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Inspection of physical memory allows digital investigators to retrieve evidence otherwise inaccessible when

analyzing other storage media. In this paper, we analyze in-memory communication records produced by
web-based instant messaging and email applications. Our results show that, in spite of the heterogeneity of
data formats specific to each application, communication records can be represented in a common application-
independent format. This format can then be used as a common representation to allow for general analysis
of digital artifacts across various applications, even when executed in different browsers. Then, we introduce
RAMAS, an extensible forensic tool which aims to ease the process of analyzing communication records left
behind in physical memory by instant-messaging and email web clients.

1 INTRODUCTION

Instant-messaging (IM) and email applications such
as Facebook’s chat and Gmail clients, respectively,
are widely used communication services that allow
individuals to exchange messages over the Internet.
Given the nature of the exchanged data, digital arti-
facts left by such applications may hold highly rele-
vant forensic value. This is particularly true if, from
such artifacts, it is possible to recover communication
records of past conversations providing information
about the content of exchanged messages, identity of
communicating parties, or time-related information.
To assist forensic analysts in recovering such ar-
tifacts, we aim to develop a forensic tool for extrac-
tion of conversation records left by web-based mes-
saging applications in physical memory dumps. As
opposed to their native counterparts, web-based ap-
plications run inside a browser and are becoming in-
creasingly popular because users do not need to in-
stall them on their computers; all they need to do is to
open a browser and visit a URL. By focusing on phys-
ical memory analysis, our goal is to complement the
functionality of existing forensic tools which focus on
the analysis of persistent state, e.g., local logs (Yang
et al., 2016; Al Mutawa et al., 2011), and to address a
latent need for the analysis of high-level data present
in such memory dumps (Simon and Slay, 2009).
Although some prior work employs memory
forensic techniques on messaging applications, ex-
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isting tools tend to be highly application-dependent.
For example, Wong et al. present techniques that al-
low for the recovery of digital artifacts for the Face-
book messaging service (Wong et al., 2011). How-
ever, the proposed techniques cannot directly be ap-
plied to multiple other applications due to the het-
erogeneity of data formats implemented by each ap-
plication. Furthermore, the fact that web-based ap-
plications run inside a browser may interfere with
the durability of applications’ artifacts in memory,
for example due to the memory management pol-
icy implemented by the browser. Existing works on
browser forensics concentrate only on the extraction
of browser-specific artifacts (e.g., browsing history,
web cache) leaving aside the recovery of application-
specific artifacts (Ohana and Shashidhar, 2013).

In this paper we make three key contributions.
First, we present a digital forensics study aimed
to systematically analyze the digital artifacts left
in memory by several popular IM and email web-
applications when executed on various browsers. We
successfully identified and retrieved IM communica-
tion records from web-applications such as Facebook,
Twitter and Skype, as well as email records from
Outlook and a generic Roundcube email web-client.
Our study helps to characterize how the communi-
cation records of web-based messaging applications
are typically represented and to identify how browser-
specific mechanisms may affect the durability of such
records in memory (Section 2).
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Second, we introduce the design and implementa-
tion of a forensic tool called RAMAS, which consists
of a collaborative and extensible framework for anal-
ysis of communication records from volatile memory.
RAMAS is able to extract such records from mul-
tiple web-based messaging applications and display
the extracted records on a user-friendly timeline. RA-
MAS is designed in a modular fashion so as to accom-
modate an ever-growing number of applications and
allow collaborative development and maintenance of
the system by independent forensic analysts. This
goal is achieved through the implementation of ex-
traction modules: each module contains a set of (sim-
ple) rules that allow RAMAS to extract the records of
a specific application and represent them on a com-
mon application-independent format (Section 3).

Lastly, we present an experimental evaluation
of our framework. To this end, we used RAMAS
for conducting analysis over the data extracted from
memory chips with sizes typically found in commod-
ity hardware. Our evaluation shows that RAMAS is
efficient, e.g., it can process communication records
spawning from six different applications, in an 8 GB
memory dump, in roughly about three minutes. We
also enact a use case for demonstrating the usefulness
of our framework’s evidence presentation capabilities
which may help digital investigators in uncovering so-
phisticated correlations among evidence from several
applications or across memory images (Section 4).

2 DIGITAL FORENSICS STUDY

This section presents the digital forensics study that
we carried out in order to assess the existence of com-
munication records in physical memory produced by
web-based messaging applications. This study lays
the ground for the subsequent development of a foren-
sic tool for automatic extraction of such records.

2.1 Goals of the Forensics Study

More concretely, the goal of this study is to check
whether and in which conditions communication
records can be obtained from memory dumps. In par-
ticular, our research is driven by two key questions:

How are messages represented in memory? The
programmers of web-based messaging applications
are free to implement them using a range of differ-
ent technologies. Some design decisions comprise the
choice of front-end and back-end programming lan-
guages (ex. Javascript, PHP), others involve select-
ing the data representation format of communication
records (ex. JSON, XML, binary). This heterogeneity
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in data representation and platforms may impact the
way communication records are loaded into memory
and contribute for the absence of a common model of
the structure of communication records among differ-
ent implementations of browsers and operating sys-
tems. This implies that a tool developed for analyz-
ing this kind of evidence would exhibit the additional
complexity of having to take into account such differ-
ences between record structures, even when analyzing
a single application. We aim to assess whether there is
a common model which allows for the interpretation
of textual web-application data lingering in memory.

How long do messages persist in memory? The
persistence of in-memory data structures may be af-
fected by the browser where the web-based messag-
ing application runs. First, we must ascertain whether
the browser runtime environment imposes limitations
on the ability to recover communication records from
physical memory. In particular, to provide the inter-
action with web-applications, web-browsers rely on
different layout engines (ex. Blink, Gecko) which af-
fect the way a browser hosts, renders or executes web
content. Similarly, several implementations of oper-
ating systems target different platforms (ex. worksta-
tion, mobile) and are expected to apply disparate low-
level mechanisms for performing memory manage-
ment. Furthermore, different user interactions may
trigger the erasure or replacement of potential evi-
dence in volatile memory. For instance, data pertain-
ing to a given web-application may be evicted shall a
user navigate to a different browser tab or terminate
her browsing session. Finally, modern browsers im-
plement private browsing execution modes which en-
ables users to browse the web while disabling both the
browsing history and web cache. This feature is im-
plemented by popular browser vendors and is known
under different aliases, such as Incognito, InPrivate or
PrivateBrowsing. We must evaluate whether the use
of private browsing may compromise the existence of
digital artifacts lingering in memory.

2.2 Experimental Methodology

To investigate whether and in which conditions mes-
sages can be obtained from memory, we performed
an experimental study of several web-based messag-
ing applications. In particular, we analyzed digi-
tal artifacts concerning IM records for Facebook’s
chat, Facebook Messenger’s chat, Skype, Twitter’s
Direct Messages, Google Hangouts, WhatsApp, Tele-
gram, and Trillian. We also analyzed communication
records of three email web-clients: Outlook, a generic
Roundcube email client, and Gmail.

These applications were tested on different brow-
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Table 1: Feasibility of recovering web-based messaging application records from different browsers.
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sers: Google Chrome, Mozilla Firefox, Opera, and
also Microsoft Edge. Tests for each browser were
conducted for both private and non-private browsing
sessions. For our tests, every web-application was
used in a freshly generated browser tab. We have con-
ducted our experiments in two widely used desktop
operating systems: Windows 10 and Ubuntu 16.04.
Both operating systems were deployed in VirtualBox
5.1.8 virtual machines with 1GB of RAM. Memory
dumps of both systems are acquired through atomic
virtualization-aided methods. Each virtual machine
was restarted between separate test runs.

For each individual test, we conducted a prede-
fined set of actions that capture real world usage of
each web-application:

o [nstant-Messaging test run: A user performs lo-
gin in an IM web-application and sends two mes-
sages to a given recipient. The user also browses
through existing contacts and inspects the current
conversation, as well as past conversations (by
navigating back and forth between conversations
or by opening different chat windows inside the
same browser tab). The aim of this set of actions
is to retain relevant data in memory, while simu-
lating a typical use of this kind of applications.

o Email test run: A user performs login in her web-
mail client and browses her inbox and outbox.
This allows us to simulate a common use-case for
these applications and later check which digital
artifacts were retained in memory.

Simulated User Interactions. Investigators may
miss the opportunity to access the target machine
while a suspect is still logged in a given account. We
assess four different sequences of actions a user may
perform after concluding a session within the web-
application, before we have the opportunity of acquir-
ing a memory dump of the system. We consider the
following sequences of actions, sorted in an increas-
ing fashion according to their expected intrusiveness

level (IL) with the artifacts we are concerned with:
e (IL]) Logout;

e (IL2) Logout and navigate to a webpage in a dif-
ferent browser tab;

e (IL3) Logout and navigate to a webpage in the
same browser tab;

e (IL4) Logout and close the tab/browser.

We contemplate these degrees of intrusiveness ac-
cording to the inner architecture of existing browsers.
In all tested browsers, each tab runs in a separate pro-
cess which is responsible for rendering a page’s con-
tent. As an example, we refer to the recent Mozilla’s
Electrolysis project (Mozilla, 2015). In this setting,
the browser’s parent process manages tabs and the
core browser functionality. This architecture brings
several advantages, such as providing inter-tab data
security, isolate crashes in individual tabs, and main-
taining the overall browser’s responsiveness (Charlie
Reis, 2008). According to this description, we ex-
pect IL1 and IL2 sequences to be the least intrusive
ones, since the tab state after logout is expected to
be preserved. In contrast, the /L3 sequence may af-
fect the content of the memory allocated to the tab
where the messaging service was used, possibly caus-
ing the eradication of evidence. Lastly, we expect
the /L4 sequence to be the most intrusive one, since
the OS shall reclaim the memory associated to the
tab/browser process, possibly wiping out any artifact
that could have been left behind by the application.

Extraction Methodology. To assess whether a given
communication record was retained in memory and to
pinpoint metadata structures surrounding it, the mes-
sages sent in each test run act like keywords for en-
abling posterior search. To look for these keywords,
we begin by extracting the strings contained in the
memory dump with the strings command-line util-
ity, followed by a grep search to match the strings
which contain a chosen keyword. Similarly, we at-
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Figure 1: Facebook recently sent message data fields.
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Figure 2: Twitter received message data fields.

tempt to match email records by searching email ad-
dresses known to be present in the client’s inbox/out-
box. A communication record is retrieved if the iden-
tified metadata enables for the collection of the tuple
(Timestamp, Author, Recipient, Message), at least.
Below, we present our main findings of our study.

2.3 Message Representation

Table 1 depicts a summary of our analysis for several
popular web-applications and web-browsers. Results
show that it was not possible to retrieve any structured
communication record from Gmail, Hangouts, What-
sApp and Telegram, which leads us to conjecture that
these applications may make use of a binary data rep-
resentation format which can not be directly recov-
ered in the form of strings.

For all the remaining applications under test we
were able to find messages with accompanying high-
level metadata structures in the form of strings. For
instance, we can observe in Figure 1 and Figure 2
two digital artifacts left in memory by Facebook chat
and Twitter Direct Messages. In these cases, enclos-
ing metadata was found either in the form of JSON
or HTML, respectively. Albeit the metadata struc-
tures lingering in memory use a different data for-
mat and exhibit different fields, both follow a simi-
lar model which may be used to reconstruct the tu-
ple (Timestamp, Author, Recipient, Message) which
we consider a communication record. In the case of
Facebook chat, the metadata fields present in Figure 1
allow us to easily reconstruct the full (Timestamp, Au-
thor, Recipient, Message) tuple, where 1.A corre-
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sponds to Message, 1.B to Author, 1.C to Recipient
and 1.D to the message Timestamp.

The example in Figure 2 helps to identify an edge-
case on the reconstruction of communication records.
While 2.C can be easily matched with Message field
and 2.D to the message Timestamp, 2.B does not pro-
vide enough information to state whether the identi-
fied Twitter alias corresponds to either Author or Re-
cipient. However, 2.A clearly specifies the direction
of the message. Thus, the record in Figure 2 suggests
it refers to a message where 2.B specifies its Author.
The message Receiver would then consist of the ac-
count which the suspect has logged-in to and which
can be known either by previously gathered intel or
other data structures residing in memory. We experi-
mentally verified that, for outbound messages, the 2.A
field would mark the Twitter Direct Message as sent.

Additionally, we found that the structure of ob-
tained communication records remains the same for
each web-application even across different browsers
and operating systems. This observation reinforces
our conjecture that the leakage of high-level data into
memory is caused by the way web-applications are
built, as the structure of high-level records present in
memory is not tied to the particular implementation
of a browser or an operating system’s inner workings.

2.4 Message Durability

We now ascertain how the use of different browsers
and operating systems, as well as the execution of in-
trusive actions affects the recovery of communication
records. As shown in Table 1, we were able to retrieve
communication logs with all tested browsers. How-
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ever, we note that, for experiment /LI, we collected
a smaller amount of messages when using Firefox or
Edge rather than when using Chrome or Opera. A
possible explanation for this fact is that both Chrome
and Opera are based on Chromium’s codebase and
may share implementation details which favour the
preservation of a tab’s resources in memory.

Browsers may implement different mechanisms
for refreshing the contents of volatile memory, evict-
ing the resources of background tabs and favouring
those of the foreground tab. To check whether this
fact affects the recovery of communication records,
we conducted experiment /L2. Our results show that
Chrome and Opera still retain communication records
in memory while Firefox and Edge have eliminated
all remnants of communication records belonging to
the tab where the web-application test run has oc-
curred. These results are congruent with experiment
IL1, where Firefox and Edge were also less amenable
to retain artifacts in memory.

Since modern browsers spawn a process for man-
aging each tab, our intuition was that by closing
a tab or by killing the browser, the opportunity to
gather communication records would cease to exist.
As it stands, for experiment /L4, we were not able
to retrieve any communication record when testing
over Windows 10. Upon closing a tab or killing
the browser process, the operating system swiftly
reclaimed the process memory back, thwarting our
high-level data inspection. Interestingly, when con-
ducting the same experiments over Ubuntu 16.04, we
were able to retrieve communication records from
memory after executing such intrusive actions.

Opposed to our initial expectations, navigating to
different webpages in a given tab has triggered the
most changes on volatile memory contents. Albeit
we were able to recover a small number of high-level
records in Ubuntu 16.04, no records were recovered
when conducting experiment /L3 in Windows 10. In
fact, the sequence of actions performed in experi-
ment /L3 fosters the replacement of older resources
kept in memory in favour of more recent data. Thus,
possibly useful evidence is discarded more promptly.
Taking into account the outcomes of experiments /L3
and /L4, Linux Ubuntu’s memory management thus
seems more favourable to conduct memory analysis
in the context of our work rather than Windows 10.

Additionally, we experimentally verified that the
use of private browsing in all tested browsers does not
affect the collection of targeted high-level data. No
visible changes have been observed either in the struc-
ture or the overall amount of communication records
recovered in each test. Hence, our findings sug-
gest that some privacy preserving properties of private

browsing can be nullified through memory forensics.
Lastly, results show that the existence of com-
munication records in memory appears to be loosely
dependent on the browser/operating system in use,
which leads us to infer that our results arise from the
technologies and programming methodologies used
by application/browser developers with respect to the
loading and presentation of data. Two concrete cases
are those comprising the recovery of Skype and Out-
look logs, which can be performed for all browsers
tested except Firefox when run over Windows 10.

2.5 Summary

The results of our study indicate that the recovery of
communication records from physical memory is a
viable path for uncovering otherwise ephemeral evi-
dence. We were able to retrieve high-level data from
some of the most popular web-applications used to-
day, which motivates the need to develop specialized
tools to recover evidence for the unfolding of digi-
tal investigation cases. In particular, given the het-
erogeneity of data structures found in memory, digital
investigators would be burdened with the task to build
and maintain a wealth of pattern matching expres-
sions so as to be able to automatically extract avail-
able evidence from memory dumps.

3 RAMAS FRAMEWORK

This section presents RAMAS, a forensic tool for the
extraction of communication records from memory
dumps of web-based messaging applications'.

3.1 Design Goals

We built RAMAS according to four design goals:

Simple Design of Extraction Modules. The de-
sign of new extraction modules (composed of string
matching patterns) should be easy to perform. Prac-
titioners should be able to contribute to the RAMAS
framework without the need of being familiar with a
particular programming language.

Simple Sharing/Update of Extraction Modules.
Developed modules should be easily upgradable,
without the need to change RAMAS’ core function-
ality. It should be straightforward for practitioners to
share and advertise newly developed modules.

Organized Case Management. The number of
seized machines in computer forensics cases may
scale to large numbers. To manage data pertaining

'RAMAS stands for “RAM Analysis System”
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Figure 3: RAMAS architecture.

this.add_message_row(6501,{"subject":"Bank assault plan","fromto":"<span class=\"adr\"><span title=\"

class=\"rcmContactAddress\">B1lly the Kid<\/span=<\/span>",6"date":"2817-01-12 28:21","size":

ype":"text\/plain”,"mbox":"INBOX"},false);

Figure 4: Roundcube inbox entry data fields.

to several cases, RAMAS should provide an inte-
grated way to organize the collected memory images
and store the retrieved high-level data.

Simple Inspection of Results. RAMAS should pro-
vide a simple interface to visualize extracted com-
munication records, support queries on the recovered
data, and aid investigators in disclosing more complex
correlations among different pieces of evidence.

3.2 Architecture

We implemented a RAMAS prototype for Linux.
Our prototype was written in Python and leverages
a SQLitev3 database for holding memory analysis re-
sults. Figure 3 shows the several components that im-
plement the core functionality of the system, the man-
agement of extraction modules, and the evidence pre-
sentation layer. Additionally, we deployed RAMAS
as a GUI desktop application as a further effort in
making the system attractive to users without com-
promising any of its functionality.

Our framework is based on a carving approach to
retrieve matching records present in memory images.
RAMAS matches communication records by explor-
ing their structure, retrieving all meaningful data held
between well defined delimiters. Upon the collection
of digital artifacts containing communication records,
RAMAS processes the metadata associated to these
artifacts to isolate the sole components which con-
vey useful evidence to the investigator. This allows
for the discard of application dependent fields which
are useless for high-level inspection of records, such
as application versions. Furthermore, other kinds of
data forming the structure of a record can also be dis-
carded. A relevant example comprises verbose HTML
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wrapper artifacts that compose the structure of the
communication record but offer no value from the
point of view of the analysis (see Figure 2).

Analysis in RAMAS is conducted by running a
selection of the available extraction modules over the
strings obtained from a given memory dump. Af-
ter analysis, RAMAS stores the recovered data in a
database and offers a simplified visualization of the
recovered records, organized by modules.

3.3 Extraction Modules

The forensic study conducted in Section 2 suggests
that the internal representation of messaging web
clients is different for each application. Considering
the ever-growing number of web applications, there
is not an obvious number of extraction modules that
should be integrated into RAMAS before-hand. Thus,
users should be able to develop and install new extrac-
tion modules without the need for changing the sys-
tem’s core or to be familiar with a specific program-
ming language. We used Python’s ConfigParser
configuration files for implementing extraction mod-
ules. These easily allow us to define groups of named
values which suffice for delimiting an existing record,
as well as individual fields within the record.

Listing 1 provides the extraction module for re-
covering Roundcube’s inbox email records, depicted
in Figure 4. The first section of a module is named
Info and contains general information about the
module, namely its name and a short description. The
second section of a module is called PreProcess and
contains a single Keyword parameter, the content of
which shall be used to restrict the pool of strings upon
which record matching will be applied. In our exam-
ple, we retain all strings which contain the sub-string
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add_message_row, since this keyword appears in the
metadata structure of the records we aim to extract.
The two next sections declare the start and end de-
limiters of the whole record as well as the individual
fields that should be extracted and recorded in RA-
MAS’ database. As RAMAS attempts to sequentially
match the declared record fields, the corresponding
delimiters must be declared in the order they appear
within the record. We note that this restriction must
be enforced by the module developer. Lastly, the
Mediator section contains a hint on how to interpret
the date representation so as to convert it to a common
date representation shared among all modules.

Listing 1: Extraction Module for Roundcube inbox records.

[Info]
Name: roundcubeInbox
Description: Roundcube’s inbox record fetcher.

[PreProcess]
Keyword: add_message_row

[StartDelimiter]

Record: this.add_message_row
Content: {"subject":"
Author: title="

Date: date":"

[EndDelimiter]
Record:;

Content: ", "from"
Author: " class
Date: ",

[Mediator]
Date: yyyy-mm-dd hh:mm

Module Update. Application providers are free to
update the internal representation of data. To ensure
the retrieval of communication records, investigators
must update extraction modules accordingly. Hence,
the update of extraction modules should be straight-
forward. Due to the modular design of RAMAS, the
task of updating a module only comprises changes on
the module itself, not affecting any other component
of RAMAS’ core functionality. Similarly to the de-
velopment of new modules, updates are performed by
changing the required fields on the configuration file.
This process may encompass the addition/removal of
some metadata field that has became available/dep-
recated, or it may just involve the minor updates in
fields already declared in the configuration file.

Module Sharing. To avoid repeated work due to con-
current endeavours by digital investigators, we envi-
sion the creation of a centralized repository for help-
ing a module’s creator and other practitioners to up-
date existing modules while keeping track of changes.

Additionally, RAMAS can check the repository on
start-up and update installed modules to their most
recent version. While the implementation of such a
repository is deferred to future work, the codebase re-
sulting from our work already allows for the manual
install and update of extraction modules.

3.4 Dealing with Heterogeneous Data

Due to the heterogeneity between applications, build-
ing a database of all recovered records represents a
challenge. We refer to classical problems in data in-
tegration. Firstly, we encounter a schema-matching
problem, where the same concept may be identi-
fied in different applications by differently named
fields. Secondly, we may encounter a semantic-
matching problem, where even fields with the same
name can refer to data with distinct underlying mean-
ings. Moreover, the metadata available in some ap-
plication may be richer than that available in others.
Thus, the identification of the minimal set of fields
that can be successfully used for unveiling correla-
tions between collected evidence is crucial for allow-
ing RAMAS to execute data integration routines for
providing better query support.

The fields extracted by each module can repre-
sent semantically equivalent metadata, although it is
named differently in distinct applications, e.g., a mes-
sage timestamp may be identified by fields with dif-
ferent names (date vs time). To offer a single database
schema which supports queries over records extracted
with different modules, RAMAS performs data inte-
gration to provide users a unified view of the commu-
nication records coming from different sources. Each
configuration file declares the mapping between the
heterogeneous schema of different modules and the
global RAMAS database schema.

RAMAS still faces a semantic integration prob-
lem where, for different modules, the same con-
cept may express different meanings. As an exam-
ple, for any two different modules, author may be a
user’s name in some application and an application-
dependent identifier on another. Even with such a lim-
itation, RAMAS can still maintain a global timeline of
all application activity conducted by a suspect. When
ordering records which use different representations
for time, the configuration file can contain a hint on
how to convert a particular timestamp representation
to a common representation such as UNIX time.

3.5 Memory Dump Processing Pipeline

The strategy we followed in the creation of modules
ensures a flexible independence between these and the
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core functionality of RAMAS. We now describe how
RAMAS processes a memory dump with base in such
modules. We assume that RAMAS receives as in-
put a file containing strings, instead of the raw mem-
ory image acquired by first responders. To produce
such a file, investigators may resort to the standard
command-line utility strings which finds and prints
text strings embedded in binary files.

The strings file obtained from the raw memory im-
age can be analyzed simultaneously by a set of mod-
ules. To this end, RAMAS dispatches a batch of mod-
ules to a pool of threads. Threads filter the initial list
of strings obtained from the memory image, generate
regular expressions by gluing together the delimiters
of the fields declared in each module, and perform the
actual evidence extraction work.

The initial pre-processing of the strings file with a
keyword is justified by performance reasons. We dis-
cuss in Section 4 the advantages of this preliminary
filtering step. After filtering the strings dump, the
backend of RAMAS applies a regular expression over
the remaining strings, further restricting the existing
digital artifacts to the strings comprising a full com-
munication record. In this second processing stage,
RAMAS introduces a countermeasure against the in-
jection of delimiters in the content of messages. If
RAMAS allowed for such an injection, a miscreant
would be able to inject an end-delimiter of a message
among the written text and hide incriminating mes-
sages after this artificial delimiter. To thwart this at-
tack on the inner workings of our system, RAMAS
applies a find-and-replace method on each individual
record. RAMAS searches for the start delimiter of the
message field of a record starting from the far left and
scans the end delimiter of the same field from the far
right. When found, these delimiters are replaced by a
pseudo-random nonce which will now act as start/end
delimiter for the message field. Thus, the only way an
attacker would have to interfere with the correct re-
covery of the message content would be to guess this
nonce and place it before his incriminating message.

In the third processing stage, RAMAS builds
a second regular expression which scans every re-
maining record and retains data according to each
of the declared fields in the module configuration
file. Lastly, RAMAS saves the obtained records in
a database for further analysis. Details over the evi-
dence presentation layer are detailed next.

3.6 Evidence Presentation Layer
Upon completing the analysis of the high-level data

contained in a selected memory dump, RAMAS
builds a set of simple forensic timelines for presenting
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Table 2: Time elapsed (in seconds) in extracting printable
characters out of differently sized memory images.

Raw Memory  Strings File Size  Time Elapsed
1 GB 82 MB 27.205s
2GB 157 MB 53.148s
4GB 255 MB 108.459s
8 GB 233 MB 193.539s

the extracted communication records. A timeline is
built for each of the modules used for analysis. Time-
lines are rendered by RAMAS GUL

Apart from analyzing the results for each mem-
ory image in an isolated fashion, RAMAS updates its
global database schema, adding the newly discovered
(Timestamp, Author, Recipient, Message) tuples. This
global schema allows investigators to pose queries at
the database of recovered records, enabling the cor-
relation of evidence obtained from the use of several
modules over a single memory image, or across dif-
ferent memory images pertaining to a case. An exam-
ple of this scenario is presented in Section 4.2.

4 EVALUATION

We evaluated the performance of RAMAS by con-
ducting several experiments over the time it takes to
complete a forensic analysis. Particularly, we tested
the impact of the number of extraction modules ap-
plied, as well as the impact of the memory image size
on the forensic analysis performance.

In our experiments, we have exchanged messages
on four web-applications in order to conduct forensic
analysis: Facebook chat, Skype, Twitter and Round-
cube. Each web-application was operated in a differ-
ent tab of Google Chrome running over a Windows 10
virtual machine. For the experiments reported in this
section, we have used the sequence of user actions
with intrusiveness level IL].

The analysis of communication records using RA-
MAS was conducted on a 64-bit Ubuntu 16.04 LTS
virtual machine equipped with four 2.6GHz Intel i7-
6700HQ virtual CPUs, and 4GB of RAM.

4.1 Measuring Analysis Time

Finding Printable Characters. The strings file used
as input for RAMAS is indeed smaller than the total
size of the raw memory image under analysis. Ta-
ble 2 depicts the time spent in reducing a raw mem-
ory dump to its printable characters in a default execu-
tion of the strings utility. We note that st rings can
be further instructed to ignore sequences of characters
less than a given size constant, which may further re-
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duce the time elapsed during the pre-processing step.

Table 2 also shows us a counter-intuitive result
comprising the amount of printable characters found
in 4GB and 8GB raw memory images. Interestingly,
the size of the strings file obtained from the 4GB
memory image (255MB) was larger than that ob-
tained from saving the strings contained in the 8GB
memory image (233MB). We verified our results by
acquiring six new memory images using the same
procedure. For all the acquisitions, the amount of
printable characters found in a 4GB memory image
was larger than that found in an 8GB memory image.

Varying Memory Image Size. We studied the im-
pact of the memory image size on the elapsed time
to complete a forensic analysis with RAMAS. In this
test, we fixed the use of a single module while we vary
the size of the memory dump (respectively, the size of
the produced strings file). Without loss of generality,
we selected a module for identifying Facebook com-
munication records depicted in Figure 1 and extract
the (Timestamp, Author, Recipient, Message) tuple.

Figure 5 presents the elapsed time for five execu-
tions of our test without employing the pre-processing
stage described in Section 3.5. Conversely, Figure 6
presents the elapsed time for a similar experiment in
which we employ the pre-processing stage.

In a general way, our results suggest that the size
of the memory image negatively affects the time it
takes to complete a forensic analysis. The results de-
picted in Figure 5 show that omitting a pre-processing
step over the initial high-level data artifacts slows
down the analysis time considerably. For an 8GB
memory dump, scanning for evidence lasts for about
eight seconds, threefold the time it takes for analyzing
the strings contained in a 1GB raw memory dump.

Figure 6 shows that pre-processing the initial
strings file brings a whole lot of improvement to the
performance of the forensic analysis conducted by
RAMAS. Indeed, reducing the set of strings that a
module must be matched against to the data related
to the search domain drastically decreases the analy-
sis elapsed time. This performance improvement is of
several orders of magnitude, being noticeable when
analyzing the biggest memory images under test.

The attentive reader may notice the similarity in
the time spent while analyzing a 4GB and an 8GB
memory image, either applying pre-processing or not.
In fact, the analysis performed over the strings col-
lected from the 4GB memory image is slower than
the analysis for the strings of an 8GB memory image.
This is due to the fact that, albeit the 4GB raw image
is smaller than the 8GB raw image, we were able to
find a larger amount of strings in the former.

Varying the Number of Modules. A different exper-
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Figure 5: Time elapsed on the forensic analysis of differ-
ently sized memory images with Facebook recent messages
module - no pre-processing.

0.175 0.15

% 0.150 ’_/\7
©

o
HA
IS

NN

0.025

0.000

1GB 2GB 4GB 8GB

Figure 6: Time elapsed on the forensic analysis of differ-
ently sized memory images with Facebook recent messages
module - with pre-processing.

iment aims to understand the impact of the number
of applied modules on the elapsed time to complete
a RAMAS analysis. In this test, we fixed the size
of the memory dump in 8GB, a reasonable amount
of RAM widely deployed in commodity hardware.
For conducting this experiment, we attempted the ex-
traction of communication records from all of the
different Facebook, Skype and Roundcube Inbox ar-
tifacts we identified in our forensic study in Sec-
tion 2. Accordingly, we developed the correspond-
ing extraction modules for each of the corresponding
web-application’s digital artifacts, spawning a total of
six modules. Figure 7 presents the elapsed time for
five executions of our test.

The results of our experiments show that running
several modules in parallel results in a sub-linear time
for the completion of the forensic analysis. In fact,
an analysis comprised of six modules has completed
in nearly double the time of the time spent conduct-
ing an analysis with a single module. Our study sug-
gests that the most expensive operation consists in the
extraction of high-level data in the form of strings.
When compared to this preliminary effort, the actual
forensic analysis of the obtained data is several orders
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of magnitude smaller, even when applying multiple
extraction modules. This suggests that RAMAS can
be deemed a practical tool for aiding digital investi-
gators as its performance allows for evidence to be
quickly obtained, raging from seconds to a few min-
utes, depending on the size of each memory image.
In this experiment, we have recovered 17 Round-
cube Inbox, 1 Skype and 26 Facebook records, where
5 of the latter were duplicates and 3 were corrupted
(application-level data was included beyond a partial
message itself). We discuss possible causes for the
corruption of recovered records in Section 4.3.

4.2 Use Case

We enacted a use case for showing the benefits of
maintaining a global database schema which investi-
gators can query in order to unveil more sophisticated
correlations among data fetched from different mod-
ules/memory images.

An example of such a scenario is the identifi-
cation of a chain of command in a criminal orga-
nization. Let us assume that law-enforcement sus-
pects one individual (S}) to be involved in a crimi-
nal organization. While investigating this case, law-
enforcement storms through S;’s household and ac-
quires the volatile memory of the hardware operated
by the suspect. Upon analyzing the memory image
in search of (Timestamp, Author, Recipient, Message)
message tuples, investigators recover the chat records
depicted in Listing 2.

Listing 2: Records extracted by several modules.

#Records recovered with Twitter Direct Messages
module

1482949701, S_3, S_1, I have revised the plan,
lets do it at 4pm.

1482949712, S_3, S_1, Ok boss, I'll tell
Pinkman.

#Records recovered with Skype messages module
1482949730, S_1, S_2, Hey, Heisenberg has
revised the plan, lets rob the bank at 4pm

#Global Timeline

1482949701, S_3, S_1, Twitter, I have revised
the plan, lets do it at 4pm.

1482949712, S_3, S_1, Twitter, Ok boss, I'1ll
tell Pinkman.

1482949730, S_1, S_2, Hey, Heisenberg has
revised it, we strike at 4pm.

This example sequence of messages allows inves-
tigators to draw the following conclusions:

e S| was a surrogate in the organization. Investiga-
tors now have digital evidence about the fact.
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Figure 7: Time elapsed on the forensic analysis of an 8GB
memory image with increasing number of modules.

e S, represents a person in the organization that au-
thorities were not aware of. He was not the head
of the criminal organization, but authorities now
have a new lead to follow.

e S3 seems to be the organization’s mastermind.
Moreover, Heisenberg appears to be his name.

Although we present a simple example, we expect
the number of records to be recovered in actual set-
tings to be much larger and harder to digest. By ana-
lyzing modules’ output in an isolated fashion, investi-
gators could not be able to directly reach the conclu-
sion presented in the last bullet. The connection be-
tween the name and organization rank can only be es-
tablished by joining and contextualizing the evidence
recovered from both modules. Albeit this example
suffices to show the need for a global timeline for cor-
relating data across modules, the benefits of maintain-
ing a single global timeline can be further noticeable
when attempting to correlate data obtained from sev-
eral different memory images, collected in the scope
of a single case.

4.3 Limitations and Future Work

Due to the nature of volatile memory, metadata struc-
tures may be only partially available when scanning
for evidence. If RAMAS is unable to find the start/end
delimiters of a record, it will either ignore a partial
record or capture data beyond the expected limits, re-
spectively. To overcome this limitation, an improved
version of RAMAS may attempt to match the end of
a record and backtrace to fetch existing metadata, as
well as use heuristics for the record expected size and
limit overruns in adjacent artifacts.

Additionally, miscreants with knowledge about
RAMAS?’ analysis procedure may refresh the browser
tabs used to conduct illegal activity often. This be-
havior may cause communication records to be re-
placed/evicted, eliminating traces of criminal activity.
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S RELATED WORK

This section describes related literature regarding
memory collection procedures and the analysis of
high-level data present in physical memory.

5.1 Memory Acquisition

The proper collection of evidence is a crucial step in
any computer forensics investigation. Typical com-
puter investigations targeted the hard drive of a sus-
pect’s machine, ignoring all of the data kept in volatile
memory. Today, the analysis of both static media and
physical memory allows digital investigators to have
a better picture of the original state of the system and
recover otherwise ephemeral data (Vomel and Freil-
ing, 2012). Although the choice of a memory ac-
quisition procedure should take into account the par-
ticularities of the case at hand, there are three main
memory acquisition methods used by first responders,
which are based on hardware, software and virtualiza-
tion (Vomel and Freiling, 2011).

Hardware-based methods take advantage of DMA
(Direct Memory Access) requests through hardware
cards and allow for the collection of memory content
while having little impact in the system. However, the
target system must be equipped with specialized hard-
ware, and this technique may lead to system crashes
which poses reliability issues in memory collection.

Virtualization-based methods allow for a sound
extraction of memory by either collecting a file where
the physical memory of the virtual machine is kept
or by dumping it with the virtualization software.
Clearly, this is only interesting if malicious activ-
ity is being conducted on top of a virtual machine.
Nonetheless, the growing importance of Internet-
hosted services is expected to impose a partial shift on
the focus of digital investigations to virtual machines.

Software-based methods for dumping physical
memory are widely available. Still, some of these
tools require special access privileges and cannot gen-
erally offer a full copy of the memory at a given time.
Kernel level acquisition tools overcome some of the
limitations imposed by user level collection tools, but
are still unable to provide a completely atomic mem-
ory image due to the activity of concurrent processes.
Despite this shortcoming, software-based collection
is often applicable in practice since it does not require
a specific system configuration to be set in advance
nor does it rely on specialized hardware.

5.2 Memory Analysis

Contrary to the analysis of static media, the analysis
of physical memory typically presents a harder chal-
lenge due to the lack of a completely deterministic or-
ganization. It should be noted that many of the efforts
dedicated to the analysis of physical memory focus
on the recognition and inspection of OS-dependent
low-level memory structures (Simon and Slay, 2009;
Vomel and Freiling, 2011). Conversely, high-level
memory inspection strategies are typically bound to
the search of strings in the acquired dump.

Analysis approaches based on the search of strings
containing pertinent keywords related to a case ex-
hibits several drawbacks. In the one hand, investi-
gators may be presented with thousands of matching
records when analyzing large amounts of data (Beebe
and Dietrich, 2007). To make it worse, only few of
those records may be directly related to the case it-
self. In the other hand, if the terms contained in mem-
ory slightly deviate from the keyword list used by the
investigator, some evidence will fail to be recognized.

A previous approach (Beebe et al., 2011) has ad-
dressed some of these drawbacks by improving string
searching through neural networks which learn a list
of terms related to the case beforehand. Analysis re-
sults are ordered according to their relevance, allow-
ing the investigator to inspect the most pertinent data
first. Although the prototype yields good results with
respect to the obtained recall, the neural network takes
anon-negligible time to learn the terms and is not able
to provide any context about the matched keywords.

A different technique based on the use of regu-
lar expressions has been successfully applied in order
to extract evidence from strings accompanied by syn-
tactically structured metadata (Simon and Slay, 2010;
Wong et al., 2011; Yang et al., 2016). This metadata
provides context about a given artifact, allowing dig-
ital investigators to reason about the contextual rel-
evance of the data (Raghavan, 2013). For instance,
providing that the metadata contains a timestamp, in-
vestigators can build a timeline and reconstruct a se-
quence of actions took forth by a suspect.

However, this line of research has some draw-
backs. Firstly, prototypes are developed indepen-
dently without enabling regular expression sharing or
providing evidence visualization interfaces; extrac-
tion capabilities are merely seen as proofs-of-concept.
Secondly, string matching works only as long as regu-
lar expressions match the syntax of the application ar-
tifacts left in memory. Since the artifact structure may
change due to application implementation decisions,
investigators must take the burden of updating regular
expressions accordingly. RAMAS aims to tackle the
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Table 3: Comparison of RAMAS with different memory forensic tools. * Tool requires plugins to provide the functionality.

Forensic Tool Memory Multiple OS Live Analysis Extensibility Investigation Open-Source High-Level
Acquisition Target Workflow Analysis
RAMAS - v - v v v v
Volatility - v - v - v -
Redline - - - - v - v
Memoryze v - v - - - -
FATkit - v - v - - -
VAD Tools - - - - - v -
EnCase v v - v -
Rekall v v v v - v -
IEF v v - - - v
aforementioned issues by fostering the collaboration REFERENCES

of digital investigators on maintaining a platform for
the analysis of high-level data residing in memory.
To better lay RAMAS in the space of existing
memory forensic analysis tools, Table 3 depicts a
comparison of several properties exhibited by our sys-
tem with those of well-known memory forensic anal-
ysis software. We can observe that RAMAS presents
itself as the only open-source tool that provides an
investigation workflow (including case management
and evidence visualization) and is extensible, while
focusing on the recovery of high-level data. Com-
paratively, although EnCase can be extended through
plugins, it remains a proprietary and expensive foren-
sic tool, while Rekall focuses on low-level analysis
and fails to provide a proper investigation workflow.

6 CONCLUSION

This paper described a forensic study over the digi-
tal artifacts left behind in memory by popular web-
applications. Our study concludes that it is possible to
retrieve communication records from IM/email appli-
cations, in various settings and system configurations.

Motivated by the findings above, we have intro-
duced RAMAS, a framework for the extraction of
instant-messaging and email client data from volatile
memory. Our evaluation suggests that RAMAS can
efficiently extract and report the existence of commu-
nication records. RAMAS code is publicly available
and has been released as an open-source tool?.
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