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Abstract: New perspectives for the electric vehicle (EV) operation in smart grids and smart homes context are 
presented. Nowadays, plugged-in EVs are equipped with on-board battery chargers just to perform the 
charging process from the electrical power grid (G2V – grid-to-vehicle mode). Although this is the main 
goal of such battery chargers, maintaining the main hardware structure and changing the digital control 
algorithm, the on-board battery chargers can also be used to perform additional operation modes. Such 
operation modes are related with returning energy from the batteries to the power grid (V2G- vehicle-to-grid 
mode), constraints of the electrical installation where the EV is plugged-in (iG2V – improved grid-to-
vehicle mode), interface of renewables, and contributions to improve the power quality in the electrical 
installation. Besides the contributions of the EV to reduce oil consumption and greenhouse gas emissions 
associated to the transportation sector, through these additional operation modes, the EV also represents an 
important contribution for the smart grids and smart homes paradigms. Experimental results introducing the 
EV through the aforementioned interfaces and operation modes are presented. An on-board EV battery 
charger prototype was used connected to the power grid for a maximum power of 3.6 kW. 

1 INTRODUCTION 

Each time more, the electric mobility is presented in 
our society as a new paradigm that contributes for a 
more efficient and sustainable mobility 
(Rajashekara, 2013), (Raghavan, 2012), as well as 
an important benefit to reduce the oil costs and the 
greenhouse gas emissions (Milberg, 2011). In this 
context, electric vehicles (EVs) are the main 
boosters to support the electric mobility (Chan, 
2010), (Chan, 2007), however, a full electric 
mobility adoption is also dependent of major 
technological issues (Khaligh, 2010), (Inoa, 2011), 
(Ferreira, 2013). Nowadays, in order to perform the 
EV batteries charging process, on-board or off-board 
chargers are used (Gautam, 2012), (Monteiro, 2014), 
with contact or contactless (wireless power transfer) 
technologies (Ibrahim, 2015). Besides these 
approaches, integrated EV chargers with the motor 
drive or reconfigured chargers to support the 
auxiliary battery are also used (Haghbin, 2013), 
(Pinto, 2014). Independently of the EV charger, for 
all the aforementioned solutions the EV is 
plugged-in to the power grid to receive energy. 

Nevertheless, with the EV adoption around the 
world (for instance Canada (Hajimiragha, 2010) and 
China (Song, 2010)), the power grids are facing a 
new problem, once they were not projected to 
support this new type of uncontrolled load, which 
can cause power quality issues (Monteiro, 2011), 
(Lopes, 2011), (Wirasingha, 2011). At the same 
time, new opportunities for electricity markets and 
for the integration of EVs with renewables are 
emerging (Saber, 2011), (Zhao, 2012), (Ferreira, 
2013). A scheme to manage the EV charging process 
considering their uncertain arrival (as well as the 
battery state-of-charge) and the energy prices is 
presented in (Zhang, 2014), and an integrated 
scheme to incorporate EVs with renewables is 
presented in (Gao, 2014). Taking into account the 
EV capacity to store energy and its dynamic 
connection in the power grid, through bidirectional 
chargers (Monteiro, 2016), it can operate as a 
dynamic energy storage system, capable to consume 
or deliver energy to the power grid in the place 
where it is plugged-in (Kramer, 2008). When the EV 
receives energy from the grid to charge the batteries, 
the process is known as grid-to-vehicle (G2V), and 
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when the EV delivers energy to the grid, the process 
is known as vehicle-to-grid (V2G) (Kempton, 
2005)(Yilmaz, 2013). An aggregator to manage such 
operation modes is proposed in (Escudero-Garzás, 
2012). A detailed study about the V2G mode as 
support to stabilize the power grid and renewables 
integration is analysed in (Kempton, 2015), and a 
cost function considering the charging and 
discharging process is presented in (Zhou, 2011). 
The aforementioned scenarios are related with the 
EV operation neglecting, for instance, the operation 
of the other electrical appliances plugged-in in the 
same electrical installation. In order to overcome 
this drawback, a dynamic operation in G2V and 
V2G modes according to the operation of the other 
electrical appliances is presented. Hereafter, this 
modes are identified as improved G2V (iG2V) and 
improved V2G (iV2G). This dynamic operation 
consists in adjust the consumed current to charge the 
batteries according to the consumed current of the 
electrical appliances, maintaining constant the total 
current consumed by the electrical installation. 
Therefore, overloads and overcurrent trips in the 
main circuit breaker are prevent. This is more 
relevant considering the future smart homes 
scenarios. Besides exchange energy in bidirectional 
mode with the power grid, the EV can also operate 
as power quality compensator. This mode can be 
divided in three cases: (1) The EV produces a 
current without fundamental component to 
compensate the current harmonic distortion of the 
electrical installation caused by the nonlinear 
electrical appliances, where it does not use any 
energy from the batteries, preventing their aging; (2) 
The EV produces a current to compensate the power 
factor of the electrical installation caused by the 
reactive power consumption of the electrical 
appliances, where the EV does not use energy from 
the batteries; (3) The EV operates as an off-line 
uninterruptible power supply (UPS) during power 
outages in short periods of time once is used energy 
from the batteries (Monteiro, 2016). 

Figure 1 shows the integration of an EV into a 
home considering the different energy flows. All of 
the aforementioned operation modes will contribute 
to the interactivity between the EVs and the smart 
grids, as well as to the development of smart homes 
(Gungor, 2012). In such context, global energy 
management solutions are presented in (Liu, 2013) 
and (Jin, 2013). Therefore, the EV can operate as an 
adaptable active element, with skills for consuming, 
storing, and providing energy. Associated with these 
operation modes, the EV should establish a 
bidirectional interactivity with the power grid, where   

 
Figure 1: Integration of an EV into the electrical 
installation of a home. 

information and communication technologies are 
presented (Güngör, 2011). A mobile information 
system used to inform the EV user about 
recommendations to manage the autonomy, the 
electricity market and charging stations is proposed 
in (Ferreira, 2014). 

This paper aims to demonstrate an overview 
about the EV operation through an experimental 
validation of the aforementioned operation modes 
and its contribution as enabler for the future 
paradigms of smart grids and smart homes. For such 
purpose, a 3.6 kW on-board EV battery charger was 
used to validate all the operation modes. The rest of 
this paper is organized as follows. Section II 
introduces the on-board EV charger used to validate 
the operation modes. Section II presents the 
experimental results and a detailed and independent 
analysis of each operation mode. A discussion is 
presented in section IV, and, finally, the main 
conclusions are in section IV. 

2 ON-BOARD EV BATTERY 
CHARGER 

This section describes the developed 3.6 kW 
on-board EV battery charger, which is composed by 
an ac-dc-dc converter, i.e., an ac side to interface the 
power grid, a shared dc-link between the two 
converters, and a dc side to interface the EV 
batteries. IGBTs model IXXR110N65B4H1 and 
gate drivers model SKHI61R are used. This EV 
charger has a total power density of 0.43 kW/liter 
and presents 94% of efficiency for the maximum 
power of 3.6 kW. Figure 2 shows the laboratorial 
setup used to obtain the experimental results, where 
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is presented the developed on-board EV charger, and 
table I presents its main characteristics. 

3 EXPERIMENTAL RESULTS 

This section presents a detailed explanation about 
the main experimental results of the EV introduction 
into the power grids in smart grids and smart homes 
context. Such experimental results were obtained in 
laboratory environment with the aforementioned 
on-board EV charger and with a set of lead-acid 
batteries, electrical appliances, and a system 
emulating a set of PV panels. The operation in the 
different operation modes was selected by the user. 
A digital oscilloscope Yokogawa DL708E was used 
to catch the experimental results. It is important to 
note that the battery state-of-charge was not 
analyzed in this paper due to space restrictions. 

3.1 Improved Grid-to-Vehicle 

The actual EVs are equipped with on-board battery 
chargers to perform the charging process from the 
power grid without consider constraints of the 
electric installation. This operation mode is 
identified in the literature as grid-to-vehicle (G2V). 
Figure 3 shows the power grid voltage (vg), the total 
home current (ih), the electrical appliances current 
(iea) and the EV current (iev) during the charging 
process (G2V). In this operation mode, the charging 
power is defined by the battery management system, 
which establishes two distinct charging stages in the 
dc side (i.e., in the batteries): (1) initially with 
constant current and variable voltage; (2) and after 
the first stage with constant voltage and variable 
current. In this experimental result, a power of 
3 kW, a total harmonic distortion (THD) of 3% in 
the voltage, a THD of 2% in the current, and a 
power factor of 0.99 were measured. It is important 
to note that the EV current is sinusoidal due to the 
current control strategy. Therefore, the EV does not 
contributes to aggravate the power quality in the 
electrical installation. 
The main disadvantage of this operation mode is 
related with the operation of the other electrical 
appliances that are also plugged-in in the same 
electrical installation and working at the same time. 
Turning on several appliances at the same time in 
the electrical installation, the main circuit breaker 
acts to prevent damages for the installation. This 
situation will interrupt the charging process and, 
inherently, will increase the time required to perform 
the    charging   process. In  order   to   mitigate   this 

 

Figure 2: Laboratorial setup used to obtain the 
experimental results (a) and structure of the on-board EV 
charger (b). 

Table 1: Main characteristics of the on-board EV battery 
charger. 

Parameter Value 

Grid Voltage 230 V 

Grid Frequency 50 Hz 

Maximum Power 3.6 kW 

Maximum dc Current 10 A 

Output Voltage 250 V to 400 V 

Switching Sampling 40 kHz 

Switching Frequency 20 kHz 

Input Inductance 5 mH 

Output Inductance 2 mH 

Output Capacitor 0.68 mF 

Dc-link Capacitor 3 mF 

drawback, the EV charging process can be 
performed with a smart control strategy, where the 
EV charging power is adjusted according to the 
operation of the other electrical appliances. 
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Figure 3: Experimental results during the EV battery 
charging: Power grid voltage (vg); Total home current (ih); 
Electrical appliances current (iea); EV current (iev). 

 

Figure 4: Experimental results during the controlled EV 
battery charging as iG2V: Total home current (IH); 
Electrical appliances current (IEA); EV current (IEV). 

Figure 4 shows the root mean square (rms) 
values of the home current (IH), the current 
consumed by the electrical appliances (IEA) and the 
EV current (IEV). As expected, the EV charging 
current is adjusted according to the current 
consumed by the electrical appliances in order to 
prevent the main circuit breaker actuation, i.e., the 
home current is maintained with the same amplitude. 

Figure 5 shows the instantaneous values of the 
same variables (as presented in the previous figure) 
in order to highlight the adjustment of the EV 
current. It is important to note that this adjustment is 
performed without sudden variations in the EV 
current and without jeopardize the hardware of 
on-board EV battery charger or the normal operation 
of the electrical appliances. For such purpose,  

 

Figure 5: Experimental results during the controlled EV 
battery charging as iG2V: Power grid voltage (vg); Total 
home current (ih); Electrical appliances current (iea); EV 
current (iev). 

advanced digital current control techniques are used 
to control the EV current.  

3.2 Improved Vehicle-to-Grid 

Typically, the EV is introduced in the power grid to 
perform the battery charging process, however, it 
can also be used in bidirectional mode. Therefore, 
instead of receiving energy, the EV is used to deliver 
energy back to the power grid, i.e., part of the stored 
energy in the batteries is returned to the power grid. 
From the power grid point of view, this operation 
mode, identified as vehicle-to-grid (V2G), is 
important to contribute to stabilize the power grid 
and, in a smart grid scenario, is performed with the 
power grid agreement and the convenience of the 
EV driver in terms of the energy stored in the 
batteries. For such purpose, the EV should receive a 
set point of energy and a time interval to operate in 
V2G mode. Figure 6 shows the power grid voltage 
(vg), the total home current (ih), the electrical 
appliances current (iea) and the EV current (iev) 
during the V2G mode, i.e., when is delivered energy 
to the power grid from the EV batteries. It is 
important to note that the EV current (iev) is in phase 
opposition with the power grid voltage (vg), meaning 
that the power grid receives energy. 

Considering a smart home scenario, besides the 
simple discharging process to the power grid, the EV 
can be used to deliver energy to the home when the 
required current exceeds the nominal current of the 
electrical installation. Figure 7 shows this scenario, 
where in an initial phase the EV is just plugged-in 
(without operating in G2V nor V2G) and when the  
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Figure 6: Experimental results during the EV battery 
discharging: Power grid voltage (vg); Total home current 
(ih); Electrical appliances current (iea); EV current (iev). 

 

Figure 7: Experimental results during the controlled EV 
battery discharging as iV2G: Total home current (IH); 
Electrical appliances current (IEA); EV current (IEV). 

total current exceeds the nominal current the EV 
starts its operation as V2G, i.e., the EV delivers the 
difference of current. This kind of operation is 
proposed as improved vehicle-to-grid (iV2G) and is 
directly associated with the EV operation in smart 
homes. 

3.3 Interface with Renewables 

As described in the previous items, the EV can be 
introduced into the power grid to perform the 
charging (iG2V) or discharging (iV2G) process. 
Such operation modes can be framed with the smart 
grids or smart homes scenarios, where is also 
predictable the introduction of renewables, mainly 
PV panels. Therefore, besides the power grid, the  

 

Figure 8: Experimental results during the EV battery 
charging from the power grid and from renewables: Total 
home current (IH); EV current (IEV); PV panels current 
(IPV). 

EV can also perform the charging process with 
energy from renewables. Figure 8 shows the rms 
values of the total home current (IH), the EV current 
(IEV) and the PV panels current (IPV) for a case, 
where, in an initially phase the EV batteries are 
charged only with energy from the power grid and in 
a second phase with energy from the power grid and 
from renewables. This experimental result was 
obtained in laboratory environment with an 
emulated installation of PV panels. Taking into 
account the predictable smart homes with the 
integration of renewables (mainly PV panels), this 
scenario will be frequently due to the variable 
energy production from renewables.  

3.4 Integration as a Power Quality 
Compensator 

As presented in the previous items, the EV can be 
used to dynamically exchange energy with the 
power grid in bidirectional mode considering the 
power grid constrains and the requirements of the 
EV user. Nevertheless, the EV can also be integrated 
into the power grid as a power quality compensator. 
This operation mode is directly associated with the 
future smart homes, and is proposed in this paper 
considering three distinct cases: (1) the EV is used to 
compensate current harmonics in the electrical 
installation caused by the nonlinear electrical 
appliances; (2) the EV is used to compensate the 
power factor of the electrical installation caused by 
the reactive power consumption of some electrical 
appliances; (3) the EV is used as energy backup 
system, i.e., operating as an off-line uninterruptible 
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power supply (UPS). The experimental results 
presented in this item were obtained in laboratory 
environment with real nonlinear electrical 
appliances. Figure 9 shows the power grid voltage 
(vg), the total home current in the electrical 
installation (ih), the current consumed only by the 
electrical appliances (iea), and the current produced 
by the EV (iev) during the EV operation 
compensating current harmonics. Taking into 
account that the EV produces a current with high 
harmonic distortion, the total home current is 
sinusoidal and in phase with the power grid voltage, 
i.e., it is the sum of the iea current with the iev 
current. The EV current is determined according to 
the harmonic distortion of the current consumed by 
the electrical appliances, i.e., the EV current does 
not have fundamental component once the objective 
is compensate the harmonic distortion of the 
electrical installation. It is important to note that 
during this operation mode is not used any energy 
from the EV batteries, i.e., the current circulates in 
the phase and neutral wires only through the ac-dc 
front-end converter. Besides the aforementioned 
case, Figure 10 shows the power grid voltage (vg) 
and the EV current (iev) when the EV is used to 
compensate the power factor of the electrical 
installation where it is plugged-in. For such purpose, 
the EV produces a current (that can be leading or 
lagging with the power grid) in order to obtain a 
unitary power factor in the point of common 
coupling. The phase angle between the EV current 
and the power grid voltage is determined according 
to the reactive power consumed by the electrical 
appliances connected in the same electrical 
installation. Also in this case is not used any energy 
from the EV batteries, representing an important 
advantage. In the previous operation modes, the EV 
is used to compensate power quality problems 
associated with the total current in the home. 
However, the EV can also be useful to operate as an 
off-line UPS during short periods of power outages. 
Figure 11 shows the voltage applied to the electrical 
appliances (vea), the current consumed by the 
electrical appliances (iea), and the EV current (iev). 
As shown, this experimental result was obtained 
when a power outage occurs. In this case, initially, 
the EV is just plugged-in and, when the power 
outage occurs, the EV starts its operation as UPS, 
i.e., producing a voltage to feed the electrical 
appliances. Taking into account that the transition 
was performed in a short period of time (much 
smaller than the grid frequency), from the point of 
view of the electrical appliances was not identified 
any   disturbance   in   its   operation. This  operation 

 

Figure 9: Experimental results during the EV operation 
compensating current harmonics: Power grid voltage (vg); 
Total home current (ih); Electrical appliances current (iea); 
EV current (iev). 

 

Figure 10: Experimental results during the EV operation 
producing reactive power: Power grid voltage (vg); EV 
current (iev). 

mode represents an important contribution for the 
future smart homes, where can be preferable to use a 
small part of the stored energy from the EV 
batteries, instead of stay without energy during a 
power outage. 

4 DISCUSSION 

Nowadays, the EV is considered the main alternative 
for replacing the traditional polluting vehicles with 
internal combustion engines. This is an important 
contribution, however, the EV can also emerge in 
the future smart grids and smart homes with a set of 
new valences. Besides the operation modes grid-to- 
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Figure 11: Experimental results during the EV operation 
as an UPS: Power grid voltage (vg); Total home current 
(ih); Electrical appliances current (iea); EV current (iev). 

vehicle (G2V), improved grid-to-vehicle (iG2V) and 
vehicle-to-grid (V2G), validated in the experimental 
results, the EV can also contribute with other 
innovative modes. For instance, the EV can combine 
the operation in G2V, V2G, or iG2V with the 
operation as power quality conditioner. Moreover, 
besides the operation in smart homes scenario, the 
presented operation modes can be extended to smart 
grids, i.e., the EV can operate in such modes in any 
place where it is plugged-in. 

5 CONCLUSIONS 

This paper presents new opportunities and 
perspectives for the electric vehicle (EV) operation 
in smart grids context. For such purpose a 3.6 kW 
on-board EV battery charger was developed and 
used in the experimental validation. Along the paper 
several experimental results are presented, including 
the EV charging and discharging processes from and 
to the power grid, the charging process from 
renewables, and the operation according to the other 
electrical appliances connected in the electrical 
installation, mainly, to prevent power quality 
problems. As shown in the paper, these operation 
modes represent an added value to the EV 
introduction into power grids, and an important 
contribution for the smart grids and smart homes 
paradigms. 
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