed. In addition, the
choice of the software system was limited to those
ones written in the Java programming language.

Metric Evaluation. This steps aims at measuring
the chosen metrics by using the considered software
analysis tools and selected software systems.

Analysis of the Results. This step compares the
values of the metrics assessed on the same software
system by using the different software analysis tools.
The aim is to verify to which extent the evaluation
tools interpret the metrics in a similar manner and
apply the same rules for evaluating the same metric.

The following subsections describe with a
greater details the process applied for performing the
selection of the considered software analysis tools
and the selected metrics.

3.1 Selection of the Evaluation Tools

The software analysis tools to be considered were
chosen among the most used open source systems
used for measuring software metrics. Open source

ICSOFT 2017 - 12th International Conference on Software Technologies

250

and freeware analysis tools were considered for
permitting their adoption without spending limits. In
addition, the tools were chosen also on the basis of
the programming language they could analyse and
evaluate. In particular, as the results of the
measurements to be performed have to be compared,
all the chosen tools need to analyze the software
systems written by using the same programming
languages.

The considered software systems perform a scan
of the code and identify eventual errors in the code
in an automatic way. They also allow the analysis of
the code and automatic evaluation of a large number
of metrics. The search of a suitable set of software
tools was executed by making a free search on the
internet. More than forty software analysis tools
were identified in the site SourceForge.net. In order
to compare them, only the tools analysing Java
software code were taken in consideration. Their
recorded characteristics were: Name, home page
link, license type, availability, supported
programming languages, operating supported
system/environment and evaluated metrics. In the
end of this preliminary analysis, nine software
analysis tools were selected and they are reported in
Table 1.

3.2 Metrics Selection

Metrics selection required a study of standards and
evaluation models for open-source software systems
to identify features, sub-features and metrics to be
automatically evaluated by using the considered
software analysis tools.

The metrics considered in this paper have been
selected considering those that can be evaluated by
the chosen software analysis tools. They can be
classified as it follows:
• Dimensional Metrics, used for evaluating the

software quality with reference to the software
system dimensions. Examples of this kind of
metrics are: LOC (Lines of Code), TLOC (Total
Lines of Code), NOP (Number of Packages),
NOM (Number Of Methods), MLOC (Medium
LOC per method), NOA (Number Of Attributes),
etc.

• Object Oriented Metrics, used for assessing the
complexity of a software system. In particular,
the object oriented metrics proposed by
Chindamber and Kermerer in 1994 (Chidamber
and Kemerer, 1994), called CK Metrics, are
considered. Some examples are: WMC
(Weighted Methods for Class), CBO (Coupling
between Objects), RFC (Response For Class),
LCOM (Lack of Cohesion of Methods), DIT
(Depth of Inheritance Tree), NOC (Number of
Children) (Henderson-Sellers, 1996).

Table 1: Considered software analysis tools.

Tool name Tool Description
Eclipse Metrics
Plugin 1.3.6

A metrics calculation and dependency analyzer plugin for the Eclipse IDE.
(http://easyeclipse.org/site-1.0.2/plugins/metrics.html)

CCCC A command-line tool. It analyzes C++ and Java files and generates reports on various metrics.
(http://cccc.sourceforge.net/)

Understand A reverse engineering, code exploration and evaluation metrics tool for different programming
languages. It provides a collection of standard metrics and several ways to visualize them.
(https://scitools.com/)

JArchitect A static analysis tool for Java code evaluating numerous code metrics, and allowing for some metric
visualization. (http://www.jarchitect.com/)

Stan4j An Eclipse plug-in that allows for analysis of the dependencies between classes and packages, and
evaluates code metrics. (http://stan4j.com/)

CodePro Analytix An Eclipse plug-in, freely offered by Google and regarding software quality improvement and
reduction of development costs and schedules. It provides support for code analysis, test cases,
dependency analysis and metric measurement.
(https://marketplace.eclipse.org/content/codepro-analytix)

LocMetrics A freeware simple tool, used to measure the size of a software program by counting the number of
lines in the source code. (http://www.locmetrics.com/)

SourceMonitor A tool for code exploration, including the measurement of a set of metrics related to the
identification of module complexity. (http://www.campwoodsw.com/sourcemonitor.html)

CodeAnalyzer A Java application for C, C++, Java, Assembly, Html. It calculates metrics across multiple source
trees as one project. (http://www.codeanalyzer.teel.ws/)

Investigating Differences and Commonalities of Software Metric Tools

251

Table 2: Selected Metrics.

Tool/
Metric

Metrics Stan4j LOC
Metric

Source
Monitor

JArchitect CodePro CCCC Under-
Stand

Code
Analyzer

AC √ √ √
EC √ √ √
D √ √ √ √
I √ √ √
A √ √ √

Object-Oriented
CBO √ √ √ √
DIT √ √ √ √ √ √
LCOM √ √ √ √
NOC √ √ √ √ √ √
RFC √
WMC √ √ √

Dimensional
TLOC √ √ √ √ √
LOC √ √ √ √ √ √ √ √ √
NOM √ √ √ √ √ √
MLOC √ √ √ √

NOA √ √ √
NOP √ √ √ √
CWords √ √ √ √ √ √
Blank Lines √ √ √
%Lines with
Comments

 √ √ √ √

Source File √ √ √ √ √
Class&
Interface

√ √ √ √ √ √ √ √

Complexity
CC √ √ √ √ √ √
NBD √ √ √

• Complexity Metrics, used for assessing the
complexity of the software. They include CC
(McCabe’s Cyclomatic Complexity) (Chidamber
and Kemerer, 1994), (Li and Henry, 1993) and
NBD (Nested Block Depth).

Other important metrics are: AC (Afferent
Coupling), EC (Efferent Coupling), I (Instability), A
(number of abstract classes respect to the one of the
concrete classes), D (distance from the ideal quality).

Table 2 lists all the considered metrics divided of
the basis of the classification. The first column of the
table includes the listing of all the analysed metrics,
while the first row contains the considered tools. The
table aims at indicating which metrics are assessed
by each tool. The indications the table includes have
been obtained by both analyzing the documentation
of the tools and executing them.

This list of metrics included in Table 2 is not
complete, as they are those ones evaluated by at least
three of the considered analysis tools, all the other

metrics have not been included. The observation of
the table indicates that the software analysis tools do
not evaluate all the selected metrics. For example,
Table 2 shows that just three tools on nine (Metrics,
Jarchitect and CodePro) have a high coverage respect
to the metrics. For example, tools LOCMetrics,
SourceMonitor and CodeAnalyzer consider only the
dimensional metrics, while only six tools on nine
consider the CK metrics.
Definitively, the first result of the discussed analysis
concerns the fact that not all the considered tools can
be used for performing a complete evaluation of a
software system quality. Then, for being able for
obtaining a satisfying evaluation of a software
system, it is necessary to integrate the analysis tools
in a common evaluation strategy.

ICSOFT 2017 - 12th International Conference on Software Technologies

252

Table 3: Metric values obtained for SimMetrics.

Software Analysis
Tool/ Metric

Metrics Stan4j LOC
Metric

Source
Monitor

JArchitect CodePro CCCC Under-
Stand

Code
Analyzer

AC 6.79 0 0
EC 3.89 7.04 47

D 0.38 0.42 0.14 0.19

I 0.51 1 1
A 0.11 0.19 19.10

Object-Oriented Metrics
CBO 1.15 3.19 5.72 2.75

DIT 1,71 1.71 1.47 1.49 2.48 1.17 1.68

LCOM 0.28 5.49 0.28 46.46

NOC 0.61 0.53 0.55 0.74 1.19 0.61

WMC 10.39 9.26 5.12

Dimensional Metrics
TLOC 7326 7280 7280 7279 7280

LOC 2238 2467 2238 1683 1191 2238 2283 2237 2238

NOM 6.05 6.79 5.85 6.72 5.23 5.12 6.39
MLOC 4.66 3.63 4.49 5.92
NOA 1.24 2.15 2.14 1.08
NOP 9 9 9 9
CWords 4351 2679 755 4389 4357 4358
Blank Lines 737 722 722
%Lines with
Comments

 60.30 69.22 33.70 1.95

Source File 47 47 47 47 47
Class and
 Interface

 47 47 47 47 47 58 47

Complexity Metrics
CC 1.63 1.36 1.86 1.55 2.83 1.53
NBD 1.22 1.85 0.91

4 EVALUATION

This section reports the analysis of the metric values
provided by the various software analysis tools with
reference to the evaluation of the three open source
software systems: SimMetrics, SimpleWeb and
CruiseControl. These systems have respectively a
small size, a medium size, and a large-size, in order
to allows the investigation of the Analysis Software
Tools behavior with software of different dimension.

Specifically, for collecting the data, were used 9
software analysis tools. Among these some use a
graphical interface, such as, JArchiect, Undertand,
LocMetrics, CodeAnalyzer, and SourceMonitor,
others consist of an Eclipse plug-in such as Metrics,
Stan4j, CodePro Analytix, while CCCC software is a
command line analysis tool.

Before starting the evaluation, the Analysis
Software Tools have been tested in order to avoid
problems or errors during their use. The metric
values obtained for SimMetrics, SimpleWeb, and
CruiseControl are included respectively in Table 3,
4, and 5.

These tables report on the first line the Software
Analysis Tool taken into account and on the first
column the metrics measured for each tools.

As, explained in the previous section that not all
the tools return a value for each considered metric.
Most of the metric values are given as mean, while
few metrics have an integer value as: Class and
Interface, SourceFile, LOC, TLOC, Comment Word
and Blank Line.

With reference to the evaluation of SimMetrics, it
is possible to observe from Table 3 that in some
cases the metrics have different values. This happen,

Investigating Differences and Commonalities of Software Metric Tools

253

Table 4: Metric values obtained for SimpleWeb.

Software Analysis
Tool/ Metric

Metrics Stan4j LOC
Metric

Source
Monitor

JArchitect CodePro CCCC Under-
Stand

Code
Analyzer

AC 6.82 0 0
EC 5.90 5.94 10.2
D 0.34 0.33 0.22 0.06
I 0.44 1 1
A 0.22 0.31 6.70

Object-Oriented Metrics
CBO 2.12 2.89 6.06 2.53
DIT 1.76 1.21 1.36 2.55 0.90 1.64
LCOM 0.33 17.73 0.32 36.34
NOC 1.22 0.29 0.38 0.63 0.64 0.33
WMC 15.32 12.06 6.13

Dimensional Metrics
TLOC 26702 25579 19359 26566 26566
LOC 7085 7880 7085 4940 1191 11480 173 7085 7085
NOM 7.86 7.53 6.77 7.89 5.37 6.13 7.73
MLOC 5.22 2.99 3.73 11.01
NOA 2.74 2.36 2.48 3.18
NOP 10 10 9 5
CWords 17470 2679 4552 17113 17604 17604
Blank Lines 2147 2014 2014
% Comments Lines

66.

40
69.22 39.60

2.48

Source File 136 135 47 136 136
Class and
 Interface

136

146 47 119 173 150

Complexity Metrics
CC 1.90 1.60 2.15 2.99 4.93 1.68
NBD 0.85 1.85 0.98

for example, for the metric LCOM, that ranges from
a minimum value of 0.28 to a maximum value of 46
measured with JArchitect. Similarly, the metric
CBO passes from a value of 2.48 obtained with
CodePro to a value equal to 1.17 measured with
CCCC. Moreover, other metrics have mean values
quite different between them.

For CBO, DIT, LCOM, NOC, WMC, AC, EC,
NOA, DC, MLOC, NBD, D, NOM, I, A, metrics
was not possible to make a more detailed assessment
of how their values are calculated because it depends
on how the specific definition adopted by the
various tool. For example, this occurred regarding
the differences detected in Class and Interface metric
that with CCCC obtain a value of 58 differently
from all the other tools, which provide 47 as a value.

A manual inspection of the source code allowed
to deduce that CCCC tool, for the evaluation of
Class and Interface metric, considers classes and

interfaces but even the packages. Moreover, unlike
the other tools, only Metrics tool returns a separate
value for the number of classes and number of
interfaces.
In the case of TLOC metric, not all tools consider all
the lines from the first to the last bracket. In
particular, Understand does not consider the first
white line, while LocMetrics considers all the lines
including those after the last curly bracket, so it has
a highest value. With regard to the LOC metric it
ranges from a minimum value of JArchitect tool
with 1191 lines of code to a maximum value of
Stan4j tool with 2467 lines of code. This occur
because JArchitect considers an entire method as a
single statement, while Stan4j considers as statement
also the white lines in the methods. Finally, the
CCCC tool considers a statement written on multiple
successive lines, as if they were more lines of code.

ICSOFT 2017 - 12th International Conference on Software Technologies

254

Table 5: Metric values obtained for CruiseControl.

Software Analysis
Tool/ Metric

Metrics Stan4j LOC
Metric

Source
Monitor

JArchitect CodePro CCCC Under-
Stand

Code
Analyzer

AC 7.44 0.00 0.00
EC 4.52 1.80 3.34
D 0.57 0.51 0.08 0.11
I 0.41 1.00 1.00
A 0.07 0.12 11.6

Object-Oriented Metrics
CBO 3.60 3.10 5.84 2.90
DIT 1.31 1.15 1.19 2.19 0.98 1.27
LCOM 0.31 31.2 0.33 45.32
NOC 0.19 0.17 0.18 0.50 0.62 0.18
WMC 14.89 14.84 6.62

Dimensional Metrics
TLOC 49788 49491 49491 49475 49491
LOC 25038 25990 25038 18810 12717 25038 24639 25022 25038
NOM 6.94 8.06 6.79 7.82 6.65 7.50
MLOC 5.66 4.61 4.79 7.39
NOA 2.77 3.64 3.69 2.50

NOP 48 48 48 72
CWords 18316 9718 2872 18012 18434 18434
Blank Lines 6434 6142 6142
% Comments Lines 37.20 43.33 11.40 0.74

Source File 313 313 313 313 313
Class and
 Interface

 313 383 386 386 460 386

Complexity Metrics
CC 1.94 1.84 2.26 1.90 22.09 1.80
NBD 1.51 2.03 1.08

Performing a manual inspection of the source
code it emerged that the actual lines of code value is
2238, as computed by the tools: Metrics, Loc
Metrics CodePro, Analytix and CodeAnalyzer.
Regarding the Comment words metric, it can be
observed that it ranges from a minimum value of
755 lines obtained with CodePro to a maximum
value of 4389 obtained Understand. This is due to
the fact that some software considers comments only
the lines included from the start symbol end
delimiters (/ * - * /).

The evaluation of the metrics related to
SimpleWeb is reported in Table 4. Even in this case
similar differences between the various metric
values emerged. In particular, from Table 5 it is
possible to observe that. regarding Class and
Interface metric. the value obtained by each tool is
different from each other. Even for the Source File
metric, it is possible to note that two tools gave two
different value compared to the other value obtained

by each other tool.
Another difference concerns the NOP metric,

JArchitect provides a value of 9, while CodePro a
value of 5.

In the case of the CruiseControl. few tools
provide a different result compared to other tools.
Table 5 reports the metric values obtained. With
reference to the Class and Interface metric Stan4j,
SourceMonitor and CCCC provide each one a
different value, while for the metric Source File the
same value was obtained from all the tools. The
NOP metric values differ in the case of CodePro and
Analytix, where the measured values are equal to 72,
against the value of 48 obtained from the other tools.
In conclusion, although it is not possible to exclude
errors in the instruments. there are two explanations
of the differences found in the metric values. On one
side, the software tools operate differently, that is
some consider only the source code of the software
to be tested, others include external code such as

Investigating Differences and Commonalities of Software Metric Tools

255

API or libraries. On the other side there are
differences in how these tool interpret the definitions
of metrics, for example, some tools count the
constructors such methods like in JArchitect and
Understand, in others not like Metrics, others
consider only average of all methods available
within the software. So it has been observed that the
tools do not provide all the same output values for
the same metrics with the same inputs.

5 CONCLUSIONS

Nowadays, software engineering managers always
more often needs to deal with quantitative data
regarding the quality of a software system. Indeed, a
number of metrics are generally adopted and
measured during maintenance and evolution
processes to predict effort for maintenance activities
and identify parts of the software system needing
attention. However, a lot of metrics have been
discussed and reasoned about for years, but only few
metrics have even been experimentally validated.
Numerous software metrics tools exist that are used
to evaluate the software metrics, however in order to
use them in practice, it would be necessary that they
are validated for knowing how they behave and their
evaluation have to be interpreted.

The evaluation presented in this paper showed
that differences exist among the software metrics
tools, at least among those ones that have been
investigated. The evaluation highlighted that the
tools delivered similar results just for certain
metrics. In the large part of the cases, each tool
provides a different value for each common metric,
and this difference is more evident with the
increasing of the size of the analysed software
system. This depends on the fact that each tool
interprets differently the metrics, calculates them by
applying different rules, and very often do not
implement the evaluation by applying the intended
definition.

Future work will consider more case studies and
additional metrics. In addition, it will analyses how
the aggregation of metrics of different value
influence the evaluation of higher level
characteristics, such as the maintainability or the
understability.

REFERENCES

S. R. Chidamber and C. F. Kemerer. A Metrics Suite for

 Object-Oriented Design. IEEE Transactions on
Software Engineering, 20(6):476–493, 1994.

B. Henderson-Sellers. Object-oriented metrics: measures
of complexity. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

W. Li and S. Henry. Maintenance Metrics for the Object
Oriented Paradigm. In IEEE Proc. of the 1st Int. Sw.
Metrics Symposium, pages 52–60, May 1993.

R. Lincke. Validation of a Standard- and Metric-Based
Software Quality Model – Creating the Prerequisites
for Experimentation. Licentiate thesis, MSI, V ̈axj ̈o,
University, Sweden, Apr 2007.

R. Lincke, J. Lundberg, W. Löwe, Comparing software
metrics tools, Proceedings of the 2008 international
symposium on Software testing and analysis. ACM,
2008.

N. Rutar, C. B. Almazan, J. S. Foster, A comparison of
bug finding tools for Java, In proceedings of the IEEE
15th International Symposium o Software
Engineering, ISSRE, 2004.

I. Lamas Codesido, Comparación de analizadores estáticos
para código java, 2011.

N. S. Bakar, C. V. Boughton, Validation of measurement
tools to extract metrics from open source projects,
IEEE Conference on Open Systems (ICOS), IEEE,
2012.

E. H. Alikacem, H. Sahraoui, Generic metric extraction
framework, Proceedings of the 16th International
Workshop on Software Measurement and Metrik
Kongress (IWSM/MetriKon). 2006.

P. Tomas, M. J. Escalona, M. Mejias, Open source tools
for measuring the Internal Quality of Java software
products. A survey, Computer Standards & Interfaces
36(1): 244-255, 2013.

ICSOFT 2017 - 12th International Conference on Software Technologies

256

