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Abstract: A review of calibration methods used for cellular automaton models of land use and land cover change was 
performed. Calibration advances have been achieved through machine learning algorithms to either extract 
land change rules, or optimize model performance. Many models have now automated the calibration 
process, reducing the need for subjective choices. Here, the brute force calibration procedure for the 
SLEUTH CA-based land use change model was replaced with a genetic algorithm (GA). The GA 
calibration process populates a “chromosome” with five parameter combinations (genes). These 
combinations are then used for model calibration runs, and the most successful selected for mutation, while 
the least successful are replaced with randomly selected values. Default values for the constants and rates of 
the genetic algorithm were selected from SLEUTH applications. Model calibrations were completed using 
both brute force calibration and the GA. The GA model performed as well as the brute force method, but 
used vastly less computation time with speed up of about 3 to 22. The optimal values for GA calibration are 
set as the defaults for SLEUTH-GA, a new version of the model. This paper is a contraction of Clarke (in 
press), which reports on the full set of results.  

1 INTRODUCTION 

Land use change is driven by the conversion of 
natural lands to agriculture, and increasingly by the 
expansion of built-up land. Cities expand impervious 
surfaces outward and inward and create other land 
use changes at a distance. Land use and land cover 
change modeling attempts to simulate these changes, 
and asks how they can be modified, diverted or 
prevented so that future cities are more sustainable. 

 Modeling can seek to gain an understanding of 
a process, usually as revealed by spatial forms 
(Clarke 2014a). Modeling seeks to forecast a 
process, and so predict where and when changes will 
occur (NRC 2014). Models allow exploration of 
alternative futures by varying the forecasts to 
embody different anticipated circumstances (Xiang 
and Clarke 2003; Houet et al. 2016). A model can 
also help others understand the process, its outcomes 
and its consequences, and so educate. These 
purposes are dependent on the accuracy, reliability 
and effectiveness of the model.  

Good models make their assumptions about a 
process explicit, use facts and data as inputs, then 
create accurate forecasts of future system states. To 
be accurate, models must use real data to fine tune 

the controls that create model behavior. The model 
design should make careful choices of constants and 
variables; and the model should use hindcasting, that 
is, be applied to historical data to effectively 
replicate the present. Accuracy can then be assessed 
as the level of agreement between the forecast and 
the actual (Pontius et al. 2007). The model’s level of 
accuracy, reliability and effectiveness can then be 
measured and optimized.  This stage is called model 
calibration, and calibration remains the most critical 
phase of model design and application.  

2 CALIBRATION 

Calibration uses a vast array of tools and techniques 
to optimize a model and seeks to determine the 
impacts of changes in a specific constant or variable 
upon the model outputs. Constants are the values 
that remain internal to the model, and may be 
choices of particular values or more structural 
elements of the model. The determination of 
constants is the first stage of calibration during 
model design. Methods include inspection of the 
correspondence of outputs, match statistics and the 
computation of many outputs across a range of 
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constant values. Critical in calibration are threshold 
values, where a small change in the constant 
produces large differences in the output--what Houet 
et al. (2016) call “non path-dependent” and 
contrasted/breaking trends. Simple models avoid 
these values, while complex systems models exploit 
them. Crossing these thresholds is called phase 
change in complexity theory, and leads to 
emergence (Holland  1998). 

 Calibration also involves repeated application 
of the model, the measurement of model 
performance, degree of fit, and the adjustment of 
input variables and data until the performance is 
maximized. This may involve accuracy of the model 
outputs as measured using historical data, or 
achievement of some other goal. A model is started 
at some point in the past, and executed without 
further input until the last period of known data (the 
present), periodically matching its numerical and 
spatially distributed outputs with real data.  

Given the matches described above, measures 
can be compiled that represent multiple performance 
parameters. Changing parameters and repeating the 
model application allows retention of the best 
performing settings. One way to optimize is to 
repeat the parameter changes for all possible 
combinations and permutations of their values, so-
called brute force. Models increasingly use machine 
learning algorithms to optimize. For example, 
weights assigned in agent based models can be 
selected using support vector machines, or cellular 
automata behavior rules selected using genetic 
algorithms (Clarke 2014b). Good calibrations derive 
the best set of input parameters that determine the 
model’s performance, accuracy and behavior. Good 
models are always well calibrated. 

Models of land use and land cover change have a 
vast literature, with periodical reviews and surveys 
of the models and their applications (NRC 2014). 
All land change models require calibration, but these 
calibrations are a function of the model type and its 
intended purpose. A subset of land use change 
models is cellular automata (CA) models, discussed 
at length (Torrens and O’Sullivan 2001) and divided 
into types (Sante et al.  2010). This short paper  
focuses on CA models only, then a particular model 
and its improvement using a genetic algorithm (GA) 
to replace its current brute force calibration method. 
An advantage of this approach is that it removes 
human interaction and judgement entirely from the 
calibration process (Jafarnezhad et al. 2015). 

2.1 Cellular Automata Models 

CA models are complex system models consisting 
of: (1) a set of mutually exclusive and non-
overlapping states; (2) a framework of points, cells 
or a grid in which each element is in one and only 
one state; (3) a defined neighborhood, consisting of 
a set of cells usually surrounding or adjacent to a 
cell; (4) a set of rules that govern state changes as a 
function of the other states within the neighborhood; 
(5) a relation to discrete time, such that all cells are 
evaluated in each time step; and (6) an initial 
arrangement of the states within each of the cells. 

 In CA land use change models, the states are 
standard land use classes, such as forest, agriculture, 
urban and wetlands; the framework is a map, a grid 
of raster cells within a GIS; the neighborhood is the 
adjacent cells of the Moore, Von Neumann or other 
neighborhood; the time steps are annual increments 
from a start time to a stop time; and the initial 
arrangements are mapped distributions at some point 
in past time. The rules are determined during the 
model design stage by following those of other 
models, using some a priori assumption about 
system behavior, derived statistically using 
probabilities or from exogenous quotas, or derived 
from data mining of past land use changes as 
functions of location, type and quantity.  

The rule sets associated with land use and land 
cover change are often chosen by analysis of the 
driving factors of land use change. The factors that 
prove significant are then prioritized and assigned 
weights. Modeling then consists of taking an input 
model, combining the weighed input factors, 
deciding probabilistically whether a change from 
type A to type B could occur, then enacting the 
change at the most probable locations. 

2.2 Calibrating CA Models 

Using two land use maps as inputs to derive a rule 
set for CA by data mining has led to numerous 
attempts to calibrate CA models with data reduction 
methods. These include multi-criterion evaluation 
(MCE) (Wu and Webster 1998), multi-objective 
optimization (Cao et al 2014), logistic regression 
(Wu  2002) and decision trees (Li and Yeh 2004). 
Most successful among these methods have been 
neural networks (Yang and Li  2007).  Some models 
use neural networks as the entire basis for land use 
change modeling (e.g. ANN-CA by Li and Gar-On 
Yeh 2002; and  LTM by Pijanowski et al. 2002). 

Other machine-learning algorithms have been 
used to help calibrate (and derive CA rules for) CA 
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models of land use and land cover change. Long et 
al. (2009), Hu and Lo (2007) and Liu and Phinn 
(2003) used logistic regression to select CA 
transition rules in the model design stage. Guan et al. 
(2005) used artificial neural networks for the same 
purpose. Another method is the support vector 
machine (Yang et al. 2008). Others have used neural 
networks to optimize CA control parameters (Li and 
Yeh 2004). More recently, such methods as particle 
swarm optimization (Feng et al. 2011) and ensemble 
learning strategies (multiple methods in parallel) 
have also been introduced (Gong et al. 2012). 

Among the most successful machine learning 
methods for CA rule selection and parameterization 
are genetic algorithms (GA). A GA is a method for 
solving optimization problems based on a process of 
natural selection that mimics evolution in plants and 
animals. The algorithm starts with an approximate 
initial set of solutions, and then repeatedly modifies 
the population of genes while assessing fitness. Each 
iteration, changes are made to create better solutions 
(evolution and mutation) and to allow new random 
solutions that may outperform the current best 
“gene.” Studies that have used GA to calibrate CA 
include Colonna et al. (1998), Goldstein (2004), 
Yang and Li (2007), Yang et al. (2008), Shan et al. 
(2008), Cao et al. (2011), Feng and Liu (2012), 
Clarke-Lauer and Clarke (2011), Garcia et al. (2013) 
and Jafarnezhad et al. (2015). 

There are many possible measures of goodness 
of fit between a real map and a modeled map (fitness 
of the gene or chromosome), including producers 
and users accuracy, various Kappa measures, 
matching of landscape metrics, correlation, the 
Receiver Operating Characteristics curve and others. 
Many calibrations simply use the percent correct as 
a measure. As an example, the SLEUTH model 
produces 13 regression-based fit measures, which in 
the past were combined by multiplication, although 
many studies have used the Lee-Sallee metric alone 
(Silva and Clarke 2002). Current practice uses the 
Optimal SLEUTH Metric (OSM) (Dietzel and 
Clarke 2007). This measure uses a subset of 7 of the 
13 metrics, also combined by multiplication, 
selected to reduce interdependencies among the 13 
metrics. The study reported here used the OSM as 
the fitness measure for calibrating SLEUTH. 

Use of GA implies creation of the equivalent of a 
chromosome, with individual genes reflecting traits 
of an individual. SLEUTH has five control 
parameters, which vary from 0-100, termed 
diffusion,  breed, spread, slope and road growth. A 
single run is controlled by the five values within the 
integer range {0,0,0,0,0} to {100,100,100,100,100}. 

The single set of five values forms a gene, and a 
population of P such sets is the chromosome. Each 
gene is evaluated, i.e. the model is run and the 
fitness calculated. The genes are then sorted by 
fitness, so that those that performed best rise to the 
top. This is termed a generation. Between 
generations, new genes are created by combining the 
values of the best performing genes, after having 
pairs of chromosomes “compete” to reproduce, and 
so share their genes. Some of the genes in the 
chromosome are mutated, by altering their values. 
The mutation rate is the proportion of the 
chromosome subjected to change. Mutation can be 
by switching values or replacing values with random 
numbers. There are two levels of fitness associated 
with each generation: the total fitness of the 
chromosome and the specific fitness of a gene. In 
our case, we are interested in maximizing both total 
fitness to move the training process forward, and the 
fitness of the best performing gene, which is the best 
model fit at that generation. Evolution ends when a 
maximum number of generations is reached, or 
when successive generations have no better total 
fitness than their parents. 

The chief variables in a GA include choosing the 
size of the population (number of genes in the 
chromosome), the maximum number of generations 
(or minimum improvement in fitness to continue 
evolution), the mutation rate, number of crossovers, 
the number of offspring, and the number of 
replacements.  A second stopping criterion is the 
maximum number of evaluations of genes for 
possible inclusion as replacements. The GA 
populates the initial chromosome  with genes using 
random numbers,  standardizing values between zero 
and one hundred.  In one generation, each of the 
genes is used as model input, and the fitness 
criterion calculated. In Blecic et al.’s (2010) study, 
the fitness values used were the Kappa coefficient 
and the Lee-Sallee metric (Silva and Clarke 2005), 
others have used the Optimal SLEUTH Metric 
(Dietzel and Clarke 2007). This is repeated for all 
genes in the chromosome, and the results ranked. 

Each generation some proportion of the genes 
are crossed over. For example a set of SLEUTH 
input parameters may be {10, 20, 30, 40, 50}. After 
mutation, it may be {10, 20, 50, 40, 30} with 2 
values switched and 3 remaining. Another form of 
mutation simply randomly or incrementally changes 
one or more gene values. Lastly, the lowest 
performing genes in terms of fitness are “killed off” 
and replaced with new random values. Such a choice 
increases the number of evaluations, when a 
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maximum number is reached or a maximum number 
of generations pass, the winning genome is selected.  

This final replacement stage is important because 
there is always a possibility that the chromosome 
with the highest total fitness is not a global but only 
a local maximum. Mutation and replacement ensure 
that a superior value either evolves or arrives by 
chance. The altered chromosome is then subjected to 
the next generation, and the process is repeated 
either until no further gain in fitness is achieved, or a 
maximum number of generations exceeded.  

While research continues on using GA as a 
means to calibrate CA models, relatively few studies 
have examined how the specifics of the GA impacts 
the performance, accuracy and tractability of model 
calibrations. Obviously this can only be answered in 
the context of a single model. SLEUTH will be used 
for this purpose because it is one of the few 
instances where both brute force and GA calibration 
options are available in open source code. 

2.3 Calibrating SLEUTH 

SLEUTH is a land use and land cover change model 
based on two tightly coupled CA models: the Urban 
Growth Model, that simulates how urban areas 
expand and change; and the Deltatron model that 
propagates urban changes into other land use types. 
The model was originally developed and applied to 
the San Francisco Bay area (Kirtland et al. 1994; 
Clarke et al. 1997) and then to the Washington-
Baltimore area (Clarke et al. 1998). SLEUTH’s 
initial calibration was by monolooping (trying all 
possible settings for each parameter, holding the 
others constant), but this was replaced by brute force 
calibration (Clarke at al. 1996). The calibration 
methods were systematically improved over decades 
(Clarke et al. 2007; 2008a; 2008b; Chaudhuri and 
Clarke 2013).  Recently, research has examined the 
goodness of fit between SLEUTH simulations and 
actual data, usually using hindcasting and spatial 
metrics of various kinds (Wu et al. 2009; Rienow 
and Goetzke 2014; Sakieh 2013). 

 Noah Goldstein was the first to experiment 
with GAs to calibrate SLEUTH (Goldstein 2004). 
Others tried the same approach with more 
sophisticated tools (Clarke-Lauer and Clarke 2011; 
Jafarnezhad et al.  2015). Clarke-Lauer and Clarke 
used the OSM as the fitness criterion and replaced 
the brute force module in SLEUTH with a new code 
routine that employed a GA that was posted to 
SourceForge. Values that could be varied included 
choices on encoding, fitness evaluation, crossover, 
mutation and survival selection. Coding involved a 

random number between 0 and 4 to index the five 
SLEUTH control parameters (diffusion, breed, 
spread, slope and road growth) and to decide how 
many elements from the parent were to be 
reproduced in the offspring. Remaining elements 
were selected from the second parent, with the 
second offspring using the opposite genes used for 
the first. Parents were selected by tournament 
selection, with a random set selected and the parents 
chosen with the highest fitness. Each generation 
replaces the weakest genes in the old population 
with the strongest in the new. The SLEUTH-GA was 
tested using the demo_city sample data set available 
on the SLEUTH website. Mutation rates of 0.10 to 
0.16 were found satisfactory, with a population size 
of 25. The paper concluded that the GA produced a 
speed up by a factor of 5 over brute force.   

 Jafarnezhad et al. (2015) used the SLEUTH-
GA code to apply SLEUTH to 3 cities in Golestan 
Province, Iran. They calibrated SLEUTH first using 
the standard brute force procedure, then used GA 
with the fitness metric as the OSM. They coded their 
own GA procedures based on Goldstein’s method 
(Goldstein 2004). Model outputs were then 
compared using the Receiving Operator Statistic 
(ROC), landscape metrics and two Kappa 
coefficients. Speed up over brute force was 4-5 
times, and the authors noted that the results could be 
improved by “testing different values for mutation 
rate and decreasing model tendency to elitism.”  

3 RESULTS 

Existing SLEUTH data for San Diego, California 
and Andijan, Uzbekistan were used (Syphard et al, 
2011). The Andijan data set produced the lowest 
OSM fits achieved by SLEUTH. In both cases these 
were the best model calibrations, but they varied 
substantially in predictive power. This is believed to 
be because of Andijan’s extraordinary urban growth 
history. The full set of results and data details are 
published in Clarke (in press). 
 Both cities were then used with identical 
inputs in the SLEUTH-GA version of the model 
code. The SourceForge version was adjusted slightly 
to take six parameters from the shell to be passed to 
the code. These were the population size (genes in 
the chromosome), the maximum number of 
generations, the mutation rate, the maximum number 
of evaluations per gene, the number of offspring, 
and the maximum replacement number. Population 
size, mutation rate, number of offspring, the 
replacement number and the maximum number of 
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evaluations were varied, while the other values were 
held constant. The maximum number of generations 
was set to 100, but in fact the GA rarely used more 
than 20 generations in the calibration, contrary to the 
higher numbers determined by Jafarnezhad et al. 
(2015). The maximum number of evaluations for 
substitution per chromosome was found to give peak 
fitness at about 900, and this did not affect the 
calibration process, other than increasing the number 
of generations and CPU time. 

Table 1: Brute Force Calibration Results. Values for 
constants are after calibration, with high and low 
coefficients in the top 8 solutions given, then after 
averaging to the last time period. 

 San Diego Andijan 

Calibration 
period 

1960-1999 1934-2013 

Best OSM 0.7414836 0.0773797   

Diffusion/derive
d 

(100:98-100) 
100 

(63:60-63) 
 100 

Breed/ derived (97:97-99)  
100 

(100:85-100)  
100 

Spread/ derived (25:24-25)  
 25 

(1:1-2)  
 3 

Slope/derived (15:15-18)   
1 

(80:75-79)   
1 

Road gravity/ 
derived 

(53:45-53)  
53 

(25:15-25)  
38 

Calibration time 
(s) 

175589 440715 

  
For Andijan the fitness was very low, with a 

slight peak at a population size of 70. For San 
Diego, the peak fitness occurred at a population size 
of 55, so this value was then used for the next 
monoloops. Similarly for mutation rates, the peak 
fitness for both San Diego and Andijan was at a rate 
of 0.13, so this value was used for all further 
calibrations. 

The information on calibration fine tuning for the 
GA was rather limited from the Andijan case, so 
testing of the ranges of the number of offspring and 
the replacement number were restricted to the San 
Diego data. Their best fitness values were 55 and 50 
respectively. The final set of input parameters is 
shown in Table 2. In particular, the maximum 
number of evaluations sets the computation cost for 
the run, and there appears to be a fine balance 
between too many generations versus achieving a 
good fit. A best value of 900 was selected, which 
creates about 10-12 generations of evolution. 

Table 2: Genetic Algorithm Parameter Monolooping  
Calibration Results. 

City San Diego Andijan 

Calibration period 1960-1999 1934-2013 

Best OSM 0.72972 0.07292 

Maximum # of 
evaluations 

900 900 

Population 
(Chromosome size) 

55 55 

Mutation Rate 0.13 0.13 

Number of offspring 55 55 

Replacement per 
generation 

50 50 

Calibration time (s) 55588 19866 

This set of GA control parameters possibly 
provides universal application for SLEUTH-GA 
modeling. The values have been integrated into the 
SLEUTH-GA code as defaults. This goes a long way 
toward the fully automated and objective calibration 
of SLEUTH, without user intervention (Straatman et 
al 2004).  

What range of parameters is there within the 
chromosome that might still be improved by brute 
force calibration over a smaller range, and what is 
the impact of this difference on the actual forecasts 
spatially? Table 3 shows the ranges of parameters in 
the first gene subpopulation (highest performing 
individuals of the 8 most fit parents) for the best GA 
derived parameters. The maximum, average and 
total fitness of a chromosome tend to peak 
simultaneously, indicating that the best performing 
chromosome is led by the most fit gene.  

Table 3: Genetic Algorithm Calibration Results. 

San Diego Andijan 

Calibration 
period 

1960-1999 1934-2013 

Best OSM 0.729724 0.072920 

Diffusion/ 
derived 

(90: 79-90) 
100 

(54:53-94)  
82 

Breed/ derived (23: 22-25) 
26 

(2:0-2)  
3 

Spread/ derived (89:74-98) 
100 

(88:62-94)  
82 

Slope/derived (13:2-32) 
1 

(70:9-70)  
3 

Road gravity/ 
derived 

(19:19-98) 
30 

(47:14-47)  
75 

Calibration time 
(s) 

55588 19866 

Speed Up 3.16 22.18 

To investigate the spatial impact of the 
differences in calibration mode, maps of forecast 
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urbanization with a likelihood of over 50% were 
created for the two cities and shown for both 
methods of calibration (Figure 1). It is evident that 
as in the calibrations, both cities are forecast with 
higher uncertainty and greater spread using brute 
force calibration, while the forecasts for both cities 
are more constrained but with greater certainty using 
GA. This appears to be the case both for high and 
low model fit, and may be a robust way of providing 
better forecasts. 

 

Figure 1: Spatial extent of SLEUTH forecasts and Actual 
Urban Growth During the Calibration Period. 

4 CONCLUSION 

Santé et al. (2010) pointed out the “need of making 
urban CA more flexible while keeping their 
simplicity by developing better calibration 
methods.” This study has been in response to this 
challenge. An important move, suggested by 
Jafarnezhad et al. (2015) is to eliminate human 
choices and judgements during the calibration 
process, replacing the subjective with the objective 
(Goldstein 2004). On the surface, replacing the brute 
force calibration method for SLEUTH calibration 
just substitutes a new set of calibration problems, i.e. 
dealing with the characteristics of the gene and 
determining how the evolutionary process yields the 
best results. Prior work cited above, and now this 
study, show that GA leads to at least equal, and 
often superior calibration results while considerably 
speeding the process. The results here also indicate 
lower modeling uncertainty. The differences in the 
calibration parameter sets are small, and the 
differences among model forecasts are also small. 
The advantages are the objectivity, and the benefits 
of speed-up. At the least, GA can provide a 
convergent set of genes that can be further optimized 

by brute force over a much more limited parameter 
set, such as the range over the top 8 genes listed in 
table 3. 

 This study reviewed the importance of 
calibration for CA land use change models. 
Calibration performs important functions for models 
because it ensures the model’s accuracy, integrity, 
reliability and trustworthiness. Well calibrated 
models are defensible and objective, and use real 
world data instead of assumptions in their properties, 
constants, variables and behavior types. There is an 
obligation to perform sensitivity analyses and to run 
controls. Moving SLEUTH calibration from brute 
force to GA, the level of objectivity is further 
improved. As a bonus, the amount of CPU time 
devoted to calibration was reduced by about a factor 
of 3 for San Diego and 22 for Andijan. Hopefully 
this latter fact will enable new applications and new 
cities to be simulated. The final version of the 
SLEUTHGA software is posted at: 
www.ncgia.ucsb.edu/projects/gig/Dnload/download.
htm  and is available as open source code for 
modelers. 
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