Studying Complex Interactions in Real Time: an XMPP-based
Framework for Behavioral Experiments

Dan Mgnster!:2-3
1Interacting Minds Centre, Aarhus University, DK-8000 Aarhus C, Denmark
2Cognition and Behavior Lab, Aarhus University, DK-8210 Aarhus V, Denmark

3Departmem‘ of Economics and Business Economics, Aarhus University, DK-8210 Aarhus V, Denmark

Keywords:

Abstract:

Real-time, Behavioral Experiment, XMPP, Python, Social Network, Complexity.

The study of human behavior must take into account the social context, and real-time, networked experiments

with multiple participants is one increasingly popular way to achieve this. In this paper a framework based on
Python and XMPP is presented that aims to make it easy to develop such behavioral experiments. An illustrative
example of how the framework can be used is also presented. This example is a real experiment, which is

currently gathering data in the lab.

1 INTRODUCTION

Humans are social beings that are connected to each
other in ties of kinship, friendship, and other affilia-
tions in groups, organizations and societies at different
scales, ranging from families and friendship groups to
workplaces, cities, nation states and global communi-
ties. These groups are mediated by both physical and
symbolic interactions in real and virtual environments,
and are often represented as social networks.

Using social networks to describe interactions be-
tween humans is a long tradition in sociology (Gra-
novetter, 1973), and in recent years it has also been
used in cognitive science (Baronchelli et al., 2013) to
study, e.g., the emergence of social linguistic conven-
tions (Centola and Baronchelli, 2015). Social network
structure may influence many other areas of our lives,
for example, recent simulation studies indicate that the
structure of the social network and the kind of social
learning that takes place play a combined role in de-
termining team performance (Barkoczi and Galesic,
2016).

Interconnected networks are relevant not only for
the study of complex interactions between humans,
but also in complex coordinated activities between hu-
mans and machines, e.g., when humans interact with
cloud services or IoT devices (Dustdar et al., 2016). It
is therefore important to be able to study these inter-
actions both in the field and in the lab. In economics
there is a long tradition of using lab experiments based
on game theory to study human behavior and deci-

130

Meanster, D.

sion making. Several tools exist for running such ex-
periments (see section 1.1), but few of them enable
researchers to connect participants in experiments in
arbitrary network structures and to dynamically change
these structures.

Recent studies of interacting groups suggest that
part of the key to understanding successful collab-
oration is connected to the dynamics of how group
members interact in real time (Mgnster et al., 2016;
Wallot et al., 2016; Fusaroli and Tylén, 2016). An-
other recent study indicates that real-time interaction
influences the efficiency and fairness of collective out-
comes (Hawkins and Goldstone, 2016).

To facilitate and expand these kinds of studies there
is a need for an easy way for researchers to design,
build and deploy real-time networked experiments
both on the web and in the lab. This paper presents a
solution to this challenge for lab-based experiments,
and although the solution can also be extended to the
web, other existing solutions are better suited for this
purpose. There are differences between lab-based and
web-based experiments, and both approaches have dis-
tinct advantages and challenges (Woods et al., 2015).

The solution described in the present paper aims to
satisfy the need for an easy way to develop software
for lab experiments where participants interact in real
time. The approach is to provide a minimal framework
that can be integrated with researchers own code on the
client side (e.g., existing GUI or peripheral equipment)
and on the server side (computations, game logic) as
well as allowing for computer-based agents to interact

Studying Complex Interactions in Real Time: an XMPP-based Framework for Behavioral Experiments.

DOI: 10.5220/0006375201300138

In Proceedings of the 2nd International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2017), pages 130-138

ISBN: 978-989-758-244-8

Copyright © 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Studying Complex Interactions in Real Time: an XMPP-based Framework for Behavioral Experiments

with human participants.

1.1 Related Works

PsychoPy (Peirce, 2007; Peirce, 2009) is a Python
based open source software tool to build experiments
with frame accurate timing for psychophysics type ex-
periments. PsychoPy is cross platform and runs on
Windows, Mac OS and Linux. It uses OpenGL for
fast 2D graphics, supports multiple monitors, moni-
tor calibration and includes many standard visual and
auditory stimuli. PsychoPy also supports many exter-
nal devices such as response boxes, parallel and serial
ports, eye trackers, and more.

PsycholS is a recent initiative to bring PsychoPy
functionality to the web browser using JavaScript and
pixi.js and WebGL for high-performance 2D rendering
in the browser.

One of the most used tools for this type of exper-
iments has been the Ziirich Toolkit for Readymade
Economic Experiments: z-Tree (Fischbacher, 2007).
z-Tree runs on Windows computers and employs a
client-server architecture, with a client application
called z-Leaf and a server application called z-Tree.
The programming model of z-Tree is somewhat id-
iosyncratic, using a spreadsheet like construct called
tables which holds most variables and where scoping
rules and the scoping operator controls referencing
variables from other tables.

A recent alternative is oTree (Chen et al., 2016)
which is an open source Python based solution, which
like z-Tree is a client-server architecture, that uses a
web browser as the client through Django. This has the
advantage that experiments can run on most platforms
in the lab, online and in the field.

Experimental Tribe, or XTribe (Caminiti et al.,
2013) is a web platform for programming and advertis-
ing so-called games with a purpose or citizen science
games, through the Xtribe web site. Xtribe function-
ality is similar to oTree, but is tied to the Xtribe plat-
form, which also serves to recruit participants. Game
backends (called game managers) in Xtribe can be
programmed in PHP, JavaScript (node.js), Python or
JSP.

The most recent addition to the family of
browser-based multi-participant experiment platforms
is nodeGame (Balietti, 2016), which uses JavaScript
for both client and server. nodeGame has many of
the same features as oTree and XTribe and is built on
node.js.

A system for real-time multiplayer experiments on
the web including a physics engine (Hawkins, 2015)
has also been developed. The system, called MWERT,
is also based on node.js, and uses the HTML 5 can-

vas to display client-side graphics. It also includes a
physics engine, so that players position in a virtual
world can be used in experiments.

The solution described in the present paper gives
researchers a way to develop real-time multi partici-
pant experiments using a widely used programming
language (Python) in a flexible manner. In this regard
it is similar to oTree, nodeGame, Xtribe and MWERT,
although unlike these solutions it is not web based.
This is a deliberate design, although when develop-
ment of the present solution was started the author had
no knowledge of these other solutions, most of which
have only recently been published. It seems that most
of these related works were developed in parallel with
little or no knowledge of the other solutions.

2 SOLUTION

This paper describes a solution that was needed for
several novel experiment designs at Cognition and Be-
havior Lab at Aarhus University in late 2014. At the
time, no existing solution was found to satisfy all the
requirements needed for these designs, which included
the ability to embed players in different (social) net-
work topologies, real-time interaction between players,
interactive graphics and use of audio, use of server-side
calculations, and the ability to mix human participants
and software agents.

Since multiple projects had similar requirements,
and in the interest of being able re-use the solution for
future projects, a general solution was sought. Cog-
nition and Behavior Lab is an interdisciplinary lab
used by researchers from several disciplines at Aarhus
University, including, but not limited to psychology,
economics, cognitive science, marketing, political sci-
ence, neuroscience, and linguistics. As a consequence
many different platforms for developing behavioral
experiments are used, but open source platforms have
become increasingly popular — chiefly among these is
PsychoPy (Peirce, 2007). Part of the infrastructure at
Cognition and Behavior Lab is the Computer-based
Interaction Lab, with 33 computers. These computers
have PsychoPy installed, and many of the researchers
using the lab and programming their own experiments
are well versed in Python. A wide variety of experi-
ments have used PsychoPy! in a range of different dis-
ciplines. For this reason it was decided to implement
the initial solution in Python. With a local user-base
of lab researchers and research assistants who could

At the time of writing the two main PsychoPy pub-
lications (Peirce, 2007; Peirce, 2009) had 1130 citations,
according to Google Scholar.

131

COMPLEXIS 2017 - 2nd International Conference on Complexity, Future Information Systems and Risk

already develop for PsychoPy, the crucial missing in-
gredient was an easy-to-use networking component
that would allow communication between several com-
puters, each running an application that a human par-
ticipant can interact with. Such an application will be
denoted a client application or simply a client.

2.1 Design Objectives

Based on the specific projects and with an aim to sup-
port experiments involving interaction between partic-
ipants in general, the following design objectives were
developed:

Simple Interface. The user should not be required to
understand object oriented programming, or deal
with concurrency and multi-threading issues.

High Performance. Since one of the original objec-
tives was to enable game-like real-time interac-
tions, low latency is needed. A latency below
100 ms is generally needed in first-person-shooter
games (Claypool and Claypool, 2006) and for VoIP
(Markopoulou et al., 2002), so delays should be
kept below this level. For larger experiments in-
volving hundreds of participants, scalability and
high throughput is also required.

Network Protocol Agnostic. The solution should be
able to work in a wide range of network environ-
ments, i.e., in other labs, over the general Internet,
and behind firewalls and NAT devices. Hence it
is desirable to be able to use, e.g., both TCP and
HTTP as transport protocols.

Open. Since researchers use a range of different tools
and technologies, an open standard, preferably
with open source implementations, is preferred
over closed and commercial alternatives.

After evaluating several alternative technologies,
it was decided to develop a solution based on the The
eXtensible Messaging and Presence Protocol (XMPP)
(Saint-Andre, 2011a; Saint-Andre, 2011b). XMPP
was originally designed for instant messaging (IM),
but has been used as a core enabling technology for
multi-player games (Lee, 2004), Internet of Things
(IoT) (Schuster et al., 2014), as well as cloud com-
puting (Bernstein et al., 2009) and grid computing
(Albano et al., 2015) (see (Hornsby and Walsh, 2010)
for an overview). It has thus been demonstrated that
the XMPP protocol can be used in a wide variety of
applications where the common denominator is con-
necting humans and/or systems, often with real-time
constraints and on a massive scale. Furthermore, the
XMPP protocol is open, extensible and with a wide
variety of server, client and library implementations?,

2See, e.g., https://xmpp.org/software for a list.

132

many of which are open source. XMPP libraries ex-
ist for every major programming language, and for
Python there are around 10 different libraries to choose
from.

2.2 The XMPP Protocol

XMPP is a protocol for exchanging messages over a
network in eXtensible Markup Language (XML) be-
tween two entities in a client-server architecture. En-
tities are XMPP clients or the XMPP server to which
the clients are connected. Only the simple example of
one server with several clients will be considered here,
but it is noted that XMPP is a decentralized protocol
and it is possible to set up server-to-server connections
and gateways to other protocols.

Entities in XMPP are identified by a unique iden-
tifier, and since XMPP is the standardization of the
original Jabber protocol, this identifier is referred to
as the Jabber ID (JID). The JID is modeled after the
syntax used for Internet e-mail addresses, and have
the general form user@domain/resource, where the
resource identifier is optional, but may, e.g., be used
to identify different devices held by the same user.
XMPP exchanges XML elements, called stanzas, be-
tween entities, and there are three stanzas defined in
the XMPP core protocol (Saint-Andre, 2011a), viz.
the <presence/> stanza used to indicate availability
of the entity, the <message/> stanza used to send a
message from one entity to another, and the <iqg/>
stanza used to send information and queries between
entities.

An XMPP session is initiated by the client and a
<stream/> element is negotiated and set up between
the client and the server. This <stream/> is the root
to which all of the XML stanzas in the stream belong.
When the session is established and the client is authen-
ticated further stanzas can be exchanged. When XMPP
is used for IM, the client retrieves the roster (contact
list) associated with the JID of the client, using an
<ig/> stanza, and then sends a <presence/> stanza
to indicate that the user is online and available. Com-
munication between two clients can now commence,
and is achieved by sending and receiving <message/>
stanzas over the established XML stream.

2.2.1 XMPP Server

The XMPP server is a key element in setting up the so-
lution, since the server is responsible for client authen-
tication and routing of messages. Since all messages
pass through the server, it is also a crucial element in
ensuring low latency and scalability — two of the key
objectives. For distributed experiments, where some

Studying Complex Interactions in Real Time: an XMPP-based Framework for Behavioral Experiments

clients may be behind NAT devices and firewalls, end-
to-end communication can still be guaranteed as long
as the clients can connect to the server and establish
an XMPP stream.

Many different XMPP server implementations ex-
ist that can be deployed locally or as hosted solutions
by commercial providers. In addition there are many
public XMPP servers, where anyone can set up ac-
counts. For the solution described in this paper a lo-
cally deployed XMPP server was the best choice, since
it guarantees lower network propagation latency than
a remotely hosted solution, and provides a more sta-
ble environment for testing and experimenting under
controlled conditions.

An ejabberd Community Server” was installed on
a virtual server running Ubuntu Linux hosted by the
IT Department at Aarhus University. The command
line control interface to ejabberd provided an easy way
to create identities in the form of JIDs through a script.
In this way it was easy to create an arbitrary number
of unique JIDs and passwords that are private to a
particular research project.

3

2.2.2 XMPP Library

There are several XMPP libraries implemented in
Python or with Python bindings, which could be used
for the solution. An early version of the solution was
implemented using xmpp.py (Nezhdanov and Ras-
mussen, 2013), but this library was later replaced by
SleekXMPP (Fritz and Stout, 2016) which proved to
be more stable, better documented and with a larger
community.

2.3 Simple Interface to XMPP

Most researchers (in fields other than computer sci-
ence) who develop their own software are self-taught.
A recent study among scientists showed that over 95%
are self-taught (Hannay et al., 2009), and Greg Wil-
son, who has taught software development to scientists
over the past two decades, came to the conclusion that
more ‘advanced’ topics such as object-oriented pro-
gramming, XML, and Make had to be dropped from
the curriculum (Wilson, 2016). Hence, for the solution
to be adopted by the intended user base, it must present
researchers with a simple interface to XMPP, that does
not require them to understand the intricacies of the
XMPP protocol or XML, and does not require them to
deal with issues of multithreading and asynchronous
calls.

Consequently, a simple Python class called Net-
workingClient was developed to encapsulate all XMPP

3https://www.ejabberd.im/

details except the client’s JID and password, which are
passed tothe __init__ () method upon instantiation
of an object of the NetworkingClient class. The follow-
ing code shows how the class can be used in Python
code to create a new variable that holds an instance of
the class:

from NetworkingClient import NetworkingClient

jid = ’client_001_exp_008@my.local.server’
secret = 'VlinxtEcixjlTcYRS'
network = NetworkingClient (jid, secret)

A client only needs to know its own JID and pass-
word. The XMPP server address is encoded in the
JID (in the example: my.local.server). The Net-
workingClient class also contains methods for sending
messages to other XMPP entities identified by a JID,
as in this example:
receiver = 'client_002_exp_008@my.local.server’
network.send_message (to = receiver,

sender = jid,
message='Hello!’,
subject="")

In this example the message subject has been left
empty, but it can conveniently be used to indicate the
kind of message sent (see section 3). The ability to
connect to and authenticate with an XMPP server, and
to send messages provide sufficient capabilities to im-
plement all the experimental designs for which the
solution was primarily developed. The Networking-
Client class also contains methods to manage presence
and roster, but these additional methods will not be
discussed here.

2.3.1 Message Handling

The core functionality needed for the solution is the
ability to send and receive messages between any two
entities, and if two clients know each others’ JIDs,
then this functionality is accomplished. Knowledge
of other clients’ JIDs can be obtained using XMPP’s
presence and roster functionalities, or JIDs can be
known in advance, or controlled by a special client. In
the example presented in section 3 the latter method
is used, and this special client is called the experiment

server (not to be confused with the XMPP server).

The NetworkingClient class has a listener running
in a separate thread and uses a queue to store messages
in the order they are received. The calling code can
poll to check for messages and then invoke a function
to handle the messages:

if network.check_for_messages():
msg = network.pop_message ()
message_handler (msq)

This design means that the calling code does not
need to take concurrency issues into account.

133

COMPLEXIS 2017 - 2nd International Conference on Complexity, Future Information Systems and Risk

3 RESULTS

The NetworkingClient class has been used to imple-
ment several experiments where real-time interaction
between participants was needed. In the following,
one of these, called networked problem solving will
be described in detail. The purpose of the ‘network-
ing problem solving’ experiment is to study how the
network topology influences how people solve a joint
problem, and how solutions to the problem propagate
in the network. At the time of writing, data is still
being gathered in the experiment, and the results of the
experiment will be published elsewhere. Here the fo-
cus will be on how the solution described in the present
paper was used to facilitate the experiment. The prob-
lem to be solved by the participants in the experiment
was framed as a collaborative game in which pairs of
participants together had to create a four-tone melody
on a shared keyboard with five tones (see Figure 1).
The terms player and participant will be used inter-
changeably to refer to the human participants, while
the term game client refers to the software that the
players use.

3.1 Experimental Session

The game is played by an even number of players, each
using a game client, and the gameplay is controlled
by an experiment server (or game server). Both the
game client and game server use instances of the de-
veloped NetworkingClient to send and receive XMPP
messages.

In an experimental session the game server applica-
tion is started before the clients, and it uses Network-
ingClient to connect to the XMPP server and authenti-
cate, after which it starts listening for messages. When
a game client is started it also connects to the XMPP
server and authenticates with a matching (JID, pass-
word) combination. Since the experiment is conducted
in a lab, the JID is found by matching the computer’s
MAC address to a JID. The game client then sends a
register message to the game server:

version = 0.5

server_jid = ’'server_exp_008@my.local.server’

network.send_message (to=server_jid,
sender=jid,
subject='register’,
message=str (version))

In the example code the game client’s JID and the
game server’s JID are hardcoded. The XMPP mes-
sage’s subject is used to indicate the type of message
that is sent, in this case a ‘register’ message. The
message body contains a string, which for the register
message is the game client’s version number.

134

3.2 Message Passing

Once the game client has sent a register message to
the game server, the server can communicate with
the client and all other clients that have registered.
The game server maintains a list of registered clients,
and when a sufficient number of game clients have
registered, it can start the game. In the ‘networked
problem solving’ experiment described here, the game
is started by an experimenter who runs and supervises
the experimental session, but it could equally well
happen automatically.

Before the game is started the experimenter can
set a number of parameters in the game server GUI
(see Figure 4), most importantly for the description
here is the network topology which determines how
game clients are connected to each other. The op-
tions here are ‘fully connected’, where any two game
clients are connected, and ‘ring structure’, where each
game client is connected to its nearest and next nearest
neighbors in a ring (see Figure 2).

In each round of the experiment a participant is
paired with another participant, that is a neighbor in
the chosen network topology. This pairing is directed
by the game server, which sends each game client the
JID of its partner. This is implemented by sending an
XMPP message with subject = ’new_round’ and
with a message body that is the JID of the partner (see
Figure 3).

In principle the two partners can now exchange
messages directly through the XMPP server, but since
some messages have relevance for the gameplay’s
logic they must also be sent to the game server. Thus,
these messages must either be sent both to the part-
ner’s game client and to the game server, or simply be
routed through the game server. The latter method was
chosen, and is illustrated by the call diagram in Fig-
ure 3, which shows some of the messages exchanged
between two game clients C; and C;, via the game
server, within a single round of the game. The round
is started when the game server sends the new_round
message to all clients. Chat messages are sent by a call
to the send_message () method in NetworkingClient
with subject = ’chat’ and the chat message as the
body of the message. When a player clicks the key-
board a message with subject = ’tone’ is sentto
the game server which replies back to the originating
game client with a ' tone_ack’ message and sends a
subject = ’tone’ message to the game client of
the partner. This causes the clicked key on both part-
ners’ game clients to briefly change color to indicate
that the key (identified in the body of the message)
was pressed (yellow if the player pressed, and red if
the partner pressed).

Studying Complex Interactions in Real Time: an XMPP-based Framework for Behavioral Experiments

Me: My best is 5. You?

Partner: I got 15 max

Me: You try then

Partner: I'll start, and you can finish
Me: 0K

Client

Your latest score is: -5
Your highest score is: 5
Your total score is: 0

Figure 1: Screenshot of the game client from a test session. In the actual experiment the client application runs in full screen
mode. The upper half contains the shared keyboard and some graphics that relates to the story behind the game. When one
player presses a key, that key is briefly highlighted on the player’s own and the partner’s keyboard, the tone is played as audio
on both client computers, and the corresponding cell in the solution grid above the keyboard is filled to give the players a visual
representation of their shared melody. The lower half of the screen is a chat interface, where the two players can communicate.
Below the chat input box a progress bar serves as a timer that indicates how much of the current round has passed. When a new
round starts, players will be paired with a partner anew and the timer restarts, while the solution grid and the chat are cleared,
so only the latest score, highest score and total (cumulative) score in the upper right corner are preserved.

Routing all messages through the game server also
makes it easy to resolve contention issues. An example
of this is shown in the lower part of Figure 3, where
the two partners have played three of the four tones
required for a melody, and they both press a fourth
tone on the keyboard. In this case only one of the
tones can be played and added to the melody. Since
both messages (with subject = ’tone’) are sent
to the game server, the server replies to the message
it first receives (from C;) with an acknowledgement
(subject "tone_ack’) and relays this ‘tone’ mes-
sage to the other partner (C;). This partner’s ‘tone’
message which is received by the game server after the
first ‘tone’ message is simply ignored. When a pair of
players have constructed a melody of four tones, the
game server sends the score obtained with the melody
to the game clients, and when the round ends the score
will be displayed to the players.

Routing all messages through the game server has

NS
»'17"‘:’5

ATNA
v’n P
Ve
\1% v‘%'

Figure 2: Examples of the two network topologies used in
the experiment, for N = 12. To the left is the fully connected
topology, where all clients are connected; and to the right
the ring topology, where each client has four neighbors.

the additional advantage that all messages can be time-
stamped and logged centrally on the server. This
makes it easy to record all the relevant data from an
experimental session for later analysis. On the other
hand this also puts a greater load on the game server,

135

COMPLEXIS 2017 - 2nd International Conference on Complexity, Future Information Systems and Risk

C, Game server C,
P new_round new_round
chat > chat R
chat . chat
tone N
) -l tone |
- tone_ack -
. . .
L} L} L}
L} L} L}
tone < tone
tone tone_ack
P score score _

Figure 3: Call diagram illustrating the communication be-
tween two game clients, C; and C,, and the game server. All
messages represent calls to the send_message () method in
NetworkingClient, and are routed through the XMPP server
which is not shown. The last tone message from C is ig-
nored, because the pair have no more tones left to play. See
main text for further details.

which may result in increased latency and jitter of the
messages.

3.3 Tests and data acquisition

The solution, i.e. the NetworkingClient class, and the
applications built using it can, to a large extent, be
tested using unit testing. With an XMPP server on the
same computer where the solution is developed the
loopback interface can be used to test the exchange of
messages. But an integrated test of the software for
running a networked behavioral experiment ultimately
has to be performed with several client computers, run-
ning on a real physical network. Testing with multiple
game clients requires several people, and is an impor-
tant step before running the experiment with actual
participants. But this type of test is expensive in terms
of people-hours, and during the early stages of the
development process it may slow down development
if a test requires several persons to. For this reason a
stripped down game client without the need for user
input is an ideal test tool. Such a ‘robot client’ can
emulate a player using the real game client.

For the networked problem solving experiment de-
scribed here, such a robot client was developed, which
simply ‘clicked’ a random key on the keyboard at
random intervals and sent chat messages of random
strings with differing lengths at random intervals. Both
the intervals and the string lengths were drawn from
uniform distributions on an interval. The intervals

136

lengths are parameters that can be tuned either to re-
semble real users, or to provide different levels of
message traffic and hence load on the network, on the
XMPP server, and on the game server. A screenshot of
the game server during testing with 16 robot clients is
shown in Figure 4. These tests showed that the game
server message handler could be a bottleneck, which
under sufficiently high load resulted in an increase in
reply times from the server logic that affected game-
play.

Several errors were found using robot client test-
ing, which included load tests with high message rate
and stability tests with long duration. Some errors,
however, were only provoked when the game client
was used, and pilot experiments with human partici-
pants also resulted in new issues. After several rounds
of testing using this hierarchy—unit tests, integration
tests with robot clients, integration tests with human
assistants, and pilot tests with human participants—the
solution and the application using it are stable enough
that data acquisition has started and at the time of writ-
ing data are being gathered in the lab with groups of
16 participants per experimental session.

4 CONCLUSIONS AND FUTURE
WORK

In this paper a Python interface to XMPP called Net-
workingClient was presented, and it was described
how the class can be used to develop a real-time multi-
player experiment, only requiring access to an XMPP
server, where a number of accounts can be created.

An illustrative example of an actual experiment
was given, and performance was found to be satisfac-
tory under normal conditions, although a load test with
robot clients showed that the game server could cause
unacceptable delays under high load, indicating that
the present version will not scale to a large number of
users.

In view of recently developed solutions described
in section 1.1 it is clear that other mature alternatives
exist, that would achieve most of the design goals
listed for the solution presented here. The present
solution has an advantage in cases where an existing
Python implementation of the client interface exists.
For example the example experiment presented here
already existed in a single-player version implemented
for PsychoPy and large pars of the code could there-
fore be reused, although the multiplayer version was
written using the TkInter GUI library instead of Psy-
choPy. Another instance where the present solution
is more appropriate than the alternatives, is when the
client has to interface with peripheral equipment. This

Studying Complex Interactions in Real Time: an XMPP-based Framework for Behavioral Experiments

Condition: Landscape: Topology:

Known max 1 Full

Registered clients: 16

Ready clients: 16

message: nps_1_8@rankdb.cobelab.au.dk, subject: chat, body: nps_1_ 7@rankdb.cobelab.au.dk: : YgaSmXrI8XTXSzNh7vPLtHb
message: nps_1_6@rankdb.cobelab.au.dk, subject: chat, body: nps_1_4€rankdb.cobelab.au.dk::7fselX2yTTV
message: nps_1_10@rankdb.cobelab.au.dk, subject: chat, body: nps_1_3@rankdb.cobelab.au.dk: : tbPVd23sgFmiNOPaTec

message: nps_1_2@rankdb.cobelab.au.dk, subject: tone, body: nps_1_11€rankdb.cobelab.au.dk::D
message: nps_1_9@rankdb.cobelab.au.dk, subject: tone, body: nps_1_15@rankdb.cobelab.au.dk::C

message: nps_1_2@rankdb.cobelab.au.dk, subject: chat, body: nps_1_11@rankdb.cobelab.au.dk: :6gobmcRalVCBEutDruQIx1ghx

message: nps_1_16@rankdb.cobelab.au.dk, subject: tone, body: nps_1_148rankdb.cobelab.au.dk: :F

message: nps_1_11€rankdb.cobelab.au.dk, subject: chat, body: nps_1_2rankdb.cobelab.au.dk: :06ei5CU124Hncz11

message: nps_1_1€rankdb.cobelab.au.dk, subject: tone, body: nps_1_13@rankdb.cobelab.au.dk::
message: nps_1_6@rankdb.cobelab.au.dk, subject: tone, body: nps_1_48rankdb.cobelab.au.dk::G
message: nps_1_11@rankdb.cobelab.au.dk, subject: tone, body: nps_1_2@rankdb.cobelab.au.dk::D

message: nps_1_13@rankdb.cobelab.au.dk, subject: tone, body: nps_1_1@rankdb.cobelab.au.dk::G
message: nps_1_7@rankdb.cobelab.au.dk, subject: tone, body: nps_1_88rankdb.cobelab.au.dk::F
message: nps_1_10@rankdb.cobelab.au.dk, subject: tone, body: nps_1_3@rankdb.cobelab.au.dk::G

message: nps_1_128rankdb.cobelab.au.dk, subject: chat, body: nps_1_S@rankdb.cobelab.au.dk: :NAUrN17ShT
+:SL1101KiX60S F3NBy2A0

message: nps_1_14@rankdb.cobelab.au.dk, subject: chat, body: nps_1_16@rankdb.cobelab.au.d|
message: nps_1_1€rankdb.cobelab.au.dk, subject: tone, body: nps_1 138rankdb.cobelab.au.dk::E
message: nps_1_158rankdb.cobelab.au.dk, subject: tone, body: nps_1_98rankdb.cobelab.au.dk::G
message: nps_1_128rankdb.cobelab.au.dk, subject: tone, body: nps_1_S@rankdb.cobelab.au.dk::F

message: nps_1_1€rankdb.cobelab.au.dk, subject: chat, body: nps_1_13@rankdb.cobelab.au.dk::2fwVZKry

message: nps_1_2@rankdb.cobelab.au.dk,
message: nps_1_1@rankdb.cobelab.au.dk,

: tone, body: nps_1_11@rankdb.cobelab.au.dk::E
: tone, body: nps_1_13@rankdb.cobelab.au.dk::C

message: nps_1_13@rankdb.cobelab.au.dk, subject: chat, body: nps_1_1@rankdb.cobelab.au.dk::53FRTRDVIyHjiW2aiqfXSfso

message: nps_1_13@rankdb.cobelab.au.dk, subject: tone, body: nps_1_1€rankdb.cobelab.au.dk::E
message: nps_1_7@rankdb.cobelab.au.dk, subject: tone, body: nps_1_88rankdb.cobelab.au.dk::E
message: nps_1_11@rankdb.cobelab.au.dk, subject: tone, body: nps_1_2@rankdb.cobelab.au.dk::G
message: nps_1_3@rankdb.cobelab.au.dk, subject: tone, body: nps_1_10@rankdb.cobelab.au.dk::G
message: nps_1_16@rankdb.cobelab.au.dk, subject: chat, body: nps_1_14@rankdb.cobelab.au.d|
message: nps_1_4@rankdb.cobelab.au.dk, subject: tone, body: nps_1_6@rankdb.cobelab.au.dk:
message: nps_1_14@rankdb.cobelab.au.dk, subject: tone, body: nps_1_16@rankdb.cobelab.au.dk: :F
message: nps_1_16@rankdb.cobelab.au.dk, subject: tone, body: nps_1_148rankdb.cobelab.au.dk: :E

Stop session

sahes

et

o
o

e

DlomIETw708P

Round number: 3 Terminate clients Quit

Figure 4: Screenshot of the game server from a test session with 16 robot clients. Messages from the clients are shown
continuously in the left side of the window. In each game round a the game server constructs a new set of pairs drawn at
random. This is shown on the right side of the window, where red lines indicate the clients that are paired in the current game
round, and black lines indicate which clients are neighbors. The example illustrated here is for the fully connected topology,

where all clients are connected to each other.

is an area where PsychoPy excels, and where Network-
ingClient can be used to connect several PsychoPy
clients through a game server.

4.1 Future work

The NetworkingClient solution has so far only been
used for research projects at Cognition and Behav-
ior Lab. Continued development will be needed to
optimize performance. The game server message han-
dler was identified as a potential bottleneck, and this
can possibly be alleviated by providing a method to
register the message handler using the hooks in the
SleekXMPP library rather than creating a message
queue.

Another topic for future work is to integrate Net-
workingClient with PsychoPy to make it as easy as
possible to create real-time multiuser experiments with
PsychoPy.

ACKNOWLEDGEMENTS

This project has been supported by seed funding 2016
from the Interacting Minds Centre, Aarhus Univer-
sity. The author wishes to thank René Frederiksen for
working on the initial implementation of one of the
experiments and the XMPP client code. The game
client described in the example application was based
on a single-player version programmed in PsychoPy

by Kristian Tylén.

REFERENCES

Albano, M., Ferreira, L. L., Pinho, L. M., and Alkhawaja,
A. R. (2015). Message-oriented middleware for smart
grids. Computer Standards & Interfaces, 38:133-143.

Balietti, S. (2016). nodeGame: Real-time, synchronous,
online experiments in the browser. Behavior Research
Methods, pages 1-20.

Barkoczi, D. and Galesic, M. (2016). Social learning strate-
gies modify the effect of network structure on group
performance. Nature Communications, 7:13109.

Baronchelli, A., Ferrer-i Cancho, R., Pastor-Satorras, R.,
Chater, N., and Christiansen, M. H. (2013). Networks
in Cognitive Science. Trends in Cognitive Sciences,
17(7):348-360.

Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., and
Morrow, M. (2009). Blueprint for the Intercloud -
Protocols and Formats for Cloud Computing Interop-
erability. In 2009 Fourth International Conference
on Internet and Web Applications and Services, pages
328-336.

Caminiti, S., Cicali, C., Gravino, P., Loreto, V., Servedio,
V. D. P, Sirbu, A., and Tria, F. (2013). XTribe: A
Web-Based Social Computation Platform. In 2013
International Conference on Cloud and Green Com-
puting, pages 397-403.

Centola, D. and Baronchelli, A. (2015). The spontaneous
emergence of conventions: An experimental study
of cultural evolution. Proceedings of the National
Academy of Sciences, 112(7):1989-1994.

137

COMPLEXIS 2017 - 2nd International Conference on Complexity, Future Information Systems and Risk

Chen, D. L., Schonger, M., and Wickens, C. (2016).
oTree—An open-source platform for laboratory, on-
line, and field experiments. Journal of Behavioral and
Experimental Finance, 9:88-97.

Claypool, M. and Claypool, K. (2006). Latency and Player
Actions in Online Games. Commun. ACM, 49(11):40—
45.

Dustdar, S., Nastic, S., and Scekic, O. (2016). A Novel
Vision of Cyber-Human Smart City. In 2016 Fourth
IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb), pages 42-47.

Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-
made economic experiments. Experimental Economics,
10(2):171-178.

Fritz, N. and Stout, L. (2016).
(https://github.com/fritzy/Sleek XMPP).

Fusaroli, R. and Tylén, K. (2016). Investigating Conversa-
tional Dynamics: Interactive Alignment, Interpersonal
Synergy, and Collective Task Performance. Cognitive
Science, 40(1):145-171.

Granovetter, M. S. (1973). The Strength of Weak Ties. Amer-
ican Journal of Sociology, 78(6):1360-1380.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P,
Pfahl, D., and Wilson, G. (2009). How do scientists
develop and use scientific software? In 2009 ICSE
Workshop on Software Engineering for Computational
Science and Engineering, pages 1-8.

SleekXMPP

Hawkins, R. X. D. (2015). Conducting real-time multiplayer
experiments on the web. Behavior Research Methods,
47(4):966-976.

Hawkins, R. X. D. and Goldstone, R. L. (2016). The Forma-
tion of Social Conventions in Real-Time Environments.
PLOS ONE, 11(3):e0151670.

Hornsby, A. and Walsh, R. (2010). From instant messaging
to cloud computing, an XMPP review. In IEEE Inter-
national Symposium on Consumer Electronics (ISCE

2010), pages 1-6.

Lee, N. (2004). Jabber for Multiplayer Flash Games. Com-
put. Entertain., 2(4):13-13.

Markopoulou, A. P., Tobagi, F. A., and Karam, M. J. (2002).
Assessment of VoIP quality over Internet backbones.
In Proceedings.Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies,
volume 1, pages 150-159 vol.1.

Mgnster, D., Hakonsson, D. D., Eskildsen, J. K., and Wallot,
S. (2016). Physiological evidence of interpersonal
dynamics in a cooperative production task. Physiology
& Behavior, 156:24-34.

Nezhdanov, @ A. and Rasmussen, N.
Xmpppy: the jabber python
(https://sourceforge.net/projects/xmpppy/).

(2013).
project

Peirce, J. W. (2007). PsychoPy—Psychophysics software in
Python. Journal of Neuroscience Methods, 162(1-2):8—
13.

Peirce, J. W. (2009). Generating stimuli for neuroscience
using PsychoPy. Frontiers in Neuroinformatics, 2.

Saint-Andre, P. (2011a). Extensible Messaging and Presence
Protocol (XMPP): Core (IETF RFC 6120).

138

Saint-Andre, P. (2011b). Extensible Messaging and Presence
Protocol (XMPP): Instant Messaging and Presence
(IETF RFC 6121).

Schuster, D., Grubitzsch, P., Renzel, D., Koren, 1., Klauck,
R., and Kirsche, M. (2014). Global-Scale Feder-
ated Access to Smart Objects Using XMPP. In 2014
IEEE International Conference on Internet of Things
(iThings), and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom), pages 185-192.

Wallot, S., Mitkidis, P., McGraw, J. J., and Roepstorff,
A. (2016). Beyond Synchrony: Joint Action in a
Complex Production Task Reveals Beneficial Effects
of Decreased Interpersonal Synchrony. PLOS ONE,
11(12):e0168306.

Wilson, G. (2016). Software Carpentry: lessons learned.
F1000Research, 3(62).

Woods, A. T., Velasco, C., Levitan, C. A., Wan, X., and
Spence, C. (2015). Conducting perception research
over the internet: a tutorial review. PeerJ, 3:e1058.

