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Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Keywords: Authenticated Encryption, MORUS, Rotational Cryptanalysis, Internal Differential Cryptanalysis, CAESAR
Competition.

Abstract: In this paper we investigate the security margin of MORUS — an authenticated cipher taking part in the CAE-
SAR competition. We propose a new key recovery approach, which can be seen as an accelerated exhaustive
search. We also verify the resistance of MORUS against internal differential and rotational cryptanalysis. Our
analysis reveals that the cipher has a solid security margin and a lack of round constants does not bring any
weakness. Our work helps to reliably evaluate this new, high-performance algorithm, which is particularly
important in the context of the ongoing CAESAR competition.

1 INTRODUCTION

A cryptographic algorithm which provides both con-
fidentiality and authenticity, is called an authenticated
encryption (AE) or simply an authenticated cipher. It
encrypts and authenticates messages using both a se-
cret key (shared by the sender and the receiver) as well
as a public number (called a nonce). AE algorithms
are often built as various combinations of block ci-
phers, stream ciphers, message-authentication codes
and hash functions.

The great interest and importance of AE have
been manifested by the announcement of a new pub-
lic call for AE algorithms — the CAESAR competi-
tion (CAE, ). The contest has started in 2014 and has
received worldwide attention. In the first round, 57
algorithms were submitted and now (January 2017),
in the third round, 16 ciphers are still in the race. Par-
ticularly MORUS (Wu and Huang, ) — the cipher we
focus on — has advanced to the third round of the
CAESAR competition. MORUS exhibits excellent
software performance and can be also a great choice
for hardware platforms. However, the problem is very
little third-party cryptanalysis of this algorithm (see
Related work below) as the third-party investigation
is essential to build trust towards new, promising ci-
phers.

MORUS has an interesting design feature, namely
a lack of round constants. Typically, the round
constants are introduced to break a symmetry be-
tween rounds and/or between parts of the state. The
MORUS designers, however, chose a different ap-

proach. A pseudorandom constant is introduced only
into the initial state and with a strong initialization
phase all possible state symmetries should be elim-
inated. In our work, we want to verify whether such
design decisions lead to a weakness exploitable by in-
ternal differentials or rotational cryptanalysis. These
two techniques were previously used to attack some
algorithms (or their reduced variants), where the state
symmetries were not fully disturbed by the round con-
stants (Dinur et al., 2013; Morawiecki et al., 2013).

Related Work

As mentioned, there are very few cryptanalytic works
on MORUS. Mileva et al. made some observations
and they described the distinguisher (in a nonce-reuse
scenario) (Mileva et al., 2015). However, the rele-
vance of this work to the cipher’s security was ques-
tioned by the MORUS designers (MORUSGoogle-
GroupDiscussin, ). Some concerns about MORUS
security is highlighted in (Saarinen, 2016), where the
author claims that MORUS represents significantly
elevated adaptive-chosen-plaintext attack risk. Full
round SAT analysis was made by Dwivedi et al. on
MORUS-640 (Dwivedi et al., 2016).

In our work, besides the classic differential crypt-
analysis, we apply internal differentials and rotational
cryptanalysis. Internal differentials were first pro-
posed by Peyrin (Peyrin, 2010) in the attack on the
Grøstl hash function. In (Dinur et al., 2013), Dinur
et al. showed that internal differentials could be also
used to produce collisions against the round-reduced
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Keccak, exploiting the round constants and their re-
lation to the state symmetry. Most recently, internal
differentials were combined with the boomerang tech-
nique, which led to the 8-round practical distinguisher
of the Keccak-f permutation (Jean and Nikolic, 2015).

Rotational cryptanalysis was formally introduced
in (Khovratovich and Nikolić, 2010) but the technique
itself was mentioned and applied earlier (Bernstein,
2005; Knudsen et al., 2009; Standaert et al., 2006).
Rotational cryptanalysis was also combined with the
rebound attack and applied to the compression func-
tion of the SHA-3 candidate Skein and its underly-
ing cipher Threefish (Khovratovich et al., 2010). In
(Morawiecki et al., 2013), the preimage attack against
the round-reduced Keccak (Bertoni et al., b) is given
and the attack takes advantage of the low Hamming
weight round constants.

Our Contribution

The classic techniques for the key recovery (such as
so called R− 1 differential attack) cannot be directly
applied to MORUS due to a different structure of the
algorithm and limitations introduced by the nonce re-
quirement. We propose a new key recovery approach,
where differential characteristics are used in a differ-
ent manner than in typical attacks known for block
ciphers. Our approach can be viewed as the accel-
erated exhaustive search and can be combined with
other techniques such as rotational cryptanalysis.

To quantify the security margin and gain more in-
sight into the ciphers, we analyse reduced variants.
Specifically, we reduce a number of rounds (steps) in
the initialization phase, all the other parameters of the
algorithms are the same as in the full variants. Our
best result is the theoretical key recovery attack on
MORUS-1280-256, where the initialization phase is
reduced to 18 rounds. We also apply internal differen-
tial and rotational cryptanalysis to investigate whether
a lack of round constants could pose a threat to the
security of MORUS. The presented attacks respect
the nonce requirement and need very few plaintext-
ciphertext pairs. Table 1 shows our main findings.

With 80 rounds in the MORUS initialization, the
algorithm has a very solid security margin against ro-
tational and internal differential cryptanalysis. Our
analysis supports the designers’ claims on a strong
security level of the ciphers and offers some crypt-
analytic insight, which is very important for reliable
evaluation of this new promising design. We argue
that our findings, such as 18-round differential char-
acteristics with probability 1, could serve as a starting
point for other analysis, for example the differential-
linear attack.

2 MORUS DESCRIPTION

MORUS has been designed to achieve a great perfor-
mance on both software and hardware, across vari-
ous platforms. Actually, MORUS is a family of three
authenticated ciphers: MORUS-640-128, MORUS-
1280-128, and MORUS-1280-256.

The first number in the cipher’s name is a size of
the state (in bits) and the second number stands for the
key size. The state consists of 5 registers (either 128-
or 256-bit) and each register is divided into 4 words.

The state update function consists of 5 very sim-
ilar rounds and it relies on four simple bitwise oper-
ations. These operations are: AND, XOR, and two
kinds of rotations. The symbol ≪ denotes the rota-
tion in the register by a given number of bits, whereas
Rotl(s,b) rotates words in the register s over b bits.
Figure 1 shows the state update function. In our anal-
ysis we focus on MORUS with a 1280-bit state, then
let us describe the initialization and encryption phase
for this variant.

Initialization

First, the key, initialization vector (IV) and the
constants are loaded into the five registers of the state.

S0 = IV‖0128

S1 = K
S2 = 1256

S3 = 0256

S4 = constant

For MORUS-1280-256, K denotes the 256-bit
key, for MORUS-1280-128 K is built by the concate-
nation of the 128-bit key with itself. The constant
in the 5th register is the Fibonacci sequence modulo
256. After preparing the initial state, the state update
function is called 16 times. Each of these 16 steps
consists 5 rounds, so there are 5×16 = 80 rounds in
the initialization. Finally, the key is XORed with the
second register S1.

Encryption

Once the initialization is finished, the plaintext block
Pi is encrypted.

Ci = Pi⊕S0⊕ (S1 ≪ 192)⊕ (S2&S3)

Then, the plaintext Pi is used to update the state.
Once the state is updated, the next plaintext block
Pi+1 can be encrypted.
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Figure 1: The state update function of MORUS.
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Table 1: Our attacks on reduced variants of MORUS.

Algorithm Intialization
rounds

Technique Attack type Complexity Reference

MORUS-1280-256 18 differential key recovery 2253 Sect. 3
MORUS-1280-128 7 internal

differential
ciphertext
prediction

21 Sect. 4.1

MORUS-1280-256 8 rotational key recovery 2251 Sect. 5.1
MORUS-1280-256 10 rotational ciphertext

prediction
21 Sect. 5.2

3 KEY RECOVERY ATTACK ON
MORUS WITH 18-ROUND
INITIALIZATION

A common approach for attacking block ciphers with
differential cryptanalysis is the so called R−1 attack.
First, the attacker constructs a differential character-
istic which covers all but last round. Then, by guess-
ing a round key from the last round, she inverts the
last round from given ciphertexts. If the statistics of
‘new’ ciphertexts behaves accordingly to the differen-
tial characteristic, then the round key guess is correct.
However, MORUS has a completely different struc-
ture than a typical modern block cipher (such as AES)
and it is not clear how the classic key recovery at-
tacks could be used against MORUS. Also, applying
block-cipher-like differential cryptanalysis directly to
the encryption phase is not possible because of the
nonce requirement.

To circumvent these limitations, we propose a
new, different way for the key recovery. Our idea
can be viewed as an accelerated exhaustive search.
A general scheme of the attack is as follows. For a
given 256-bit key, there are 256 differential counter-
parts which differ from a given key on a single bit.
We try to guess/identify one of such counterparts and
then we argue that a total cost for this is lower than
the exhaustive search. Once the differential counter-
part is identified and the XOR difference with the key
is known, clearly the secret key itself is also revealed.

The attack below is described for MORUS-1280-
256, where the initialization phase is reduced to 18
rounds. For a 256-bit key, the probability that we
guess one of its 256 counterparts is 2−256 × 256 =
2−248, so after 2248 guesses we should hit the dif-
ferential counterpart of the key. Now the question is
how to check (cheaply) whether we guess the coun-
terpart. Here help comes from differential character-
istics, such as the one shown in Table 2. In the ta-
ble differences are given in the hexadecimal format.
When bits with a non-zero input difference are mul-
tiplied (bitwise AND), the output difference depends
on the actual values of these bits. Since we do not

know these actual values (only their differences), such
an output difference can not be determined with cer-
tainty. We denote a nibble with the undetermined dif-
ference by ‘?’. (To avoid heavy and unreadable no-
tation, the symbol ‘?’ captures both partly undeter-
mined nibbles and nibbles, where all 4 bits are under-
mined.)

In a precomputation phase, we construct 256 dif-
ferential characteristics, each with 1-bit difference
initial state. The 18-round characteristics end with a
ciphertext (256 bits), where differences for some bits
are still known. These characteristics are stored in
memory and then used to identify whether we guess
the counterpart of the key or not. Algorithm 1 shows
the pseudocode of the attack.

Algorithm 1 Key recovery attack on MORUS-1280-
256 with 18-round initialization.

1: P← 0x00 . . .0 . Set plaintext to all-zero vector
2: IV ← 0x00 . . .0 . Set IV to all-zero vector
3: MORUS-1280-256(IV , key) . Initialization
4: C← P⊕S0⊕ (S1 ≪ 192)⊕ (S2&S3) .

Calculate the ciphertext C

5: for i← 0 to i < 2248 do
6: MORUS-1280-256(IV , guessedKey) .

Initialization
7: C′← P⊕S0⊕ (S1 ≪ 192)⊕ (S2&S3) .

Calculate the ciphertext C′

8: for n← 1 to 256 do
9: if (C ⊕ C′ matches the characteristicn)

then
10: (guessedKey ⊕ characteristicn input)

is a candidate for the secret key
11: end if
12: end for
13: end for

After 2248 guesses the attacker should hit one of
the 256 differential counterparts of the secret key.
Hence the main loop is iterated 2248 times. In the in-
ner loop, the ciphertexts difference is calculated and
if it matches the output from one of the 256 character-
istics (generated in the precomputation phase), then
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Table 2: The 18-round differential characteristic for MORUS-1280-256.

Initial state of differences
S0 0000000000000000 0000000000000000 0000000000000000 0000000000000000
S1 0000080000000000 0000000000000000 0000000000000000 0000000000000000
S2 0000000000000000 0000000000000000 0000000000000000 0000000000000000
S3 0000000000000000 0000000000000000 0000000000000000 0000000000000000
S4 0000000000000000 0000000000000000 0000000000000000 0000000000000000

↓
Step 1 (Rounds 1–5)

↓
S0 0000000000000000 0100000000000000 0000000000000000 0000000000000000
S1 0000000000000000 0000000000000000 0000000002000000 0000000000000000
S2 0000000000000000 0000000040000000 0000000000000000 0000000000000000
S3 0000000100000000 0000000000000000 0000000000000000 0000000000000000
S4 0000000400000000 ?000000000000000 00000000?0000000 0000000000000000

ciphertext: 254 known differences
↓

Step 2 (Rounds 6–10)
↓

S0 0000000000000000 0000200000000000 00000?0000000020 000000?000000000
S1 0000000000000?80 000000000000?000 0000000000010000 00000?000000?000
S2 0000000?000000?0 000000000008000? 00000800000?0010 000000000000??00
S3 000000?000800000 00??0000000?0000 000?0?00000??000 0000?08000?0000?
S4 0000000?0080???0 000?800000??0100 0000?04000????00 0000???0000?0?0?

ciphertext: 229 known differences
↓

Step 3 (Rounds 11–15)
↓

S0 0???000?0???0000 000??0100???0000 ?400000?0?0?000? ???00000??0?0000
S1 ????0000???0000? ???0?000????00?0 ???0000??00??02? ??4?000??0?0000?
S2 ?????00????00?00 ?????0000??0??00 0???0??10????0?? ???????0?00??0??
S3 ???0????????1??? 2??????0????0??? ???04????8?????? ???00?????00?0??
S4 ????04???????0?? ??????1????????? ?????????8?????? ????00?????0?0??

ciphertext: 101 known differences
↓

Step 4 (Rounds 16–18)
↓

S0 ???????????????? ?????????2?????? ???????????????? ?8??????????????
S1 ???????????????? ???????????????? ???????????????? ????????????????
S2 ???????????????? ???????????????? ???????????????? ????????????????
S3 2??????0????0??? ???04????8?????? ???00?????00?0?? ???0????????1???
S4 ?????????8?????? ????00?????0?0?? ????04???????0?? ??????1?????????

ciphertext: 2 known differences

the guessed key might be the counterpart of the se-
cret key. Please note that the cost of the inner loop is
very small. Basically, we need one bitwise XOR be-
tween C and C′ and then bitwise AND with the 256-
bit mask, which tells which bits should be taken into
account. For comparison, the 18-round initialization
requires 252 XOR operations on registers and 90 bit-
wise AND between registers. So, the total cost of the
inner loop is negligible as it is just a tiny fraction of a
single call to the 18-round MORUS-1280-256.

Outputs (ciphertexts) from the 18-round differ-
ential characteristics have, on average, 3 bits with
known differences. So, for 256-bit ciphertexts the ‘fil-

ter’ is not very strong and we expect around 2256/23 =
2253 false alarms to check. Thus, checking false
alarms is a dominant factor of the time complexity
of the attack.

We could try to use more differential character-
istics which start with a 2- or 3-bit difference. This
would lead to fewer iterations in the main loop (lower
complexity of the attack), however, our experiments
show that we could penetrate fewer rounds in that
cases. Indeed, this is expected as more differences
in the initial state lead to faster propagation of differ-
ences and unknown differences start dominating the
state earlier.
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4 INTERNAL DIFFERENTIAL
CRYPTANALYSIS OF MORUS

In internal differential cryptanalysis, the attacker fol-
lows differences between parts of the state. However,
it is not obvious which parts should be compared.
Thus, the first step is to specify how we calculate an
internal difference. A hint for us is that a symmet-
ric state (zero internal difference) should be preserved
(ideally) by all the operations in the algorithm. If
some operations break the chosen symmetry, then we
should look for another symmetry. (Though it might
be the case that there is not such a symmetry.) For
MORUS there are three ‘natural’ choices how to de-
fine the symmetry and calculate internal differences.
We could try a difference between two halves of a
state, between two halves of a register or between two
halves of a word. The symmetry between halves of
the state is broken by both ≪ and Rotl operations,
whereas the other two symmetries are preserved by all
the operations. In this analysis we focus on a symme-
try within the registers and the reason for this choice
is the following. MORUS-1280 operates on 256-bit
registers and the 128-bit secret key is concatenated
with its copy (key‖key), then loaded in the S1 register
in the initial state. Thus, there is a symmetry in S1,
regardless of the actual value of the key. The other
choice of symmetry (within words) is discussed at the
end of this section.

4.1 Ciphertext Prediction for
MORUS-1280-128 with 7-round
Initialization

Let us first analyse a propagation of internal differ-
ences for MORUS-1280-128. The IV has to be set to
all 0’s to have the first register S0 symmetric. As ex-
plained above, the S1 register is symmetric, regardless
of a key value. The subsequent registers S2 and S3 are
initialized with all 1’s and all 0’s, so they are clearly
symmetric. Finally, the fifth register S4 is filled with
a constant, which is the Fibonacci sequence modulo
256.

Clearly, this is not a symmetric constant, so the
initial state has some internal differences (the symme-
try is partly disturbed). Table 3 shows an evolution of
the internal differences up to 8 rounds. If the initial-
ization is reduced to 7 rounds, the attacker is able to
predict a ciphertext bit with probability 1. As shown
in Table 3, the ciphertext after 7 rounds still has one
known internal difference. Specifically, the difference
between bits number 29 and 157 is known. The at-
tacker initializes MORUS-1280-128 with the IV set to

all 0’s and obtains the 29th bit from a ciphertext block.
Knowing a plaintext and the difference between 29th
and 157th bit from a ciphertext, she can predict the
value of the unseen 157th ciphertext bit. The predic-
tion works for any key and any known plaintext.

We also investigate the internal differentials with
probabilistic transitions. However, we could not find
any low-cost differential path, which leads to many
known ciphertext differences after 8 rounds.

Other Symmetry

The other symmetry, which is preserved by both ≪
and Rotl operations, is the symmetry between halves
of a word. Interestingly, in MORUS a rotation num-
ber in ≪ is always a multiple of a word size (due
to implementation efficiency) and it helps us to keep
the symmetry as ≪ moves the whole words ‘intact’
to a new position in the state. However, using the
symmetry within words for the ciphertext prediction
is more difficult. To have the S1 register (initialized
with 128-bit key) symmetric, we have to assume that
a key itself is symmetric. Therefore the analysis is
valid only against the weak key class of 264 symmet-
ric keys. We investigate how the internal differences
evolve for this symmetry and the result is very sim-
ilar to findings from Table 3, that is up to 7 rounds
there are known differences in the ciphertext (see Ap-
pendix).

5 ROTATIONAL
CRYPTANALYSIS OF MORUS

In this section we show how to use rotational crypt-
analysis to mount the key recovery attack and the
ciphertext prediction for MORUS with the round-
reduced initialization phase. We study how rotational
relations between two states change over the subse-
quent rounds and then try to use these observations
for the attacks.

First, we should specify what we mean by rota-
tional relation between two MORUS states. Having
two states S and S′, the state S′ is rotated (with a ref-
erence to S) if all words in S′ are copied from S and
rotated by a rotational number n. (In MORUS-1280,
a word size is 64 bits, so there are 64 possible values
of n.) With S′ constructed like this, all the steps in
the algorithm preserve the rotational relation between
S and S′. Similarly to internal differentials, where
the constant breaks the symmetry, here the constants
breaks the desired rotational relation. The pseudoran-
dom constant (Fibonacci sequence) breaks the rota-
tional pattern regardless of a chosen value of n.
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Table 3: The 8-round internal differential characteristic for MORUS-1280-128.

Initial state of internal differences
S0 00000000 00000000 00000000 00000000
S1 00000000 00000000 00000000 00000000
S2 00000000 00000000 00000000 00000000
S3 00000000 00000000 00000000 00000000
S4 db3c1957 6ec727fc 3533061b e35c51bf

↓
Round 1
↓

S0 00000000 00000000 00000000 00000000
S1 00000000 00000000 00000000 00000000
S2 00000000 00000000 00000000 00000000
S3 00000000 00000000 00000000 00000000
S4 db3c1957 6ec727fc 3533061b e35c51bf

ciphertext: 128 known internal differences
↓

Round 2
↓

S0 00000000 00000000 00000000 00000000
S1 ed9e0cab 376393fe 9a99830d f1ae28df
S2 00000000 00000000 00000000 00000000
S3 00000000 00000000 00000000 00000000
S4 3533061b e35c51bf db3c1957 6ec727fc

ciphertext: 128 known internal differences
↓

Round 3
↓

S0 00000000 00000000 00000000 00000000
S1 ed9e0cab 376393fe 9a99830d f1ae28df
S2 00000000 00000000 00000000 00000000
S3 00000000 00000000 00000000 00000000
S4 3533061b e35c51bf db3c1957 6ec727fc

ciphertext: 128 known internal differences
↓

Round 4
↓

S0 00000000 00000000 00000000 00000000
S1 9a99830d f1ae28df ed9e0cab 376393fe
S2 00000000 00000000 00000000 00000000
S3 ???????? ???????? ??????6? ????????
S4 3533061b e35c51bf db3c1957 6ec727fc

ciphertext: 27 known internal differences
↓

Round 5
↓

S0 00000000 00000000 00000000 00000000
S1 9a99830d f1ae28df ed9e0cab 376393fe
S2 00000000 00000000 00000000 00000000
S3 ???????? ???????? ??????6? ????????
S4 ?0?????? ???????? ???????? ????????

ciphertext: 27 known internal differences
↓

Round 6
↓

S0 ???????? ???????? ???????? ????????
S1 9a99830d f1ae28df ed9e0cab 376393fe
S2 00000000 00000000 00000000 00000000
S3 ???????? ??????6? ???????? ????????
S4 ?0?????? ???????? ???????? ????????

ciphertext: 4 known internal differences
↓

Round 7
↓

S0 ???????? ???????? ???????? ????????
S1 ???????? ???????? ???????? ????????
S2 00000000 00000000 00000000 00000000
S3 ???????? ??????6? ???????? ????????
S4 ???????? ???????? ?0?????? ????????

ciphertext: 1 known internal difference
↓

Round 8
↓

S0 ???????? ???????? ???????? ????????
S1 ???????? ???????? ???????? ????????
S2 ???????? ???????? ???????? ????????
S3 ???????? ??????6? ???????? ????????
S4 ???????? ???????? ?0?????? ????????

ciphertext: 0 known internal differences

Now, let us see an example of the rotational charac-
teristic for MORUS-1280-256. We use the same no-
tation as for internal differentials but this time a hex-
adecimal number means the difference between cor-
responding bits from the states S and S′. So, for exam-
ple, if we consider the 1st bit and rotational number
n = 8, then we calculate the XOR difference between
1st bit from S and 9th bit from S′ (within a given
word). Table 4 shows the rotational characteristic1

1Please note that here we trace differences between two
states, so we need two times more symbols than in the case
of internal differences of a single state.

with n = 43. The registers S0 . . .S3 have a (rotational)
differences set to 0, whereas the 5th register is ini-
tialized with the Fibonacci constant, hence there are
differences and rotational relation is disturbed.

5.1 Key-recovery Attack on MORUS
with 8-round Initialization

In the following key recovery attack we use our
idea of accelerated exhaustive search from Section 3.
This time, however, we take advantage of rotational
characteristics rather than differential. The attack is
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Table 4: The 9-round rotational characteristic (n = 43) for MORUS-1280-256.

Initial state

S0
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S1
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S4
284169020b0d1815 5ee927f08153b5e5
ca42968c8500849f 8957d842fa3f3b40

↓
Round 1
↓

S0
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S1
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S4
284169020b0d1815 5ee927f08153b5e5
ca42968c8500849f 8957d842fa3f3b40

ciphertext: 256 known differences
↓

Round 2
↓

S0
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S1
46054a105a4082c3 ed7957ba49fc2054
2127f290a5a32140 ced02255f610be8f

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S4
ca42968c8500849f 8957d842fa3f3b40
284169020b0d1815 5ee927f08153b5e5

ciphertext: 256 known differences
↓

Round 3
↓

S0
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S1
46054a105a4082c3 ed7957ba49fc2054
2127f290a5a32140 ced02255f610be8f

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S4
ca42968c8500849f 8957d842fa3f3b40
284169020b0d1815 5ee927f08153b5e5

ciphertext: 256 known differences
↓

Round 4
↓

S0
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S1
2127f290a5a32140 ced02255f610be8f
46054a105a4082c3 ed7957ba49fc2054

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
02a5082d204161a3 bcabdd24fe102a76
93f94852d190a010 68112afb085f47e7

S4
ca42968c8500849f 8957d842fa3f3b40
284169020b0d1815 5ee927f08153b5e5

ciphertext: 146 known differences
↓

Round 5
↓

S0
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S1
2127f290a5a32140 ced02255f610be8f
46054a105a4082c3 ed7957ba49fc2054

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
02a5082d204161a3 bcabdd24fe102a76
93f94852d190a010 68112afb085f47e7

S4
a42968c8500849fc 957d842fa3f3b408
84169020b0d18152 ee927f08153b5e55

ciphertext: 146 known differences
↓

Round 6
↓

S0
????????????6??? 7???????????????
????5????4?????f ??????????f?????

S1
2127f290a5a32140 ced02255f610be8f
46054a105a4082c3 ed7957ba49fc2054

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
bcabdd24fe102a76 93f94852d190a010
68112afb085f47e7 02a5082d204161a3

S4
a42968c8500849fc 957d842fa3f3b408
84169020b0d18152 ee927f08153b5e55

ciphertext: 90 known differences
↓

Round 7
↓

S0
????????????6??? 7???????????????
????5????4?????f ??????????f?????

S1
d??????????????? ??a?????????????
??????8????????? ?????0????2????1

S2
0000000000000000 0000000000000000
0000000000000000 0000000000000000

S3
bcabdd24fe102a76 93f94852d190a010
68112afb085f47e7 02a5082d204161a3

S4
84169020b0d18152 ee927f08153b5e55
a42968c8500849fc 957d842fa3f3b408

ciphertext: 48 known differences
↓

Round 8
↓

S0
??????????f????? ????????????6???
7??????????????? ????5????4?????f

S1
d??????????????? ??a?????????????
??????8????????? ?????0????2????1

S2
???????????????? ????????????????
???????????????? ????????????????

S3
bcabdd24fe102a76 93f94852d190a010
68112afb085f47e7 02a5082d204161a3

S4
84169020b0d18152 ee927f08153b5e55
a42968c8500849fc 957d842fa3f3b408

ciphertext: 20 known differences
↓

Round 9
↓

S0
??????????f????? ????????????6???
7??????????????? ????5????4?????f

S1
??????8????????? ?????0????2????1
d??????????????? ??a?????????????

S2
???????????????? ????????????????
???????????????? ????????????????

S3
???????????????? ????????????????
???????????????? ????????????????

S4
84169020b0d18152 ee927f08153b5e55
a42968c8500849fc 957d842fa3f3b408

ciphertext: 1 known difference
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applied to MORUS-1280-256 with the initialization
phase reduced to 8 rounds. The general scheme of the
attack is similar to the differential one, yet some de-
tails specific rotational analysis need to be explained.

The main idea behind the attack is that we can
find the rotational counterpart of the secret key with
an effort lower than the exhaustive search. Once the
rotational counterpart is found, we rotate it back to
get the key. The attack description given below is for
MORUS-1280-256 but the attack works in the same
way for MORUS-1280-128.

A register in MORUS-1280 has 64-bit words.
Therefore, there are 64 possible values of the rota-
tional number n, including the identity transforma-
tion. For 256-bit key, the probability that we guess
one of its rotational counterparts is 2−256 × 64 =
2−250, so after 2250 guesses we should hit the rota-
tional counterpart of the key2. Now the question is
how to check (cheaply) whether we guess the rota-
tional counterpart. Here the rotational characteristics
(such as the one shown in Table 4) come in handy. In
Precomputation, we generate 64 rotational character-
istics, each corresponds to a different rotational num-
ber. The 8-round characteristics end with a ciphertext
(256 bits), where rotational relations for some bits are
still known. These characteristics are stored in mem-
ory and then used to identify whether we guess the
rotational counterpart of the key or not. Algorithm 2
shows the pseudocode of the attack.

As explained above, after 2250 the attacker should
guess one of the 64 rotational counterparts of the se-
cret key. Hence the main loop is iterated 2250 times. In
the inner loop, the ciphertexts difference is calculated
and if it matches one of the 64 characteristics (gener-
ated in Precomputation), then the guessed key (rotated
by n) might be the secret key. Please note that the cost
of the inner loop is very small. Basically, we need one
bitwise XOR between C and C′ and then bitwise AND
with the 256-bit mask, which tells which bits should
be taken into account. For comparison, the 8-round
initialization requires 112 XOR operations on regis-
ters and 40 bitwise AND between registers. So, the
total cost of the inner loop is not more than a single
call to the 8-round MORUS-1280.

Outputs (ciphertexts) from the 8-round rotational
characteristics have, on average, 11 bits with known
differences. So, for 256-bit ciphertexts the ‘filter’ is
not very strong and there will be many false alarms.

2There is a class of symmetric keys, where both halves
of a word is the same. For such keys, rotations act as the
identity function hence there are not any rotational counter-
parts. However, 2128 such keys is only a tiny fraction of all
2256 possible keys and checking the whole class before the
actual attack does not affect the total complexity of our key
recovery attack.

Algorithm 2 Key recovery attack on MORUS-1280-
256 with 8-round initialization.

1: P← 0x00 . . .0 . Set plaintext to all-zero vector
2: IV ← 0x00 . . .0 . Set IV to all-zero vector
3: MORUS-1280-256(IV , key) . Initialization
4: C← P⊕S0⊕ (S1 ≪ 192)⊕ (S2&S3) .

Calculate the ciphertext C

5: for i← 0 to i < 2250 do
6: MORUS-1280-256(IV , guessedKey) .

Initialization
7: C′← P⊕S0⊕ (S1 ≪ 192)⊕ (S2&S3) .

Calculate the ciphertext C′

8: for n← 0 to 64 do
9: if (C ⊕ C′ matches the characteristicn)

then
10: (guessedKey ≪ n) is a candidate for

the secret key
11: end if
12: end for
13: end for

For example, when the rotational number n is 43,
there are 20 known differences in the ciphertext,
hence we expect around 2250/220 = 2230 false pos-
itives. We calculate an expected number of false
alarms for all 64 values of n and the total number
of false alarms (candidates for one of the rotational
counterpart of the secret key) is about 2248. There-
fore, the time complexity of the attack is dominated
by calls to MORUS in the main loop (2250 iterations).
Adding false alarms (2248) plus a small cost of bitwise
operations in the inner loop make the total cost of the
attack equal to around 2251.

More Rounds

There are rotational characteristics (such as the one
shown in Table 4), which cover 9 or even 10 rounds.
However, a number of known differences in the ci-
phertexts (for 9 or 10 rounds) is, on average, less than
1. This means that a number of false alarms would
be very close to 2256 and it would be difficult to ar-
gue that the total cost of the attack is lower than the
exhaustive search for the 256-bit key.

5.2 Ciphertext Prediction in Weak Key
Scenario for 10-round MORUS

When we assume that the 256-bit secret key is one
of 2128 symmetric keys (for which halves of a given
word are the same), then we could use the rotational
characteristics to predict the ciphertext, similarly to
the attack described in Section 4.1. For the 10-round

Differential and Rotational Cryptanalysis of Round-reduced MORUS

283



rotational characteristic, where n = 18, there are 4
known differences between the ciphertext and its rota-
tional counterpart. The attacker initializes MORUS-
1280-256 with an arbitrarily chosen IV and obtains
the ciphertext block. Now the attacker can predict the
ciphertext (4 bits), which would be generated from
MORUS initialized with the rotated IV (each word of
the IV rotated by 18). So, using rotational characteris-
tics the prediction is possible up to 10 rounds, yet we
need a stronger assumption — a key from the weak
key class.

6 CONCLUSION

We have proposed a new approach for the theoret-
ical key recovery attack against the round-reduced
MORUS. The technique can be seen as an accelerated
exhaustive search and it works not only with differen-
tial cryptanalysis but also with other types of distin-
guishers. The technique could be particularly useful
for ciphers, which have completely different struc-
ture than typical block ciphers such as AES, for ex-
ample for the sponge-based cryptographic primitives
(Bertoni et al., a).

We have also analysed the resistance of MORUS
against internal differentials and rotational cryptanal-
ysis. Our findings have revealed that the cipher offers
solid security margin against these techniques. As
MORUS has some unorthodox design features (such
as a lack of round constants) we think it is essential to
analyse such new, promising algorithms with a possi-
bly wide range of cryptanalytic tools and techniques.
All performed test are applicable for old and new ver-
sion of submitted cipher. Our work helps to realize
this goal.
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