Application of SensorML in the Description of the Prototype Air Monitoring Network

Mariusz Rogulski, Bogdan Dziadak

2017

Abstract

The aim of this publication is to present the use of OGC standards – SensorML and Observations & Measurements – to describe the sensor network and measurement process in the prototype of air quality monitoring network launched in Nowy Sacz in Poland. Standards are used to create structures of relational databases to achieve interoperability through data collection in an orderly manner in the field of environmental data and in the description of monitoring process. This is important especially when the system consists of a number of low-cost measuring devices, that are designed to complement existing measurement network.

References

  1. Bröring, A., 2012. Automated On-the-fly Integration of Geosensors with the Sensor Web. Ph.D. Dissertation, University of Twente, Enschede, The Netherlands.
  2. Bröring, A.; Echterhoff, J.; Jirka, S.; Simonis, I., Everding, T., Stasch, C., Liang, S.; Lemmens, R., 2011. New generation sensor web enablement. Sensors, vol. 11, pp. 2652-2699.
  3. Chen, N., Hu, C., Chen, Y., Wang, C., Gong, J., 2012. Using SensorML to construct a geoprocessing eScience workflow model under a sensor web environment. Computers & Geosciences, vol. 47, pp. 119-129, doi: 10.1016/j.cageo.2011.11.027.
  4. Chen, N., Wang, X., Yang, X., 2013. A direct registry service method for sensors and algorithms based on the process model. Computers & Geosciences, vol. 56, pp. 45-55, http://dx.doi.org/10.1016/ j.cageo.2013.03.008.
  5. Conover, H., Berthiau, G., Botts, M., Goodman, H.M., Li, X., Lu, Y., Maskey, M., Regner, K., Zavodsky, B., 2010. Using sensor web protocols for environmental data acquisition and management, Ecological Informatics, vol. 5, pp. 32-41, doi: 10.1016/ j.ecoinf.2009.08.009.
  6. Dziadak, B., Makowski, L., Michalski, A., 2011. Embedding wireless water monitoring system in Internet. Przeglad Elektrotechniczny, vol. 4, pp. 246- 248.
  7. Fan, M., Fan, H., Chen, N., Chen, Z., 2013. Active ondemand service method based on event-driven architecture for geospatial data retrieval. Computers & Geosciences, vol. 56, pp. 1-11.
  8. Higuera, J., Polo, J., 2012. Autonomous and Interoperable Smart Sensors for Environmental Monitoring Applications, in: Mukhopadhyay, S.C. (Ed.), Smart Sensing Technology for Agriculture and Environmental Monitoring, Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, pp. 323-359, doi:10.1007/978-3-642-27638-5_16.
  9. Hu, Ch., Li, J., Chen, N., Guan, Q. 2014. An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation. Remote Sensing, vol. 6, pp. 677-699, doi: 10.3390/rs6010677.
  10. Hu, L., Yue, P., Zhang, M., Gong, J., Jiang, L., Zhang, X., 2015. Task-oriented Sensor Web data processing for environmental monitoring. Earth Science Informatics, vol. 8, pp. 511-525, doi: 10.1007/s12145-015-0235-1.
  11. Huang, Ch., Wu, Ch., 2016. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability. Sensors, vol. 16, doi: 10.3390/s16091395 (sensors-16-01395).
  12. IEEE Standard, Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. p. 42, New York, 1990.
  13. ISO/IEC, Technical Draft Report, Ref. No. JTC1 SC36 WG4 N0070. Information Technology - Learning, education, and training - Management and delivery - Specification and use extensions and profiles, 2003. US SC36 Secretariat.
  14. Jiménez, M., González, M., Amaro, A., Fernández-Renau, A., 2014. Field Spectroscopy Metadata System Based on ISO and OGC Standards. International Journal of Geo-Information, vol. 3, pp. 1003-1022, doi: 10.3390/ijgi3031003.
  15. Jirka, S., Bröring, A., Kjeld, P., Maidens, J., Wytzisk, A., 2012. A Lightweight Approach for the Sensor Observation Service to Share Environmental Data across Europe. Transactions in GIS, vol. 16: pp. 293- 312, doi: 10.1111/j.1467-9671.2012.01324.x.
  16. Kim, J.-D., Kim, J.-J., Park, S.-D., Hong, C.-H., Byun, H.- G., Lee, S.-G., 2011. A Smart Web-Sensor Based on IEEE 1451 and Web-Service Using a Gas Sensor, in: Computers,Networks, Systems, and Industrial Engineering. Springer, Berlin, Heidelberg, pp. 219- 235, doi: 10.1007/978-3-642-21375-5_19.
  17. Kotsev, A., Peeters, O., Smits, P., Grothe, M., 2015. Building bridges: experiences and lessons learned from the implementation of INSPIRE an e-reporting of air quality data in Europe. Earth Science Informatics. vol. 8, pp. 353-365, doi: 10.1007/s12145-014-0160-8.
  18. Kotsev, A., Schade, S., Craglia, M., Gerboles, M., Spinelle L., Signorini, M., 2016. Enriching Authoritative Environmental Observations: Findings from AirSensEUR. GSW 2016 - Geospatial Sensor Webs Conference, Münster, Germany.
  19. Kularatna, N., Sudantha, B.H., 2008. An Environmental Air Pollution Monitoring System Based on the IEEE 1451 Standard for Low Cost Requirements. IEEE Sensors Journal, vol. 8, pp. 415-422, doi:10.1109/JSEN.2008.917477.
  20. Lee, K., 2007. Sensor standards harmonization-path to achieving sensor interoperability, in: IEEE Autotestcon. IEEE, pp. 381-388.
  21. Liang, S., Croitoru, A., Tao, C., 2005. A distributed geospatial infrastructure for Sensor Web. Computers & Geosciences, vol. 31, pp. 221-231, doi: 10.1016/j.cageo.2004.06.014.
  22. Postolache, O., Girão, P.S., Pereira, J.M.D., 2011. Water Quality Assessment through Smart Sensing and Computational Intelligence, in: Mukhopadhyay, S.C., Lay-Ekuakille, A., Fuchs, A. (Eds.), New Developments and Applications in Sensing Technology, Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, pp. 191-206, doi: 10.1007/978-3-642-17943-3_10.
  23. Pu, F., Wang, Z., Du, C., Zhang, W., Chen, N., 2016. Semantic integration of wireless sensor networks into open geospatial consortium sensor observation service to access and share environmental monitoring systems. IET Software, vol. 10, pp. 45-53, doi: 10.1049/ietsen.2014.0141.
  24. Rogulski, M., Rossa, M., 2015. The applicability of SWE in Polish spatial data infrastructures - the example of the SensorML language. Foundations of Computing and Decision Sciences, vol. 40, pp. 187-201, doi: 10.1515/fcds-2015-0012.
  25. Sánchez López, T., 2011. RFID and sensor integration standards: State and future prospects. Computer Standards & Interfaces, vol. 33, pp. 207-213, doi: 10.1016/j.csi.2010.09.002.
  26. Saponara, S., Fanucci, L., Neri, B., 2011. IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems, in: Conti, M., Orcioni, S., Madrid, N.M., Seepold, R.E.D. (Eds.), Solutions on Embedded Systems, Lecture Notes in Electrical Engineering. Springer Netherlands, pp. 59-73, doi: 10.1007/978-94- 007-0638-5_5.
  27. Tang, S.-M., Yeh, F.-L., Wang, Y.-L., 2001. An efficient algorithm for solving the homogeneous set sandwich problem. Information Processing Letters, vol. 77, pp. 17-22.
Download


Paper Citation


in Harvard Style

Rogulski M. and Dziadak B. (2017). Application of SensorML in the Description of the Prototype Air Monitoring Network . In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM, ISBN 978-989-758-252-3, pages 307-314. DOI: 10.5220/0006379903070314


in Bibtex Style

@conference{gistam17,
author={Mariusz Rogulski and Bogdan Dziadak},
title={Application of SensorML in the Description of the Prototype Air Monitoring Network},
booktitle={Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,},
year={2017},
pages={307-314},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006379903070314},
isbn={978-989-758-252-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,
TI - Application of SensorML in the Description of the Prototype Air Monitoring Network
SN - 978-989-758-252-3
AU - Rogulski M.
AU - Dziadak B.
PY - 2017
SP - 307
EP - 314
DO - 10.5220/0006379903070314