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Abstract: Autonomous and adaptive systems perform tasks without human intervention and are among the most 
challenging topics in technology today. Autonomous cars have already appeared on our streets and 
unfortunately due to some severe accidents they appear to be not as secure as we had hoped them to be. This 
paper tackles the question of how far we can push the boundary towards achieving such behavior and still 
provide autonomic operations at least in a certain context with highest safety guarantees to establish trust in 
autonomous systems. 

1 INTRODUCTION 

Autonomous systems are becoming ubiquitous and 
will definitely make it into our daily lives. For 
example, autonomous cars are already seen on our 
streets and the first severe accidents prove that they 
are not as secure as we had hoped them to be. In a 
perfect world, autonomous cars would be able to 
share the road with other cars, motorists and 
bicyclists without any accident. But obviously we 
are not there yet. The hope, however, is that robotic 
cars, which are great at monitoring other cars, will 
be able to identify and avoid any other obstacles on 
the road. 

This position paper presents the authors' vision 
regarding trust in autonomous cars and adaptive 
systems in general.     

2 ADAPTABILITY - A 
DESIRABLE PROPERTY?   

Without much doubt, the term "adaptive" identifies 
one of the most challenging topics we currently 
explore in technology. It identifies systems with the 
property of being able to react to all situations 
occurring during its lifetime, both correctly and 
reliably and the question arises as to whether such a 

behavior is feasible, implementable, or even 
desirable. 

2.1 Adaptability 

Adaptability is conceptually a product of awareness 
and automation, or automation through awareness 
(Vassev and Hinchey, 2012). Awareness is about 
representing and processing knowledge along with 
monitoring, while automation is machine replication 
of human operations.  

While automation is more or less about 
performing a sequence of operations under well-
defined conditions, awareness is the capability that 
drives the automation, i.e., it identifies the specific 
automation conditions.  

Awareness incorporates means by which a 
computerized machine can perceive events and 
gather data about its external and internal worlds. 
Therefore, to exhibit awareness, intelligent systems 
must sense and analyze components as well as the 
environment in which they operate.  

Determining the state of each component and its 
status relative to performance standards, or service-
level objectives, is therefore vital for an aware 
system. Such systems should be able to notice 
changes, understand their implications, and apply 
both pattern analysis and pattern recognition to 
determine normal and abnormal states. Generally 
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speaking, a self-adaptation should be automation 
performed to fix abnormal states. 

2.2 Need and Feasibility 

Without any doubt, we believe that adaptability is a 
desirable property, but its value really depends on 
the system context. No adaptability, partial 
adaptability, full adaptability, and controlled 
adaptability are different levels or adaptability that 
will make it both a desirable and realistic property 
for most of the systems today.  

Also, when reasoning on the feasibility of this 
property, it is important to note that it has both 
learning and implementation curves, which along 
with the technology limitations also depend on the 
thrust in technology. Nowadays, adaptability is a 
desirable property wherever human control is not 
possible (e.g., deep space exploration) or a quick 
reaction is required. For example, to prevent disaster 
a fuel pump can be automatically stopped in the 
event of leakage in a fuel system. Other examples 
where adaptability is not just desired, but even 
essential, could be related to deep space exploration 
or any case where human control is not possible due 
to hazards threatening human lives or due to 
inability to provide such control.  

2.3 Adaptability and Evolution 

Our computers are commonly considered as being 
the most adaptive systems mankind has ever 
invented and, observing how computers penetrate all 
aspects of our lives and take control in almost all 
applications, we have to acknowledge at least the 
universality of computing equipment. Obviously, the 
underlying reason for being adaptive and universal 
originates from its very simple basic mechanism to 
manipulate numbers in the dual system and the 
ongoing minimization technologies for electronic 
circuits. However, more important for becoming 
adaptive, of course, is the programmability of such 
machines using human intelligence and creativity, 
and the human’s abilities to master complexity using 
mathematics and computer science technologies.  

Adaptability through evolution could be the next 
level of adaptation where a system evolves to go 
beyond its original meaning. Such an evolutionary 
adaptation could tackle, for example, safety 
properties which are no longer required, because the 
related hazards had been permanently removed. 
Another example, could be evolution in the 
awareness capabilities of the system.  

Let’s assume that an AI system is programmed to 
self-adapt its hazard identification capabilities to 
improve the same or to identify new hazards that 
were not originally planned to be tackled. Well, we 
will most probably get to the next level of AI where 
it evolves and goes beyond its original meaning. 
This situation can be addressed as technological 
singularity (Vinge, 1993). Note that the term 
singularity has been used in math to describe an 
asymptote-like situation where normal rules no 
longer apply. For example, an originally 
programmed AI can stop detecting specific hazards, 
just because its evaluation criteria has evolved, and 
these hazards are not hazards anymore. From this 
point forward, we will be not that far from the 
moment in the future where our technology’s 
intelligence exceeds our own. 

For example, an email spam filter can be loaded 
with intelligence about how to figure out what is 
spam and what is not and it will start to learn and 
tailor its intelligence to us as it gets experience with 
our particular preferences and habits. However, we 
may often delete emails that we want to read but do 
not want to keep in our email box. This can be 
misinterpreted by the spam filter and it can start 
filtering these important messages for us. 

3 MACHINE LEARNING AND 
ADAPTABILITY  

The term machine learning (ML) is provocative as it 
imputes that machines can learn similar to human 
beings. In this section we will try to present our 
interpretation of ML and how it is connected to 
adaptability. 

In general, ML is concerned with computer 
programs that automatically improve with 
experience (Mitchell, 1997). To do so, ML tries to 
use a successful past solution and adapts it to a 
similar problem, i.e., a sort of reasoning by analogy. 
This is a principle that can be found in case-based 
reasoning (CBR) systems applied to both simple and 
structured knowledge representation (Aamod and 
Plaza, 1994). Such a CBR system works along a 
cyclic process, by retrieving the most similar cases, 
reusing the cases in the attempt to solve the problem, 
revising the proposed solution, if necessary, and 
retaining the new solution as part of a new case. 

ML is perhaps the most advanced field currently 
explored for self-adaptation in software intensive 
systems. The problem of adaptation through learning 
has been a core research issue for a long time. An 
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example of ML connected to adaptability is ML in 
dynamically changing environments where the 
adaptation is performed through learning and 
identification of context changes. 

But how does ML distinguish from human 
learning?  

Currently, ML is only possible at a small scale 
where self-adaptation is usually related to 
formalisms used in Fuzzy Systems, Artificial Neural 
Networks, and Evolutionary Computation (Baier and 
Katoen, 2008). ML covers both symbolic methods 
(decision trees and rules, etc.), sub-symbolic 
methods (neural networks, Bayesian networks, etc.) 
(Berger, 1985) and has several connections with 
traditional statistics (discriminant analysis, 
regression analysis, cluster analysis, etc.).  

Still, mainly due to its mathematical 
underpinning, ML is not biased, i.e., humans can be 
biased in their decisions, but ML is strictly 
mathematical. Human learning involves different 
methods and different sources - their “knowledge 
base” has common facts and strictly personal facts. 
Experience can be transferred. 

4 TRUST IN AUTONOMOUS 
SYSTEMS  

In today’s technologies, the term autonomous plays 
a major role. It denotes systems which perform their 
tasks without human intervention as e.g., automatic 
lawn mowers, smart home equipment, driverless 
train systems, or autonomous cars. The most 
challenging question which comes up when 
following the life cycle of the term “autonomy“ is 
the potential to construct a system that behaves and 
operates similarly to, or even better than, a human 
being. Hence, it is reasonable to discuss how far we 
can push the boundary towards such behavior and 
provide autonomic operations at least in a certain 
context with highest safety guarantees, and finally 
establish trust in its innocuous operation.  

But, will robots ever be able to fully substitute 
humans?  

Our answer is “probably not”.  It really depends 
a lot on the overall impact, not only technological 
but also political that should be expected from a 
universal autonomous system that successfully 
replaces human beings. Autonomous systems that 
will take over the entire traffic control and 
transportation—yes, because this will eliminate 
hazards related to human errors, e.g., fatigue. But it 
is less likely that we will see robots that will ever 

replace humans in decision making related to social 
organization, for example.        

The means to establish trust in autonomous 
systems can be roughly described as a twofold 
objective based on both boundaries and a technical 
approach:   

1. Establish boundaries or a range of adaptation 
— certain properties (e.g., safety) should be 
unavoidably held, and thus unforeseen 
adaptations that may mitigate such properties, 
should not be allowed without change (human 
control) in the established adaptation range.     

2. Pursue autonomy in a stepwise manner where 
autonomy can be gradually introduced: no 
autonomy, partial autonomy, controlled 
autonomy, and full autonomy. Hence in earlier 
stages, autonomy should be used in less risky 
domains.  

4.1 Dominant Role of Autonomy  

It is hard to imagine a system being constructed by a 
human which adapts itself to all and especially all 
unforeseen situations as the term unforeseen 
describes circumstances the human himself has not 
foreseen. 

If we restrict ourselves to some foreseen 
unforeseen behaviors which we might be able to 
handle, we have to consider a problem of 
completeness. Did we cover the whole set of 
behaviors or did we omit some of the behaviors? 
This, of course, raises questions of complexity as the 
number of such situations might be close to infinity 
and thus, not foreseeable at all. In order to handle 
such complexity, we have to restrict the adaptability 
of our systems to a certain context in which we are 
able to capture all different behaviors, or which at 
least enables us to classify and cluster such 
situations. Home environments with a few sensors 
only might be such a context as well as autonomous 
transportation systems, e.g., smart trains.  

Some other contexts in which autonomy could 
play a dominant role are contexts where systems 
operate in environments that change dynamically, 
e.g., space, ocean, weather stations, etc. In such 
cases, it is impossible to identify and predefine all 
possible behaviors. A solution could be related to the 
use of granularity in behavior modeling, i.e., a self-
adaptive system should not handle all the possible 
behaviors, but categories (or classes, or clusters) of 
possible behaviors. Then, known behaviors shall be 
classified and let the learning process cope with 
these.  
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The awareness-learning process will be able to 
identify a class of behaviors close to the requested 
behavior and then pick up a behavior from this class 
(a low-level behavior). This could be done in a 
probabilistic manner, when the low-level behavior 
identification is not possible. Moreover, behaviors 
based on combinations of predefined behaviors can 
be identified by a reasoner on an input-output basis. 

Therefore, scientists vote again for more math 
and formalisms in their development but obviously 
this is much more difficult than it was to prove a 
non-autonomous system correct. Obviously, it is not 
just a matter of logic and logical proofs but it has to 
incorporate statistical evidence, too, and last but not 
least, it has to integrate the physical properties of 
such systems, as e.g., acceleration, loss of weight or 
the compression of gas under pressure in order to 
prepare for adaptability. We assume that in order to 
capture autonomicity in a safe and reliable way, we 
will see in the near future a convergence of 
modeling and development techniques based on 
logics, statistics, and numerics.  

4.2 Autonomy and Adaptation Cannot 
Be 100% Safe  

In regards to autonomy and adaptation, the 
application of formal methods can only add to 
safety. Even if we assume that proper testing can 
capture all the autonomy flaws that we may capture 
with formal verification, with proper use of formal 
methods we can always improve the quality of 
requirements and eventually derive more efficient 
test cases, and consecutively, a safer autonomy. 
Moreover, formal methods can be used to create 
formal specifications, which subsequently can be 
used for automatic test-case generation. Hence, in 
exchange for the extra work put to formally model 
the autonomy and adaptability of a system, you get 
not only the possibility to formally verify and 
validate these features, but also to more efficiently 
test their implementation. 

It is evident that 100% safe autonomy cannot be 
guaranteed, but when properly used, formal methods 
can significantly contribute to this by not replacing, 
but complementing testing. The quantitative 
measure of how much safety can be gained in 
autonomy may be regarded in three aspects: 

1. Formal verification and validation allows for 
early detection of autonomy and adaptation 
flaws, i.e., before implementation. 

2. The high quality of autonomy requirements 
improves the design and implementation of 
these requirements. 

3. Formally specified autonomy requirements 
assist in the derivation and generation of 
efficient test cases. 

 
To be more specific, although it really depends on 
the complexity of the system in question, our 
intuition is that these three aspects complement each 
other and together they may help us build a system 
that has a considerably higher safe autonomy. This 
principle can further emphasize a systems' ability to 
autonomously tackle various hazards. 

4.3 Correct Adaptations  

How do we prove adaptations to be correct and 
reliable? And is there a difference between such 
proofs for foreseen and unforeseen behaviors? 

Adaptations are related to non-determinism and 
thus, their correctness proof, if possible, is a tedious 
task. Simulation is one solution. Another one is 
probabilistic guarantees—probabilistic model 
checking is a powerful technique for formally 
verifying quantitative properties of systems that 
exhibit stochastic behavior (Baier and Katoen, 
2008).  

Probabilistic behavior may arise, for example, 
due to failures of unreliable components, dynamic 
environment, etc. Unforeseen behavior cannot be 
model-checked. It can be eventually simulated (to 
some extend) through a random generation of the 
simulated conditions and verified via testing. 

4.4 Are Autonomous Systems More 
Vulnerable?  

Considering their adaptive nature, do we expect 
autonomous systems to be more vulnerable against 
malicious attacks?  

Our definitive answer to this questions is “Yes”. 
Moreover, the risk of a successful malicious attack is 
extremely high if the parameterization of their 
adaptive autonomy is known to the attackers. For 
example, attackers can use adaptation to open a hole 
in the security firewall (e.g., a new port can be 
opened for additional communication link as part of 
a self-adaptation behavior) that can be unavoidably 
used for malicious attacks.  

An eventual solution could be encryption in 
communication and why not in autonomy as well. 
For example, the autonomy-related knowledge base 
shall be encrypted. Moreover, identification of the 
autonomy agents shall be required at any level of 
interaction.   
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4.5 Connectivity and Safety of 
Autonomous Transportations    

Communication and connectivity are two significant 
factors that have impact on safety of autonomous 
transportation. Autonomous smart vehicles are 
connected, so they are able to share data with other 
vehicles on the road or with the infrastructure. In 
general, both vehicle-to-vehicle (V2V) connectivity 
and vehicle-to-infrastructure (V2I) connectivity help 
to reduce road accidents, and thus increase the 
transportation safety. Ultimately, vehicles and road 
infrastructure are connected via multiple 
complementary technologies of connectivity such as 
Wi-Fi, Bluetooth, GPS, DSRC (dedicated short-
range communications), etc. Wireless vehicular 
communication has the potential to enable a class of 
safety applications that can prevent collisions and 
save lives as well as improve traffic congestion and 
fuel efficiency. The effectiveness of these 
technologies though is highly dependent on 
cooperative standards for interoperability. For 
example, DSRC is particularly useful for V2x 
communications, because it can support very low-
latency, secure transmissions and fast network 
acquisition. It is also considered to be highly robust 
in adverse weather conditions (Hill, 2015).  

The automotive industry has recognized the 
importance of connected cars by pairing up with 
other cars and road infrastructure, smart phones, and 
other smart devices. Moreover, a swarm of sensors 
is used in vehicle internals such as GPS sensors, air 
pressure sensors, vehicle speed sensor, steering 
angle sensors, and fire detection sensors among 
others. In this swarm of sensors, the various 
electrical components in a car, known as Electronic 
Control Units (or ECUs), are connected via an 
internal network. Therefore, a smart vehicle exhibits 
extreme connectivity involving both the external 
environment and internal ECUs. One of the central 
challenges in this connectivity is cyber security. 
Unauthorized access to the external or internal 
network of a smart vehicle can easily create safety 
risks. For example, if hackers manage to gain access 
to a car’s Bluetooth or infotainment system, from 
there they may be able to take control of safety 
critical ECUs like its brakes or engine and wreak 
havoc (Toews, 2016). 

A contemporary smart vehicle can have over one 
hundred ECUs and more than one hundred million 
lines of code. Verification of a complex source code 
is a tedious task. Further complication is stemming 
from the fact that vehicle manufacturers source 
ECUs from many different suppliers, meaning that 

no one is in control of, or even familiar with, all of a 
vehicle’s source code. Production of complex source 
code, in particular, increases the security risks and 
thus the threat of automotive cyber attacks and 
safety hazards. 

5 SELF-DRIVING CAR 
EXAMPLE 

The example presented here should be regarded with 
the insight that “100% safe autonomy is not 
possible”, especially when the system in question 
(e.g., a self-driving car) engages in interaction with a 
non-deterministic and open-world environment 
(Wirsing, Holzl, Koch, Mayer, 2015) (see Figure 1). 
What we should do though, to maximize the safety 
guarantee that “the car would never injure a 
pedestrian” is to determine all the critical situations 
involving the car itself in close proximity to 
pedestrians.  

Then, we shall formalize these situations as 
system and environment states and formalize self-
adaptive behavior, e.g., as self-* objectives (Vassev 
and Hinchey, 2013, Vassev and Hinchey, 2014) 
driving the car in such situations (Vassev and 
Hinchey, 2015). 

 

Figure 1: Self-driving Car Interacts with the Environment. 

For example, a situation could be defined as “all the 
car’s systems are in operational condition and the 
car is passing by a school”. To increase safety in this 
situation, we may formalize a self-adaptive behavior 
such as “automatically decrease the speed down to 
20 mph when getting in close proximity to children 
or a school”. 

Further, we need to specify situations involving 
close proximity to pedestrians (e.g., crossing 
pedestrians) and car states emphasizing damages or 
malfunction of the driving system, e.g., flat tires, 
malfunctioning steering wheel, malfunctioning 
brakes, etc. For example, we may specify a self-
adaptive behavior “automatically turn off the engine 
when the brake system is malfunctioning and the car 
is getting in close proximity to pedestrians”. 
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6 HOW TO CONSTRUCT 
RELIABALE AUTONOMOUS 
SYSTEMS  

How can particular modeling techniques, 
programming concepts and verification methods 
help to construct reliable autonomous systems?  

6.1 Structured Autonomy  

Formal methods need to be used in both analysis and 
code generation. Autonomy requirements need to be 
properly handled and then both design and 
implementation should consider formalization of 
these requirements.  

The autonomy part of the system behavior (or 
the autonomy) needs to be tackled separately - that's 
it, any system has its purpose (objectives) it needs to 
follow and functionality that basically supports its 
objectives. Autonomy is an extra feature (or layer) 
that is often desirable and its implementation should 
be definitely separated from that of the system itself.  

Autonomy must be structured, implemented, and 
eventually verified via proper methods, e.g., ARE 
(Vassev and Hinchey, 2014) and KnowLang 
(Vassev and Hinchey, 2015). Obviously, the 
formalization of well-defined properties (e.g., with 
proper states expressed via boundaries, data range, 
outputs, etc.) is a straightforward task. However, it is 
not that easy to formalize uncertainty, e.g., liveness 
properties. Although, probabilistic theories such as 
the classical and quantum theories, help us formalize 
“degrees of truth” and deal with approximate 
conclusions rather with exact ones, the verification 
tools for fuzzy control systems are not efficient due 
to the huge state-explosion problem. 

Note that, testing systems implemented over 
probabilistic theories, is also not efficient, simply 
because, statistical evidence for their correct 
behavior may be not enough. Hence, any property 
that requires a progressive evaluation (or partial 
satisfaction, e.g., soft goals) is difficult and often 
impossible to be formalized for use in formally 
verified systems. Here, it seems the right answer is 
simulation that will help gain enough statistical 
evidence for the autonomy behavior correctness.   

6.2 Legal and Warranty Issues  

Besides the mentioned technical properties, another, 
often neglected aspect are public laws and 
regulations the systems have to be conform with. 
Adaptation will probably make it more difficult to 

handle such non-functional requirements and 
requests strict and probably new methods to prove 
conformity of adaptations with them. For example, 
engineers currently argue that the most severe 
obstacles to drive autonomously on our streets are 
not of technical but of legal nature and concern 
warranty and guilt. 

How could we cover legal and warranty issues in 
the development and dissemination phases of 
systems? 

We strongly believe that in order to cope with 
law and warranty, self-adaptive systems need to be 
introduced in a stepwise manner. Laws and concerns 
will be changed only if the self-adaptive and 
autonomous systems prove to be better than human 
operators.      

7 CONCLUSION 

If we assume a self-driving vehicle loaded with AI, 
it as a subject to uncertainty due to potential 
nondeterministic environment it operates on. Often, 
this lack of determinism is extended by 
requirements, business conditions, available 
technology, and the like. Therefore, if we want to 
construct reliable autonomous systems (e.g., 
intelligent vehicles), it is important to capture and 
plan for uncertainty as part of the system's R&D. 
Failure to do so may result in systems that are overly 
rigid for their purpose, an eventuality unsafe in their 
autonomy and adaptation. 

Formal methods can assist in the construction of 
reliable adaptive systems. To do so, formal methods 
need to be used in both analysis and code 
generation. Moreover, autonomy requirements need 
to be properly handled and then both design and 
implementation should consider formalization of 
these requirements. For example, contemporary 
formal verification techniques can be very helpful in 
verifying safety properties via the formalization of 
non-desirable system states along with the 
formalization of behavior that will never lead the 
system to these states. 
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