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Abstract: The communication networks of low-resources applications require implementing cryptographic protocols 
and operations with less computational and architectural complexities. In this paper, an efficient method for 
high speed calculations of square (SQR) root is proposed over Galois Fields GF (2m). The method is based on 
using the results of certain pre-computations, and transforming the SQR root calculations into a system of 
linear equations. The computational complexity of our proposed method for computing the SQR root in GF 
(2m) is O(m) which is significantly better than existing methods such as Tonelli-Shanks and Cipolla. Our 
proposed method was implemented using different types of multipliers over several polynomial degrees. 
Software and hardware implementations were developed in NTL-C++ and VHDL, respectively. Our software 
experimental results show up to 38 times faster than Doliskani & Schost method. Moreover, our method is 
840 times faster than Tonelli-Shanks method. In terms of hardware implementation and since Tonelli-Shanks 
requires less resources than Doliskani & Schost, we compare our method with Tonelli-Shanks. The hardware 
experimental results show that up to 50% less LUTs with a speedup of 18% that can be obtained compared to 
Tonelli-Shanks method.  

1 INTRODUCTION 

The task of computing square (SQR) roots in Galois 
fields GF (pm) has a practical importance to the 
cryptography such as point counting, the prime-
proving algorithms and asymmetric encryption 
scheme in the elliptic curves (ECs) (Menezes, 1993), 
where SQR operation is required. In the basic 
ELGamal encryption scheme (ElGamal, 1985), a 
point P is defined to represent a message on a selected 
elliptic curve E(x, y) over GF (pm), where ݔ)ܧ, yଶ	:(ݕ = xଷ + ax + b for a, b ∈ GF (pm). If M ∈ 
GF (pm) denotes the message, then the point P has a 

form of (ܯ,ඥܯ)ܧ, 0)) in a basic cryptographic 
scheme.  

Finding the points on a curve in EC cryptography 
(ECC) requires the SQR root operation. If	ݔ ∈ GF 
(pm) is given, the success SQR root ݕ	 =	±ඥ(ݔଷ + ݔܽ + ܾ) indicates that this point is located 
on the curve and applicable for different EC 
operations. The SQR root operation is used widely in 
compression and restoration points on ECC (Boneh & 
Franklin, 2003) (Galbraith, et al., 2003). A point with 
coordinates (ݔ,  on the curve is compressed to the (ݕ

form	(ݔ, ), where	 ∈ {0, 1}. To restore the numeric 
value (ݕ) by	(ݔ, ), it is necessary to solve the 
quadratic equation		ݕଶ =  which is similar to ,(ݔ)ܲ
compute the SQR root of P(x) i.e.	ඥܲ(ݔ). As 
mentioned earlier, SQR computations of GF (pm) is a 
significant operation, especially for ECC and other 
asymmetric cryptosystems (Galbraith, et al., 2003). 
Computing SQR root of the binary GF (2m) finite field 
is a time-consuming operation. The effectiveness of 
cryptosystems that use SQR operations critically 
relies on their implementations in finding SQR roots.  

With the development of distributed computing in 
recent years, the capabilities of computer systems that 
can be used in security and critical fields have 
significantly increased (Bryen, 2015) (Bitzinger & 
Vlavianos, 2016). The simplest measure to improve 
security of systems that use GF (2m) is to increase the 
number of bits (m) in the intermediate operands, 
where (m) is the operand length. Usually, the increase 
in the number of bits (m) leads to dramatic slowdown 
of the performance of cryptographic protection 
systems (Barreto & Voloch, 2006). When (m) is 
increased, the execution time of SQR operations of 
GF (2m) is proportionally increased to (݉ଶ). As a 
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result, the execution time of SQR root operations 
increases significantly. Hence, reducing the 
execution time of the SQR operation is critical for 
practical applications (ElGamal, 1985) (Galbraith, et 
al., 2003). In this paper, we propose a new method to 
accelerate the SQR root computations using pre-
computed weights over many GF (2m) finite fields.  
Based on the chosen GF (2m), our proposed method 
computes the weights only one time and stores them 
to be used in data processing. Our experimental 
results show high improvements in terms of the 
utilized area and the execution time.  

2 ANALYSIS OF SQR ROOT 
METHODS IN FINITE FIELDS 

The practical importance of SQR root computations 
in finite fields has resulted in intensive research. 
Many methods to compute SQR root that use GF (2m) 
were proposed with two prominent methods which 
are: Cipolla (Cipolla, 1903) and Tonelli (Tonelli, 
1891). These methods had been extended to the case 
of fields GF (qm), where q is a prime, as in Tonelli-
Shanks (Shanks, 1973) and Alderman-Manders-
Miller (L.M. Aldeman & Miller, 1977) methods. In 
1977, Tonelli-Shanks method was extended to the 
case of extracting the root of arbitrary degrees (L.M. 
Aldeman & Miller, 1977) (Z. Cao & Fan, 2011). A 
specialized method for computing the cubic root, 
characterized by its high speed was developed by (N. 
Nishihara & Sueyoshi, 2009). 

In Galois fields GF (2m), addition and 
multiplication are the basic polynomial operations for 
the elements {0, (2m-1)}. Addition operation 
corresponds to a XOR logic and is denoted as '+'. 
Multiplication operation in GF (2m) consists of two 
steps: polynomial multiplication (multiplication 
without carry), indicated by the symbol '⊗' and 
reduction.  

Reduction requires finding the remainder, 
denoted as ‘rem’ or ‘mod’, through dividing the 
multiplication result by the selected field irreducible 
polynomial  ܲ(ݔ) of the corresponding degree (m) (I. 
Blake & Smart, 1999) (IEEE, 2002). For each 
element in GF (2m), generated by the irreducible 
polynomial ܲ(ݔ) of degree (m), there is a 
multiplicative cyclic group of order (n) that does not 
exceed (2m-1) (Atkin & F.Morain, 1993) (D. 
Hankerson & Vanstone, 2004).  The cyclic group of 
element i, where (2 ≤ i ≤ 2m-1), can be generated by 
multiplying the result (s) of a previous element in GF 
(2m) with i until getting i as a multiplication result 

(IEEE, 2002). For example, a GF (24) is formed by 
the irreducible polynomial: ܲ (ݔ) = ସݔ + ଷݔ + 1, (P = 2510 = 110 012), 

The cyclic groups are generated in table 1. In each of 
the cyclic group of GF (2m), a cyclic subgroup can be 
found where each element is the SQR of the previous 
group. These subgroups of the field that are formed 
by a polynomial	ܲ	(ݔ) 	= 	 ସݔ ଷݔ	+	 	+ 	1 are given 
in table 2. Clearly, the order of each of the quadratic 
subgroups does not exceed	݈݃ଶ݉, which is less than 
or equal to (m). 

Table 1: Cyclic Groups of the Field GF (24). 

Element Cyclic Power Groups 

2 
2, 4, 8, 9, 11, 15, 7, 14, 5, 10, 13, 3, 6, 
12, 1, 2 

3 3, 5, 15, 8, 1, 3 

4 
4, 9, 15, 14, 10, 3, 12, 2, 8, 11, 7, 5, 
13, 6, 1, 4 

5 5, 8, 3, 15, 1, 5 

6 
6, 13, 5, 7, 11, 8, 2, 12, 3, 10, 14, 15, 
9, 4, 1, 6 

7 
7, 12, 15, 6, 11, 3, 9, 13, 8, 10, 4, 5, 2, 
14, 1, 7 

8 8, 15, 5, 3, 1, 8 

9 
9, 14, 3, 2, 11, 5, 6, 4, 15, 10, 12, 8, 7, 
13, 1, 9 

10 10, 11, 1, 10 
11 11, 10, 1, 11 

12 
12, 6, 3, 13, 10, 5, 14, 7, 15, 11, 9, 8, 
4, 2, 1, 12 

13 
13, 7, 8, 12, 10, 15, 4, 6, 5, 11, 2, 3, 
14, 9, 1, 13 

14 
14, 2, 5, 4, 10, 8, 13, 9, 3, 11, 6, 15, 
12, 7, 1, 14 

15 15, 3, 8, 5, 1, 15 

Table 2: Quadratic Cyclic Subgroups of the Field GF (24). 

Element  Power Cyclic Quadratic Subgroups  
2 2, 4, 9, 14, 2 
3 3, 5, 8, 15, 3 
4 4, 9, 14, 2, 4 
5 5, 8, 15, 3, 5 
6 6, 13, 7, 12, 6 
7 7, 12, 6, 13, 7 
8 8, 15, 3, 5, 8 
9 9, 14, 2, 4, 9 
10 10, 11, 10 
11 11, 10, 11 
12 12, 6, 13, 7, 12 
13 13, 7, 12, 6, 13 
14 14, 2, 4, 9, 14 
15 15, 3, 5, 8, 15 

For any GF (2m), there is at least one irreducible 
polynomial, which implies having different cyclic 
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groups of two or more irreducible polynomials for the 
same GF (2m). For example, GF (24) has 
another	ܲ	(ݔ) 	= 	 ସݔ 	+ 	ݔ	 + 	1, which has cyclic 
groups and quadratic subgroups presented in table 3. 
In Tonelli-Shanks method, computing √A  in GF (2m) 
requires finding the quadratic cyclic subgroup of A 
until the element that is preceding A is found. For 
example, according to table 2, if A = 15, the preceding 
element in the quadratic sub group is 8, which is the 
SQR root of A = 15. Indeed: 8		8 mod 25 = 64 mod 
25 = 15. 

Table 3: Cyclic Groups of the Field GF (24). 

Element Cyclic Power Groups  
Cyclic Quadratic 

Subgroups 

2 
2, 4, 8, 3, 6, 12, 11, 5, 10, 
7, 14, 15, 13, 9, 1, 2 

2, 4, 3, 5, 2 

3 
3, 5, 15, 2, 6, 10, 13, 4, 
12, 7, 9, 8, 11, 14, 1, 3 

3, 5, 2, 4, 3 

4 
4, 3, 12, 5, 7, 15, 9, 2, 8, 
6, 11, 10, 14, 13, 1, 4 

4, 3, 5, 2, 4 

5 
5, 2, 10, 11, 7, 8, 14, 3, 
15, 6, 13, 12, 9, 11, 1, 5 

5, 2, 4, 3, 5 

6 6, 7, 1, 6 6, 7, 6 
7 7, 6, 1, 7 7, 6, 7 
8 8, 12, 10, 15, 1, 8 8, 12, 15, 10, 8 

9 
9, 13, 15, 14, 7, 10, 5, 11, 
12, 6, 3, 4, 2, 1, 9 

9, 13, 14, 11, 9 

10 10, 8, 15, 12, 1, 10 10, 8, 12, 15, 10 

11 
11, 9, 12, 13, 6, 15 -3 14, 
8, 7, 4, 10, 2, 5, 1, 11 

11, 9, 13, 14, 11 

12 12, 15, 8, 10, 1, 12 12, 15, 10, 8, 12 

13 
13, 14, 10, 11, 6, 8, 2, 9, 
15, 7, 5, 12, 3, 4, 1, 13 

13, 14, 11, 9, 13 

14 
14, 11, 8, 9, 7, 12, 4, 13, 
10, 6, 2, 15, 5, 3, 1, 14 

14, 11, 9, 13, 14 

15 15, 10, 12, 8, 1, 15 15, 10, 8, 12, 15 

The passage through the quadratic cyclic subgroup is 
equivalent to the operation of exponentiation (Z. Cao 
& Fan, 2011): ܤ = (1) (ݔ)ܲ	݀݉	ଶషభܣ

Thus, the idea of calculating the SQR root in GF 
(2m) is theoretically quite simple, but its 
implementation involves a significant amount of 
computing resources since the calculation of equation 
(1) assumes (m-1) operations of root squaring and 
reduction. Root squaring follows the rules of 
polynomial multiplication, which ignores the carries. 
The operation of a polynomial squaring has an 
important property: odd-positioned bits of the 
squared polynomial of number A are zeros, and the 
even-positioned bits are double bits of A, that is, if: 

 

A = ܽ + ܽଵ. 2ଵ +. . +ܽିଵ. 2ିଵ 
 

(2)Then, A2 is:  AA = ܽ + ܽଵ. 2ଶ +. . +ܽିଵ. 2ଶିଶ 

The importance of this property is that the 
calculation of the SQR of a polynomial does not 
require any computational overheads, and is basically 
a one-position shifting process for the bits in the 
initial number. When assessing the computational 
complexity of the SQR root operation using Tonelli-
Shanks method, it should be noticed that in practice, 
the operand length of the field elements (m) 
significantly exceeds the processor word length (l). 
Therefore, the elements of the field are divided into t 
sections, where t = m / l.  

The reduction operation puts the result of a 
polynomial multiplication into the limits of the field 
GF (2m). The polynomial division involves 
performing (m-1) cycles. For each cycle, one bit is 
shifted in the (m+1)-bit-ܲ(ݔ) code, and added 
logically to the current remainder when the last 
significant digit is one.  

Shifting the (m+1)-bit-ܲ(ݔ) code by one digit 
requires (t+1) shift operations. Since this operation is 
performed in each of the (m-1) cycles of reduction, 
the total number of shift operations is: (t+1).(m-1). 
Based on the fact that the reduction operation 
involves addition in half of the cycles, the average 
number of such operations is (m-1)/2. Implementing 
this operation on a l-bit processor requires (t+1) 
logical addition operations to be computed. 
Therefore, a single reduction operation requires 
(t+1).(m-1)/2 operations. Accordingly, the average 
running time of a single reduction operation of a SQR 
is: 1.5⋅(t+1)⋅(m-1)⋅τ, where (τ) is the execution time 
of a single logical operation.  

Given that SQR root requires (m-1) squaring 
operations, then the average number (NT) of logical 
operations that are required by the SQR root in GF 
(2m) is given by equation (3). 

ܰ = 1.5. ݐ) + 1). (݉ − 1)ଶ (3)

A similar estimation of the computational 
complexity of ܱ(݉ଶ)	for Cipolla-Lehmer method is 
given in (Menezes, 1993). With the increasing 
productivity of distributed computer systems that can 
potentially be used in a cryptanalysis system (Feng 
Wang & Morikawa, 2005), the easiest way to 
improve the reliability of these systems is to increase 
the word length of the operands. Increasing operands’ 
lengths increases the computational complexity 
dramatically according to equation (3). Previous 
research in calculating the SQR in GF (2m) has not 
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addressed this problem in real implementation of 
cryptosystems, which results in higher complexity.  

The algorithm that was proposed in (Ozdemir, 
2013), has showed improvements in the computation 
of the SQR root in finite fields GF (p). The algorithm 
is based on a probabilistic theory and gives higher 
probabilities of success than the Tonelli-Shanks and 
Cipolla algorithms. The algorithm uses polynomial 
factorization through locating a random point P over 
an elliptic curve ݔ)ܧ, ଶݕ	:(ݕ = ଷݔ +  ,mP = ܳ ;ݔܽ
where m is an odd integer. If ܳ  is not the identity point 
of the selected curve, then there is a possibility to 
obtain the SQR root √a by computing the 2. ܳ value. 
The algorithm requires a modular multiplication and 
squaring operations for the addition and doubling 
calculations. The time complexity in (Ozdemir, 2013) 
is ܱ  where u ≥ 0 is the bit operation for the ,(ଶା௨݈݃)
EC calculations. The algorithm requires large number 
of operations that consume resources and time to 
compute the root of a number. The complexity is 
increased for large odd values of p.  

3 SPEEDING UP 
CALCULATIONS OF SQR 
ROOT BY STORING MEMORY 
WEIGHTS 

In practical GF (2m) cryptosystems, the generated 
polynomials and the used fields are considered fixed. 
Keeping this in mind, an effective approach to 
accelerate the operation of SQR root in GF (2m) is to 
use pre-computed weights for the generated 
polynomials, where these weights are computed only 
one time. The pre-computed weights are stored in 
memory and used whenever the SQR root operation 
on GF (2m) is required. The proposed method is based 
on the idea of using the results of pre-computations to 
speed up SQR root computations on GF (2m). It is 
demonstrated as follows: 

The number A is represented as a logical sum as: 	A = a + aଵ. 2ଵ + aଶ. 2ଶ + ⋯+ a୫ିଵ. 2୫ିଵ, where 	ܽ, ܽଵ, … , ܽିଵ ∈ {0,1}. For the logical summation, 
the following is valid: 

• When n is even, (ܽ + ܾ) = ܽ +	ܾ is 
true.  

• By using equation (1) to calculate the SQR 
root of A	(B	 = 	√A	)	on GF (2m), it can be 
re-written as shown in equation (4). 

 

ܤ = ݀ଶషభ݉ܣ  (ݔ)ܲ
(4)

= (ܽ + ܽଵ. (2)ଶషభ + ܽଶ. (2ଶ)ଶషభ
 +. . + ܽିଵ. (2ିଵ)ଶషభ)	݉݀	(ݔ)ܲ = ܽ + ܽଵ. (2)ଶషభ݉݀ (ݔ)ܲ  +. . + ܽିଵ. (2ିଵ)ଶషభ݉݀	(ݔ)ܲ 

If m values are pre-calculated as:  
 ܹ = 1 ଵܹ = (2)ଶషభ݉݀	(ݔ)ܲ = (2)ଶషభ݉݀	(ݔ)ܲ ଶܹ = (4)ଶషభ݉݀	(ݔ)ܲ = (2)ଶ݉݀	(ݔ)ܲ 

���� ܹିଵ = (2ିଵ)ଶషభ݉݀	(ݔ)ܲ 													= (2)(ିଵ)ଶషభ݉݀	(ݔ)ܲ 
 
Then the calculation of SQR root in equation (4) 

becomes:  ܤ = ܽ. ܹ + ܽଵ. ଵܹ + ⋯+ ܽିଵ. ܹିଵ (5)

Hence, equation (5) can be directly used to 
calculate the SQR root of A. As it is shown in figure 
1, once all (݉) weights are generated, each bit	ݔ ∈{0,݉ − 1} in A is forwarded to the corresponding W୶. If the x-bit is 1, the weight ( ௫ܹ) is selected and 
logically added to other selected weights. Otherwise, 
the weight is discarded by selecting 0.  

0

W0

a0

0

1

0

W1

a1

0

1

0

Wm-1

am

0

1

B

...

 

Figure 1: Calculation of the square root of input A. 

Example: The proposed method is illustrated by the 
following example:  
Suppose we have GF (24) that is formed using the 
polynomial	ܲ(ݔ) = ସݔ ଷݔ	+	 	+ 	1, then the pre-
computed weights are:  ܹ = 1 ଵܹ = ସݔ)	݀݉	଼(2) ଷݔ	+	 	+ 	1) = 14 
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ଶܹ = 	 (2)ଵ	݉݀	ݔ)ସ 	+ ଷݔ	 	+ 	1) = 2 ଷܹ = 	 (2)ଶସ	݉݀	ݔ)ସ ଷݔ	+	 	+ 	1) = 5 
 
Assume A = 15 and the bit values of A are: ܽ =1, ܽଵ = 1, ܽଶ = 1, ܽଷ = 1. To calculate the SQR 

root of A, we apply the logical sum operation on the 
weights at the one bits of A as: 

ܤ  = ܹ + ଵܹ + ଶܹ + ଷܹ = 1 + 14 + 2 + 5 = 8 
 
Hence, the total number N of logical operations 

that are needed to compute the SQR root using pre-
calculations depends on the number of bits in the 
binary code of A. If the number of the one-bits in the 
code of A is equal to half of the total number of bits 
m, then the value of ܰ  is determined by the following 
equation (6). 

ܰ = 0.5. (6) ݉.ݐ

By comparing expression (6) with expression (3), 
we can conclude that the use of the proposed method 
to compute the SQR root in GF (2m) reduces the 
number of operations by a considerable factor which 
is almost 1/3m. Consequently, this reduction in the 
number of the required operations reduces the 
executions time of calculating the SQR root of an 
input that uses GF (2m).  

4 SOFTWARE/HARDWARE 
REALIZATIONS AND TIME 
EVALUATION 

4.1 Software Implementation and Time 
Analysis 

To prove the correctness and effectiveness of the 
proposed SQR root method, a software 
implementation for the SQR root method was 
developed using C++ programming language with a 
special powerful Galois field plug-in called NTL 
(NTL, 2016). NTL is a high-performance C++ 
framework that offers various data structures and 
algorithms for manipulating polynomial operations 
over integers and finite fields. All computations are 
performed using Pentium Dual-Core processor 
running on 2.6 GHz clock with 1 GB RAM. 

Implementing the proposed SQR root method 
involves initially constructing the irreducible 
polynomial for GF (2m) and creating (m) weights to 
calculate the root of A using the logic operation 
(XOR) or '+'. As shown in figure 2, creating the 
weight requires several steps. The first step starts by 

taking the constant value 2. Then, the loop (L1) 
iterates from 0 to  (݉ − 1) to perform (m) SQR 
operations on the constant value 2. This step 
computes the base weight ( ଵܹ). The second loop (L2) 
iterates from 0 to (݉ − 2) to perform the 
multiplication operation on the base weight ( ଵܹ). At 
In each iteration of (L2), the base weight is multiplied 
with the previous ( ௫ܹ), starting from the base weight 
( ଵܹ).  

For example, using a polynomial	ܲ(ݔ) = ସݔ ଷݔ	+	 	+ 	1, m=4, we compute:  
 ܹ = 1 
Using L1 loop: ଵܹ = ସݔ)	݀݉	଼(2) //  14 ଷݔ	+	 	+ 	1) = 14  
Using L2 loop: ଶܹ = 	2   // (14)ଶ	݉݀	ݔ)ସ ଷݔ	+	 	+ 	1) = 2 ଷܹ = 	5   // (14)ଷ	݉݀	ݔ)ସ ଷݔ	+	 	+ 	1) = 5 
 

Once all (m) weights are generated, the third loop 
(L3) is executed to calculate the SQR root of A using 
a logic operation (XOR). The XOR operation is 
executed according to the number of ones in the 
binary code of A. This processing step is similar to 
applying an on/off process on the weights.  

Constant (2) Construct P(x)

Square Operation
L1

(0)(m-1)

Base Weight 
W1

W(i-1)

W(i)

L2
(0)(m-2)

Multiplication Operation

W(i)

W(i-1)

W(i-2)

 

Figure 2: Data flow of generating (m) weights. 

Table 4 presents an approximate time that is needed 
to construct (m) weights using the proposed method 
over different GF (2m), where (m) is from 16 to 768 
bits. The irreducible polynomials for (m) are 
generated automatically using a built-in function in 
NTL plugin called BuildIrred. As expected, when the 
value of (m) increases, the time to generate (m) of 
weights increases as well. The execution time to 
calculate the SQR root for any m-bit of input A is 
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almost negligible since the calculations involve only 
the logic operation (XOR).  

Table 4: Required Time to Generate (M) Weights (NTL). 

M Time(sec) 
16 0.0017 

64 0.0024 

128 0.0065 

160 0.0073 

233 0.0257 

512 0.0434 

768 0.6391 

Figure 3 presents an average execution time 
comparison between our SQR root NTL 
implementation for elements over GF (2m), and our 
NTL implementation of the famous Tonelli-Shanks 
method, where (m) is from 500 to 10000. In each 
field, one hundred of random tests were performed for 
our method, while ten of random tests were 
performed for the Tonelli-Shanks method. As shown 
in the figure, our proposed method is much faster than 
the Tonelli-Shanks method for all random tests. The 
bottleneck of the Tonelli-Shanks method is in the use 
of the exponentiation, which takes (m) of squaring 
operations to form the cyclic quadratic group for an 
element. The method selects the previous element as 
the SQR root result.  

 

Figure 3: Average execution time for our proposed method 
vs. Tonelli-Shanks algorithm (Software implementation). 

On the other hand, our proposed method requires 
logic operations (XOR) with one-time pre-
computation of weights. It takes XOR operations 
equal to the number of ones at the element or m/2 
XOR operations on average.  

Figure 4 shows a comparison between our 
proposed method over GF (2m) and the method of 
(Doliskani & Schost, 2014). Both were implemented 
in NTL framework. As shown in the figure, our 
method outperforms (Doliskani & Schost, 2014) 
method in terms of the average execution time. The 
average execution time in (Doliskani & Schost, 2014) 
is ܱ(ܯ(݉). ݈݃ + ݉ଶ.  when p = 2. This (݈݉݃
concludes that our proposed method, which is 
O(m/2), does not have bottlenecks in computing the 
SQR root for any input over GF (2m) due to the logic 
operation (XOR). Our method does not need to use 
the costly field multiplications, inversions, and 
squaring operation.   

 

Figure 4: Average execution time for our proposed method 
vs. (Doliskani & Schost, 2014) method (Software 
implementation). 

4.2 Hardware Implementation, 
Resource, and Time Analysis 

Basically, our proposed implementation concentrates 
on achieving efficient and high-speed SQR root 
calculation in Galois fields to improve throughput, 
speed, area, and/or power consumption. We have 
developed hardware components for the SQR (L1) 
and Multiplication (L2) loops that were investigated 
in subsection 4.1. These implementations were 
developed using VHDL language. The hardware 
platform that was used is Xilinx Virtex-5 FPGA 
family. 
Our implementation is based on equation (7). Two 
phases to perform a field multiplication in GF (2m) 
were applied in order to compute the polynomial 
multiplication U(x). A reduction phase is then used on 
the selected irreducible polynomial.  

Figure 5 shows the average number of LUTs/F.Fs 
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resources and the gained frequencies that are needed 
to generate one-time weights for each degree (m) 
from 16 to 233 bits. A loop, Karatsuba (Che Wun 
Chiou & Lin, 2015) and interleaved multipliers 
(Karatsuba & Ofman, 1963) (Rodriguez-Henriquez & 
Koc, 2003) (D. Narh Amanor & Schimmler, 2005) 
(Gathen & Shokrollahi, 2005) were used to generate 
and store weights in order to be used on the received 
input data. The process of generating the weights is 
performed once. This results in achieving higher 
frequencies and less logic elements. Figure 5 
illustrates the results. ܼ(ݔ) = ݀݉(ݔ)ܷ (ݔ)ܷ ݁ݎℎ݁ݓ ,(ݔ)ܲ = .(ݔ)ܣ (7) 	(ݔ)ܤ

 

Figure 5: Average number of the required resources using 
loop, Karatsuba and interleaved multipliers. 

To prove the effectiveness of our SQR root method, 
we have implemented it using Xilinx Virtex-5 FPGA 
device with values of (m) that range from 16 to 233 
bits. Our evaluation involves the efficient Tonelli-
Shanks algorithm since it shows less average 
computing time and resources requirements than the 
Doliskani & Schost method.  Figure 6 and figure 7 
compare our method to the Tonelli-Shanks method 
over GF (2m). As shown in figure 6, our method 
requires less LUTs than the Tonelli-Shanks method. 
Also, it achieves a higher frequency because of 
having only one type of operations (XOR) as shown 
in figure 7. The proposed method does not require the 
exponentiation operations as in Tonelli-Shanks 
method. In Tonelli-Shanks method, the loop 
multipliers are used to perform exponentiation 
operations. In the proposed SQR root method, the 
weights at a specific selected (m) and an irreducible 
polynomial P(x) are generated one time only. In case 
of changing the field, a variable can be inserted to 
indicate whether to regenerate the weights or not.  

 

Figure 6: Number of LUTs needed in our method vs. 
Tonelli-Shanks algorithm. 

 

Figure 7: Achieved frequencies (MHz) in our method vs. 
Tonelli-Shanks algorithm. 

5 CONCLUSIONS 

An efficient and high speed SQR root method over 
Galois fields GF (2m) is proposed in this paper. It is 
based on using pre-calculated weights. The weights 
are calculated one time only and then stored in a 
storage memory. Software and hardware 
implementations were provided in the paper to verify 
the proposed method. The computational complexity 
of the proposed method is O(m) which is significantly 
less than existing methods that require a time 
complexity of O(m2).  

The software implementation of the proposed 
method achieves less execution time than both of 
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Tonelli-Shanks and Doliskani & Schost methods 
using several random tests. The hardware 
implementation uses different types of multipliers 
including loop, Karatsuba, and interleaved 
multipliers. The experimental results show that our 
method outperforms the Tonelli-Shanks method over 
GF (2m) in terms of the required resources and 
frequencies using several polynomial degrees. 
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