Growth Prediction for San Francisco and 
Washington/Baltimore.  International Journal of 
Geographical Information Science, 12, 7, 699-714. 
Clarke, K.C. (2008a) Mapping and Modelling Land Use 
Change: an Application of the SLEUTH Model, in 
Landscape Analysis and Visualisation: Spatial Models 
for Natural Resource Management and Planning, 
(Eds. Pettit, C., Cartwright, W., Bishop, I., Lowell, K., 
Pullar, D. and Duncan, D.), Springer, Berlin, 353-366. 
Clarke, K.C. (2008b) A Decade of Cellular Urban 
Modeling with SLEUTH: Unresolved Issues and 
Problems, Ch. 3 in Planning Support Systems for 
Cities and Regions (Ed. Brail, R. K., Lincoln Institute 
of Land Policy, Cambridge, MA, pp 47-60. 
Clarke, K. C. (2014a) Why Simulate Cities? GeoJournal 
79:129–136  
Clarke, K. C. (2014b) Cellular Automata and Agent-Based 
Models. Chapter 62 in Fischer, M. M. and Nijkamp, P. 
(eds) Handbook of Regional Science. Springer-Verlag, 
Berlin Heidelberg. 
Clarke-Lauer, M. D., and Clarke, K. C. (2011). Evolving 
simulation modeling: Calibrating SLEUTH using a 
genetic algorithm. Proc., 11th Int. Conf. on Geo 
Computation, Univ. College London, London. 
Clarke, K. C. (in press) Land Use Change Modeling with 
SLEUTH: Improving Calibration with a Genetic 
Algorithm. In MT Camacho Olmedo, M Paegelow, JF 
Mas, F Escobar (eds.) Geomatic approaches for 
modelling land change scenarios . Lecture Notes in 
Geoinformation and Cartography LNGC series. 
Springer Verlag. 
Chaudhuri, G. and Clarke, K. C. (2013) The SLEUTH 
Land Use Change Model: A Review. Int. Journal of 
Environmental Resources Research, 1, 1, 88-104. 
Colonna, A., Di Stefano, V., Lombardo, S., Papini, L., 
Rabino, G. A. (1998). Learning urban cellular 
automata in a real world: The case study of Rome 
metropolitan area. In: ACRI’98 third conference on 
cellular automata for research and industry, Trieste, 
7–9 October 1998. London: Springer, 165–18. 
Dietzel, C. and Clarke, K. C. (2007) Toward Optimal 
Calibration of the SLEUTH Land Use Change Model. 
Transactions in GIS, 11, 1, 29-45.  
Feng, Y., Liu, Y., Tong, X., Liu, M., and Deng, S. (2011). 
Modeling dynamic urban growth using cellular 
automata and particle swarm optimization rules. 
Landscape and Urban Planning, 102(3), 188–196. 
http://dx.doi.org/10.1016/j.landurbplan.2011.04.004. 
Feng, Y. and Liu, Y., 2012. An optimised cellular 
automata model based on adaptive genetic algorithm 
for urban growth simulation. In: W. Shi, A. Yeh, Y. 
Leung and C. Zhou, eds. Advances in spatial data 
handling and GIS: 14th international symposium on 
spatial data handling. Heidelberg, Germany: Springer, 
27–38. 
García , A. M. I. Santé , M. Boullón and R. Crecente 
(2013) Calibration of an urban cellular automaton 
model by using statistical techniques and a genetic 
algorithm. Application to a small urban settlement of 
NW Spain, International Journal of Geographical 
Information Science, 27:8, 1593-1611, DOI: 
10.1080/13658816.2012.762454 
Goldstein, N.C. (2004). Brains vs. Brawn: Comparative 
strategies for the calibration of a cellular automata-
based urban growth model. In: P. Atkinson, G. Foody, 
S. Darby and F. Wu, eds., GeoDynamics. Boca Raton, 
FL: CRC Press.  
 Gong, Z., Tang, W., and Thill, J. C. (2012). 
Parallelization of ensemble neural networks for spatial 
land-use modeling. In Proceedings of the 5th ACM 
SIGSPATIAL international workshop on location-
based social networks (pp. 48–54). ACM. 
Guan, Q., Wang, L.  and Clarke, K. C.  (2005) An 
Artificial-Neural-Network-based, Constrained CA 
Model for Simulating Urban Growth . Cartography 
and Geographic Information Science. 32, 4, 369-380. 
Houet, T., Aguejdad, R., Doukari, O., Battaia G. and 
Clarke, K. (2016) “Description and validation of a 
‘non path-dependent’ model for projecting contrasting 
urban growth futures”, Cybergeo : European Journal 
of Geography, Systèmes, Modélisation, 
Géostatistiques, document 759 
http://cybergeo.revues.org/27397  
Holland J. H. (1998). Emergence: From Chaos to Order. 
Addison-Wesley, Redwood City, CA. 
Hu, Z., and Lo, C. (2007). Modeling urban growth in 
Atlanta using logistic regression. Computers, 
Environment and Urban Systems, 31(6), 667–688. 
Jafarnezhad, J., Salmanmahiny, A., and Sakieh, Y. (2015). 
Subjectivity versus objectivity—Comparative study 
between Brute Force method and Genetic Algorithm 
for calibrating the SLEUTH urban growth model. 
Urban Planning and Development. 
doi:10.1061/(ASCE)UP.1943-5444.0000307. 
 Kirtland, D. Gaydos, L. Clarke, K. C., DeCola, L., 
Acevedo, W. and Bell, C. (1994) An analysis of 
human-induced land transformations in the San 
Francisco Bay/Sacramento area. World Resources 
Review, 6, 2, 206-217. 
Li, X.  and Gar-On Yeh, A. (2002) Neural-network-based 
cellular automata for simulating multiple land use 
changes using GIS. International Journal of 
Geographic Information Science. 16, 4, 323-343. 
Li, X., and Yeh, A. G. O. (2004). Data mining of cellular 
automata’s transition rules. International Journal of 
Geographical Information Science, 18, 723–744. 
Liu, Y., and  Phinn, S. R. (2003). Modelling urban 
development with cellular automata incorporating 
fuzzy-set approaches. Computers, Environment, and 
Urban Systems, 27, 637–658.  
Long, Y., Mao, Q., and Dang, A. (2009). Beijing urban 
development model: Urban growth analysis and 
simulation.  Tsinghua Science and Technology, 14(6), 
782–794. 
National Research Council (2014) Advancing Land 
Change Modeling: Opportunities and Research 
Requirements. Geographical Sciences Committee: 
Washington D. C.; National Academy Press. 
Pijanowski, B.C., B. Shellito and S. Pithadia. 2002. Using 
artificial neural networks, geographic information