
Lightweight Multilingual Software Analysis

Damian M. Lyons1, Anne Marie Bogar1 and David Baird2
1Department of Computer and Information Science, Fordham University, New York NY, U.S.A.

2Bloomberg L.P., New York NY, U.S.A.

Keywords: Software Engineering, Programming Languages, Software Systems and Testing, Software and Systems
Quality.

Abstract: Large software systems can often be multilingual – that is, software systems are written in more than one
language. However, many popular software engineering tools are monolingual by nature. Nonetheless,
companies are faced with the need to manage their large, multilingual codebases to address issues with
security, efficiency, and quality metrics. This paper presents a novel lightweight approach to multilingual
software analysis – MLSA. The approach is modular and focused on efficient static analysis computation
for large codebases. One topic is addressed in detail – the generation of multilingual call graphs to identify
language boundary problems in multilingual code. The algorithm for extracting multilingual call graphs
from C/Python codebases is described, and an example is presented. Finally, the state of current testing on a
database of programs downloaded from the internet is detailed and the implications for future work are
discussed.

1 INTRODUCTION

Companies with a large software base often face the
challenge of having to manage software architectu-
res and libraries in different languages to enforce
security, efficiency, and quality metrics (Mushtak
and Rasool, 2015) (van der Storm and Vinju, 2015)
(Lakos, 1996). Software development environments
such as Eclipse tend to be language specific – a
multiple language project would be developed in a
set of Eclipse IDEs for each language and a common
project. However, to address questions such as
refactoring for efficiency, it is necessary to be able
to analyse the entire existing code base, and existing
software tools are weaker in this cross-platform
aspect of multilingual systems (Strien, Kratz, and
Lowe, 2006) (Hong and al, 2015).

Although automatic software analysis tools can
be of great value in software engineering, their
widespread use is limited by many factors
(Christakis and Bird, 2016). Rather than proposing a
common language model or metalanguage and
complex IDE for cross-platform software
engineering – a top-down solution - we take the
approach of developing a set of simple, open source
tools to support static analysis of a multilingual code
base from the bottom-up. We present an overview of

our toolset, which we will call MLSA (MultiLingual
Software Analysis: pronounced Melissa) in this
paper, and also present our solution to one key issue
in making multlingual call graphs.

In the next section we briefly overview the
current literature and our motivation. Section 3
introduces the MLSA approach and architecture, a
bottom-up, lightweight perspective on static analysis
tools. Section 4 motivates and delves into detail on a
specific topic of importance, generating multilingual
call graphs. Our results are summarized and future
directions charted in the final section.

2 PRIOR LITERATURE

Heterogeneous or multilingual code bases arise in
many cases because software has been developed
over a long period by both in-house and external
software developers. Libraries for numerical
computation may have been constructed in
FORTRAN, C and C++ for example, and front-end
libraries may have been built in JavaScript.

A multilingual codebase gives rise to many
software engineering issues, including

• Redundancy, e.g., procedures in several
different language libraries for the same

Lyons, D., Bogar, A. and Baird, D.
Lightweight Multilingual Software Analysis.
DOI: 10.5220/0006392502010207
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 201-207
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

201

functionality, necessitating refactoring (Strien,
Kratz, and Lowe, 2006).

• Debugging complexity as languages interact in
unexpected ways (Hong and al, 2015).

• Security issues relating to what information is
exposed when one language procedure is called
from another (Lee, Doby, and Ryu, 2016).

Although multilingual code is common,
development tools tend to be language specific, with
some cross-platform functionality. As one example
among many, Checkmarx1 offers static analysis
(Christakis and Bird, 2016) for a wide range of
languages individually. One approach to handling
the issues of multilingual systems is to instead use a
versatile monolingual environment (Heering and
Klint, 1985), but of course this is not too useful an
approach for existing multilingual codebases. A
more ‘reverse engineering’ friendly approach is to
leverage a metalanguage, e.g., Rascal (van der Storm
and Vinju, 2015), which provides tools with which
program analysis algorithms can be written for
different languages. Of course, this does not
specifically address the problems that arise due to
the language boundaries.

Our approach here is more directed and more
‘bare bones’ – targeted primarily at the language
interface and using little extra infrastructure. In the
next section, we will describe the architecture for
MLSA, a set of lightweight open source tools for
multilingual software analysis. There are many
important software metrics and analyses for large
software architectures (Lakos, 1996). In the
subsequent section, we delve into one specific
analysis: call-graph generation for multilingual code
bases using C/Python programs as an example.

3 THE MLSA ARCHITECTURE

User directed static analysis of a multilingual code
base is carried out in MLSA by the application of
pipelines of small filter programs, producing and
consuming CSV (comma separated value) table
files. The initial filters consume a monolingual AST
(abstract syntax tree) generated by the appropriate
monolingual parser. This lightweight, open source
architecture is shown in Figure 1; The MLSA
Software Architecture2 is shown in Fig. 1(a), and an

1 http://www.checkmarx.com.
2 http://goo.gl/5tFQ7t.

example of a dataflow for an MLSA analysis is
shown in Fig. 1(b).

Static analysis in MLSA begins with the
monolingual layer in Fig. 1(a), where a language
specific parser generates the AST for each
monolingual program component in the multilingual
codebase. Currently our implementation covers C,
Python and JavaScript. The AST for the C programs
is generated by Clang-Check, those for Javascript
using SpiderMonkey, and a Python library function
generates the Python AST.

(a) MLSA Software Architecture

(b) Example MLSA Dataflow

Figure 1: MLSA Architecture.

Because each language AST differs, the
programs that consume the monolingual ASTs to
process interoperability APIs must be also language
specific; this happens in the interoperability layer. A
small set of interoperability APIS is currently
handled, but the addition of more is relatively
modular and contained within the interoperability
layer.

In the final layer, all the program data has been
transformed to multilingual, and procedures in
different languages can be related to one another. An
example of this processing is presented in the next
section.

ICSOFT 2017 - 12th International Conference on Software Technologies

202

3.1 Modularity

Example multilingual layer MLSA filter programs
include the generation of the forward and reverse
control flow, the identification of variable use and of
variable assignment, the allocation of heap memory,
the identification of procedure calls and so forth.
Consider an illustrative example of such a pipeline:
A Reaching Definitions Analysis (Nielson, Nielson,
and Hankin, 2005) (RDA) filter.

A monolingual AST filter CASN inputs the (C)
AST and generates a CSV file of variable
assignments locations. Another filter CRCF
generates the reverse control flow as a CSV file. A
multilingual filter RDA takes both as input and
calculates reaching definition for each assignment.

The MLSA architecture promotes modularity.
In the RDA example of the previous section:

1. Adding extra languages just requires adding new
monolingual filters for the language. For
Python, these are the PASN and PRCF filters.

2. Modifying analyses just requires reconfiguration
of the analysis pipeline: for example,
substituting the CSV output of CCON containing
condition locations for that of CASN would
perform RDA for the condition statements.

The architecture also supports open source
interactions. It is relatively easy to specify and build
new filters, or replace filters with more efficient
ones.

3.2 Computational Efficiency

The MLSA architecture was also designed with
computational efficiency in mind. The policy of
dividing the analysis into pipelines was chosen with
the objective of making parallelism and dependency
explicit. For relatively small multilingual codebases,
a static analysis network (as in Figure 1(b)) could be
distributed among multiple cores. The parallelism
and dependency can be derived directly from the
pattern of AST and CSV file use.

For a large codebase, in a realistic large company
scenario with a widely-distributed set of code
developers and contractors, a static analysis network
might need to function continually (a daily basis for
example) on cloud computing, regenerating and
updating CSV file components across the network.
In this scenario, the architecture also promotes a
‘just in time’ efficiency where CSV files are only
recalculated when needed by code changes, with
dependency information from the CSV files.

3.3 Multilingual Analysis

Call graph analysis (CGA) is a useful software
engineering tool (Ali and Lhotak, 2012). In
particular, for multilingual code, the call graph can
be used to investigate the boundary line between
languages, a boundary that is opaque in many tools.
For example, a C program may call a Python
procedure in addition to many C procedures.
Consider that one such C procedure OpenPort
exposes a security risk and needs to have its
invocations pass a security review. Just looking at
the call graph of the C procedures, some of which
may invoke the Python procedure, can give the false
security that it shows all the call sequences for the
program. However, the Python code may itself call
OpenPort or may call other procedures in that
same C program that in turn call OpenPort.

In the next section, we present one specific
problem we are addressing with MLSA – the
construction of multilingual call graphs – with the
objective of eliminating issues with the opacity of
language boundaries.

4 MULTILINGUAL CALL
GRAPH ANALYSIS

Call Graph for the program S is defined
CG(Sc)=(Vc , Ec) consisting of a set of nodes:

• Vc={(pname,parglist)} where pname∈Procs(Sc)
is a procedure name within the program Sc, and
parglist is the argument list in the procedure
call;

• Ec ⊆ Vc
 2 links a node v to node u iff some

execution of v.pname calls u.pname with
arguments u.parglist.

For imperative language without first class functions
constructing a CG is not challenging. For functional
languages and OO languages, the issue of dynamic
dispatch complicates the construction, and a
technique such as Control-Flow Analysis (CFA)
(Nielson, Nielson, and Hankin, 2005) must be used.
Calling a cross-language procedure may be almost
trivial (in the C/C++ case) or may involve a cross-
language API as in the case of JNI (C/Java) or
Python.h (C/Python) and others. A monolingual
call graph analysis will yield leaf nodes that are the
cross-language API calls. We restrict the call graph
CG to be a tree for ease of display, with recursive
calls as leaf nodes.

Lightweight Multilingual Software Analysis

203

Figure 2: Example C Call Graph.

4.1 MLSA CG Construction

The MLSA approach is to develop a set of filters, one
per language, that ‘disambiguates’ the cross-
language API so that the name of called cross-
language procedure and its arguments are directly
visible. If this can be done, then the construction of
the multilingual call graph is not difficult.

For example, consider a C program S.c that calls
some Python procedures defined in S.py. The Python
call graph filter generates a call graph CGp from its
source input S.py, Py-CG(S.py)= CGp and the C call
graph filter similarly generates C-CG(S.c)= CGc.
The multilingual call graph CG is constructed as
follows:

1. CG=CGc
2. For each leaf v∈Vc

 if v.pname∈{u.pname|u∈Vp}
 copy the subtree with root u
 to CG with root v.

The more difficult step is the disambiguation of the
cross-language API to generate the monolingual call
graphs above.

Consider the C/Python boundary API
(Python.h3): Python code can be called from C
non-interactively in the following ways (each of
which have several variants and may require setup
code):
• PyRun_SimpleString(pyCodeString)
• PyRun_SimpleFile(filePtr, fileName)
• PyObject_CallObject(pFunc,pArgs)
The first just executes whatever code is in
pyCodeString. The second executes whatever
code is in fileName. The last executes the python
function pFunc with arguments pArgs (where the
python module needs to have been loaded a-priori
using PyImport_Import()).

While the first can be treated simply as an
unnamed python procedure call, the other two are

3 https://docs.python.org/2/extending/embedding.html.

more challenging because the name of the python
procedure to be called is given by an argument
value. If the argument is a variable or expression,
then this is a constrained version of the dynamic
dispatch problem. Our approach is to use a Reaching
Definitions Analysis (RDA) to determine the set of
possible values (Nielson, Nielson, and Hankin,
2005) for the arguments of the cross-language API
call.

4.2 MLSA Language Boundary Filters

Let us consider the program Sc to be a set of (ℓ,b)
basic block b (elementary statement) with line
number ℓ. MLSA extracts this information from the
language AST file. The set B of elementary
statements includes a procedure call statement, and
for (ℓ,b), b∈B procedure call, we define:

• target(b): name of the called procedure
• arg(b)=a0,…,an: arguments of the call

Finally, we define RDA(p,X, ℓ) = {(x, ℓ’)|x∈X} to be
the line number ℓ’ of the last assignment in
procedure p for each variable x. The API call (and
its variants) PyRun_SimpleFile is processed as:

If (ℓ,b), b∈B, target(b)=PyRun_SimpleFile
 For (x,ℓ’)∈RDA(p,{a0},ℓ), with arg(b)=a0,…,an

 Calculate y=Eval(x, ℓ’), and if y≠∅,
 Add (y,∅) to VC and ((p,α),(y,∅)) to EC

The RDA analysis determines the line ℓ’ that the
first argument to the API call was last assigned. The
Eval function determines if the value can be
statically evaluated. Not all values can, of course.
So, in the case that it is not possible, this is marked
using ∅. In fact, finding that a C program is calling
a Python program whose name can only be
determined by run time calculations is itselfa
software engineering concern, and should be flagged
for review.

If the value can be statically determined, then the
name of the Python procedure is added to the call
graph. The subtree for the called procedure will be

ICSOFT 2017 - 12th International Conference on Software Technologies

204

added to the multilingual call graph when the C and
Python call graphs are merged.

The PyObject_CallObject API call (and
variants) is processed as follows:

If (ℓ,b), b∈B, target(b)=PyObject_CallObject
 For (xi,ℓ’)∈RDA(p,{a0},ℓ), with arg(b)=ai i=0..n
 Calculate yi=Eval(xi, ℓ’), and if all yi≠∅,
 Add (y0,y1,…,yn) to VC , ((p,α),(y0,y1,…,yn)) to EC

This is an extension of the processing for the file
API call to include an RDA analysis of all the
arguments for the cross-language procedure call. In
the strictest implementation, the call graph can be
completed only if the procedure name and all the
arguments’ values can be statically determined.
However, a more reasonable approach might be to
insist only that the cross-procedure name be
statically determined, since it is reasonable that the
values of the arguments to the procedure might only
be determined at run time.

5 IMPLEMENTATION

As an example, consider a C program with a call
graph as shown in Figure 2. The C program uses the
Python.h interface to call some Python scripts (using
PyRun_Simplefile) for the user interactions. In
a monolingual analysis, these are the leaves of the
call graph (recall we have restricted this to a tree).

We have implemented the language boundary
filters and call graph construction methods in section
4.2 with some restrictions. For each function call,
the parsing programs retrieve the name of the
function called, the scope of the function call
(whether the function was called inside a function
definition, the main function, or even another
function call), and the arguments of the call. The
arguments can be literals (such as a character, string,
integer, double, or Boolean) or variables. For now,

the variable’s name can be retrieved, but the value of
the variable is not available unless it is specifically
stated in the function call. That is, the RDA analysis
has not been added. The output of the call graph
filter is a CSV file which has a series of rows, one
per call, containing:

• Parent procedure name
• Called procedure name
• Argument strings for the call

The C filter also replaces the
PyRun_Simplefile call with the name of the
python file being called, treating the file name as a
function – the first step in eliminating the opaque
boundary.

Figure 3: Example Python Call Graph.

The Python call graph in Figure 3 shows a root node
called Deposit.py: The monolingual python filter
creates this as a ‘main’ procedure for the python file,
and it consists of any executable code not
encapsulated in procedures. Using the cross-
language file name as the cross-language procedure
call name simplifies the final stage of processing,
matching the leaves and roots in monolingual call
graph CSV files and producing a combined CSV file
showing both C and Python calls.The resulting CSV
file is then processed to create a dot file that, through
Graphviz, will generate a call graph diagram like the
ones in Figures 2-4. The program represents
function calls in C programs by an oval node and
function calls in Python programs by a rectangular
node, thereby making the multilingual aspect of the

Figure 4: Multilingual Call Graph (Cropped for size).

Lightweight Multilingual Software Analysis

205

call graph visually apparent.
The call graph, as seen in Figure 4 (cropped for

size), depicts procedures in both the C and Python
languages to visually represent their mutual call
relationships. Note that the same Python procedure
(Welcome.py) called from different points in the
C program produces a different subtree. However,
because the RDA module was not implemented in
the filter that generated Figure 4, the argument
values are not visible.

To test the programs in the pipeline, a small
codebase of 35 Python and 30 C/C++ programs was
built to ensure that the MSDA software could handle
code of potentially unfamiliar style (to us). The
programs were collected by Internet browser search.
The first 30 C/C++ and Python programs that were
returned from search that were shorter than 100 lines
of code were selected. (In fact, 35 Python programs
were added due to the calling relations between
some of the programs.)

Of the 35 Python programs collected, 8 were
successfully processed and did not encounter any
errors when creating the CSV file. The pressing
problem with the monolingual filter for the Python
files is that it cannot handle keyword arguments or
lambda arguments. Other less pressing issues with
the software developed are as follows: cannot handle
dictionary structures; only works for calls and
arguments that are expressed using binary
operations; cannot handle dynamic dispatch; cannot
handle function calls with attributes that have
arguments; cannot handle list operations as
arguments.

Of the 30 C/C++ programs collected, 22 did not
encounter any errors while the CSV file was being
created. The main issues that the C/C++
monolingual filter program cannot handle include:
python calls other than PyRun_SimpleFile;
redefinitions as functions (functions with the same
name as functions in standard libraries); definitions
in external C files.

In addition to the C/C++ and Python programs
used for testing, 5 C/C++ programs that call Python
programs, along with those Python programs, were
also collected to test combining CSV call graph files
and to create a multilingual call graph. All 5 C/C++
and Python combinations were successful.

6 CONCLUSIONS

This paper has introduced a lightweight approach to
multilingual software analysis – MLSA. This work
addresses the issues faced by companies that must

manage software architectures and libraries in
different languages to enforce security, efficiency,
and quality metrics. Because many existing software
engineering tools are monolingual, even though
multilingual code is widespread, issues that relate to
the language boundaries may get overlooked.

We propose an architecture comprised of
monolingual filter programs that analyse single
language AST and identify the cross-language
boundary. The filters generate language independent
information in CSV format. Additional multilingual
filters operate on the CSV files in pipelines. This
architecture has advantages of modularity and
efficiency and is open-source friendly (to add
additional language or analysis filters for example).

We focus on one specific problem, the
generation of multilingual call graphs and develop a
detailed approach for this. The C/Python interface is
used as an example throughout. Finally, we present
an example multilingual call graph analysis in
overview, and describe the current status of the work
based on a database of 75 C and Python programs
downloaded from the Internet.

Two areas of work on this project concern the
monolingual filters and the completion of the RDA
analysis. The current monolingual filters directly
parse AST text files and many of the trivial errors
recorded in testing relate to this parsing. One
solution is to move to a JSON AST format and
leverage existing libraries to parse the files. While
the completion of the RDA analysis allows argument
values to be variables and expressions, determining
the value of these expressions is a separate concern
limited by the scope of static techniques.

While the argument of computational efficiency
from design is argued here, current work includes
collecting performance statistics to support this as
well as to expand the small codebase used. The call
graphs generated by MLSA are similar in
representation to those generated by the Eclipse
IDE, and future work will include a more detailed
comparison of the MLSA call graph filters with
other available tools.

ACKNOWLEDGEMENTS

The authors acknowledge the contributions of Bruno
Vieira, Sunand Raghapathi and Nicholas Estelami in
developing MLSA tools. The authors are partially
supported by grant DL-47359-15016 from
Bloomberg L.P.

ICSOFT 2017 - 12th International Conference on Software Technologies

206

REFERENCES

Ali, K., and Lhotak, O. (2012). Application-only
Call Graph Construction. Ecoop'12 Proceedings of the
26th European conference on Object-oriented
Programming. Beijing.

Christakis, M., and Bird, C. (2016). What developers want
and need from program analysis: an empirical study.
31st IEEE/ACM Int. Conference on Automated
Software Engineering. Singapore.

Heering, J., and Klint, P. (1985). Towards monolingual
programming environments. ACM Trans. on Prog.
Languages and Systems LNCS, 174.

Hong, S., and al, e. (2015). Mutation-Based Fault
Localization for Real-World Multilingual Programs.
30th IEEE/ACM Int. Conference on Automated
Software Eng.

Lakos, J. (July 20, 1996). Large-Scale C++ Software
Design. Addison-Wesley; 1 edition .

Lee, S., Doby, J., and Ryu, S. (2016). HybriDroid: static
analysis framework for Android hybrid applications.
31st IEEE/ACM Int. Conference on Automated
Software Engineering. Singapore.

Mushtak, Z., and Rasool, G. (2015). Multilingual source
code analysis: State of the art and challenges. Int.
Conf. Open Source Sys. and Tech.

Nielson, F., Nielson, H., and Hankin, C. (2005). Principles
of Program Analysis. Springer.

Strien, D., Kratz, H., and Lowe, W. (2006). Cross-
Language Program Analysis and Refactoring. 6th Int.
Workshop on Src Code Analy. and Manipulation .

van der Storm, T., and Vinju, J. (2015). Toward
Multilingual Programming Environments. Science of
Comp. Prog.; Special issue, New Ideas and Emerging
Results in Understanding Software, 97, 143-149.

Lightweight Multilingual Software Analysis

207

