
Detection of Runtime Normative Conflict in Multi-Agent Systems

based on Execution Scenarios

Mairon Belchior1 and Viviane Torres da Silva2
1Computer Science Department, Fluminense Federal University, Niterói, Brazil

2 IBM Research (on leave from Fluminense Federal University), Rio de Janeiro, Brazil

Keywords: Norms, Normative Conflict, Runtime Conflict, Multi-Agent Systems, OWL, SWRL.

Abstract: Norms in multi-agent systems are used as a mechanism to regulate the behavior of autonomous and

heterogeneous agents and to maintain the social order of the society of agents. Norms define what is

permitted, prohibited and obligatory. One of the challenges in designing and managing systems governed by

norms is that they can conflict with another. Two norms are in conflict when the fulfillment of one causes

the violation the other and vice-versa. Several researches have been proposed mechanisms to detect

conflicts between norms. However, there is a kind of normative conflict not investigated yet in the design

phase, here called runtime conflicts, that can only be detected if we know information about the runtime

execution of the system. This paper presents an approach based on execution scenarios to detect normative

conflicts that depends on execution order of runtime events in multi-agent systems.

1 INTRODUCTION

Norms have been used in open multi-agent systems

(MAS) as a mechanism to regulate the behavior of

autonomous and heterogeneous agents without

directly interfering with their autonomy. They are

system-level constraints that are independent from

the implementation of specific agents and represent

the ideals of behavior of these agents (Aphale et al.,

2012). They represent a way for agents to

understand their responsibilities and the

responsibilities of the others. Norms describe actions

that must be performed (obligations), actions that

can be performed (permissions) and actions that

cannot be performed (prohibitions) by a given entity

in a certain situation.

An important issue that must be considered while

specifying the norms is the conflicts that may arise

between them. Due to the numeral norms that may

be necessary to govern a normative MAS, the

normative conflict might not be immediately

obvious to the system designer. Two norms are in

conflict when the fulfillment of one causes the

violation of the other and vice-versa. For example,

there is a conflict when a norm prohibits an agent

from performing a particular action and another that

requires the same agent to perform the same action

at the same period of time.

There are many approaches in the literature that

deal with conflicts between norms in MAS. As

stated in Santos and Silva (2016), a normative

conflict can be classified as direct conflict and

indirect conflict. Direct conflict involves two norms

that are associated with the same entity, regulate the

same behavior, have contradictory deontic concepts,

and are defined in the same context. The detection of

this conflict can be done by simply comparing the

norm elements. Indirect conflict involves two norms

whose elements are not the same but are related. Its

detection requires that the relationships among the

norm elements are known.

However, there is another kind of normative

conflict not investigated yet in the design phase that

can only be detected when we know information

about the runtime execution of the system. We will

call this kind of conflict as runtime conflict. This

kind of conflict depends on events that only happen

at runtime. For example, let us suppose that N1 is a

norm that prohibits an agent Ag from performing the

action Ac after the execution of action X. Moreover,

suppose that N2 is another norm that obligates the

same agent to perform the same action before the

execution of another action Y. The execution of the

actions X and Y are runtime situations and we do not

646
Belchior, M. and Silva, V.
Detection of Runtime Normative Conflict in Multi-Agent Systems based on Execution Scenarios.
DOI: 10.5220/0006368306460652
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 646-652
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

know when they will be performed by the agents in

the system. However, analyzing the execution order

of them, we can say that if event Y would happen

first compared to event X, we could assert that N1

and N2 will be not in conflict. Otherwise, there will

be a conflict between N1 and N2. Therefore, if we

know the information about when the conditions that

make the norm active, it would be possible to detect

the existence of the conflict. We defined six types of

conditions that define the activation period of a

norm, which are (i) the execution of an action by an

agent, (ii) a fact that become true for an agent, (iii)

the fulfillment or (iv) violation of a norm and (v) the

activation or (vi) deactivation of a norm.

In this paper, we propose an approach based on

execution scenarios to detect normative conflicts

that depend on execution order of runtime events in

MAS. The system designer may want to evaluate a

possible sequence of actions in the system and know

if that sequence would cause any normative conflict.

The conflict detection approach identifies normative

conflicts in case such scenario would be executed in

the system. The propose approach uses Semantic

Web technologies, such as, SWRL rules, OWL DL

and SPARQL query language.

This paper is organized as follows. Section 2

presents the ontology-based definition of a norm and

the execution scenario representation. Section 3

describes the normative conflict detection approach

and gives an example of detection of this kind of

conflict. Our proposal is compared to related works

in Section 4, and conclusions and future works are

presented in Section 5.

2 ONTOLOGY-BASED NORM

REPRESENTATION

Ontologies are used to capture knowledge about

some domain of interest. They describe the domain

concepts and relationships between these concepts.

We propose to use OWL DL and SWRL and

reasoning tools to represent the main concepts of a

norm in MAS. With this representation we are able

to detect norm violations and norm conflict. The

OWL Web Ontology Language is an expressive

knowledge representation language endorsed by the

World Wide Web Consortium (W3C). OWL DL is a

sublanguage of OWL that is based on Description

Logic (DL), a decidable fragment of the first-order

logic (Rudolph, 2011). The Semantic Web Rule

Language (SWRL) is a Horn clause rules extension

to OWL (Horrocks at al., 2004). One of the most

powerful features of SWRL is its ability to support

user-defined built-ins functions to perform

operations for comparisons, mathematical, strings,

date, and others.

2.1 Norm Definition

The main classes represented in the norm ontology

are Norm, Context, DeonticConcept, Entity, Action,

Condition, FulfillmentStatus and ActivationStatus.

The class Norm represents a norm definition used as

a mechanism to regulate the behavior of agents in

MAS and is defined in DL, as follows.
Norm ≡ ∀ hasContext.Context ⊓
 =1 hasDeonticConcept.DeonticConcept ⊓

 =1 hasEntity.Entity ⊓

 =1 hasAction.Action ⊓

 ≤1 hasBefore.Condition ⊓
 ≤1 hasAfter.Condition ⊓
 =1 hasActivationStatus.

ActivationStatus ⊓
 =1 hasFulfillmentStatus.

FulfillmentStatus ⊓

 ∀ hasConflict.Norm

According to the definition above, a norm can be

related to instances of the classes Context,

DeonticConcept, Entity, Action, ActivationStatus and

FulfillmentStatus through the object properties

hasContext, hasDeonticConcept, hasEntity,

hasAction, hasActivationStatus and hasFulfillment

Status, respectively. It also can be connected to the

Condition class via two object properties: hasBefore

and hasAfter. Moreover, a norm can have a

relationship to order instances of norm by using the

hasConflict property.

The class Context determines the application area

of a norm. Norms can be defined usually in two

different contexts: Environment and Organization

contexts. They are defined in the norm ontology as

subclasses of the Context class, as shown below.
Organization ⊑ Context
Environment ⊑ Context

The class DeonticConcept describes behavior

restrictions for agents in the form of obligations,

permissions and prohibitions. Thus, the individuals

Obligation, Permission and Prohibition were

introduced in the norm ontology, and the class

DeonticConcept was defined as the enumeration of

its members using Nominals in DL, as shown below.
DeonticConcept ≡

 {Obligation,Permission,Prohibition}

The Entity class describes the entities whose

behavior is being controlled by a norm. An entity is

the subject of a norm-controlled action. It has a

relationship with a context, via the actsIn object

Detection of Runtime Normative Conflict in Multi-Agent Systems based on Execution Scenarios

647

property, to determine in which context an entity is

acting. The entities represented in this paper are

single agents. Instances of the Entity class can

perform an action in the MAS. Thus, they can have a

relationship along the object property perfomAction

to individuals that are members of the Action class.

An entity can also participate in a situation, instance

of Situation class. A situation is one kind of

activation condition that represents a fact in the

knowledge base (e.g., an agent has a car, lives in

New York or is graduated from a college). An agent

can participate in zero, one or many situations by

using the object property participateIn. Activation

conditions will be explained latter in this section.

The class Entity is defined in DL as follows.
Entity ⊑ ∀ actsIn.Context ⊓

 ∀ perfomAction.Action ⊓

 ∀ participateIn.Situation

The behavior been controlled by the norm is

defined by the Action class. An action can be

performed by individuals that are members of the

Entity class via isPerformedBy object property,

which is the inverse property of the perfomAction

property. The Action class is defined as follows.
Action ⊑ ∀ isPerformedBy.Agent

The class Condition determines the period during

which a norm is activated. A norm has a relationship

with a condition via two object properties, namely,

hasBefore and hasAfter, which are used to delimitate

its activation period. For example, let n1 and n2 be

two norms, and n1 is defined to be activated after

norm n2 is been fulfilled. Thus, the fulfilment of n2

is the condition of norm n1 and the activation period

of n1 is whenever norm n2 is fulfilled until +infinite.

A norm can have no relationship with any

condition. When that happens, its activation period

is since the beginning of the system’s execution until

+infinite, i.e., the norm is always active. There are

six types of condition defined in the norm ontology

as subclasses of the Condition class. They are

ExecutionOfAction, ActivationOfNorm, Deactivation

OfNorm, FulfillmentOfNorm, ViolationOfNorm and

Situation, and are defined as follows.
ActivationOfNorm ⊑ Condition ⊓
 =1 hasRelatedNorm.Norm

DeactivationOfNorm ⊑ Condition ⊓
 =1 hasRelatedNorm.Norm

FulfillmentOfNorm ⊑ Condition ⊓
 =1 hasRelatedNorm.Norm

ViolationOfNorm ⊑ Condition ⊓
 =1 hasRelatedNorm.Norm

ExecutionOfAction ⊑ Condition ⊓

 =1 hasRelatedAction.Action ⊓
 =1 hasRelatedEntity.Entity

Situation ⊑ Condition

Individuals that are members of any of the

classes ActivationOfNorm, DeactivationOfNorm,

FulfillmentOfNorm and ViolationOfNorm must

specify a norm that is related to the condition

through the object property hasRelatedNorm. The

class ExecutionOfAction was defined as subclass of

Condition that has exactly one relationship to the

Action and Entity classes through hasRelatedAction

and hasRelatedEntity object properties, respectively.

The Situation class is one type of condition that

represents a fact in the knowledge base.

The class ActivationStatus represents the

activation status of a norm and can be either

activated, deactivated or none. When a norm is

activated, it means the norm becomes active and

must be somehow fulfilled. Once a norm is

activated, it can be deactivated at some time and no

action is required anymore. The none activation

status means that the norm has not been neither

activated nor deactivated yet. All instance of Norm

are started in the system with none value for its

activation status. This status is useful to let the

agents know about the existences of the norms. The

individuals Activated, Deactivated and None were

introduced in the ontology, and the class

ActivationStatus was defined as the enumeration of

its members, as shown below.
ActivationStatus ≡

 {Activated,Deactivated,None}

The class FulfillmentStatus describes the

fulfillment status of a norm, which can be either

fulfilled, violated or unknown. The unknown

fulfillment status means that the norm has not been

neither fulfilled nor violated yet. For example, let us

suppose we have an activated obligation norm

stating that a given action must be performed, but

that action has not been execute yet. Hence, in that

case, the fulfillment status is unknown. However, if

that action is executed, the fulfillment status will

become fulfilled. But if that norm turns into

deactivated and the action has not been executed yet,

then the fulfillment status would be violated. All

norms are started with unknown value for its

fulfillment status. The individuals Fulfilled, Violated

and Unknown were introduced in the ontology, and

the class FulfillmentStatus was defined as the

enumeration of its members, as follows.
FulfillmentStatus ≡

 {Fulfilled,Violated,Unknown}

A norm can have a relationship to individuals

that are members of the Norm class by using the

object property hasConflict, which represents a

normative conflict between two instances of norms.

In order to classify the norms regarding their

compliance, the classes FulfilledObligationNorm,

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

648

ViolatedObligationNorm, FulfilledProhibitionNorm,

ViolatedProhibitionNorm and ViolatedPermission

Norm were introduced in the norm ontology as

subclass of Norm class, as follows.
FulfilledObligationNorm ⊑ Norm ⊓

 hasDeonticConcept.(Obligation) ⊓
 hasFulfillmentStatus.(Fulfilled)

ViolatedObligationNorm ⊑ Norm ⊓

 hasDeonticConcept.(Obligation) ⊓

 hasActivationStatus.(Deactivated) ⊓
 ¬ ObligationNormFulfilled

FulfilledProhibitionNorm ⊑ Norm ⊓

 hasDeonticConcept.(Prohibition) ⊓
 hasActivationStatus.(Deactivated) ⊓
 ¬ ProhibitionNormViolated

ViolatedProhibitionNorm ⊑ Norm ⊓

 hasDeonticConcept.(Prohibition) ⊓
 hasFulfillmentStatus.(Violated)

ViolatedPermissionNorm ⊑ Norm ⊓
 hasDeonticConcept.(Permission) ⊓
 hasFulfillmentStatus.(Violated)

Due to the open word assumption of OWL, in

order to the classification of the classes

ViolatedObligationNorm, FulfilledProhibitionNorm

work properly, it is necessary to explicitly limit the

universe of known individuals of the classes

FulfilledObligationNorm and ViolatedProhibition

Norm by setting them equivalent to the enumeration

of their members. Thus, suppose that the class

FulfilledObligationNorm has two individuals, called

oblig1 and oblig2. Therefore, the following axiom is

added to the norm ontology.
FulfilledObligationNorm ≡

 {oblig1, oblig2}

2.2 Execution Scenario Ontology

The norm ontology allows to represent an agent

performing an action, participating in a situation,

and a norm being fulfilled, violated, activated and

deactivated. However, in order to detect normative

conflict that depends on execution order of runtime

events in MAS, it is not enough to know only that

those events occurred in the system. More them that,

it is necessary to know when such events were

executed in the system and if them happened before

or after another one. In other words, if we know the

time when each condition of the system norms

happened in the system, then it is possible to ensure

if such norms are in conflict or not.

Therefore, the execution scenario ontology

extends the norm ontology in order to add the notion

of time. The time when a condition of a norm

happens in the system is captured by the

hasConditionTime datatype property and is

represented by an integer value. The range of this

property is an xsd:integer. The following axiom was

added to the Condition class.
Condition ⊑ ∀ hasConditionTime.Integer

The execution scenario ontology also introduced

the class Time to represent the moment when an

action is performed by an agent and when a situation

becomes true in the system for an agent. The Time

class is related to hasTime datatype property, which

range is an xsd:integer. The following axioms were

added to the classes Entity, Action and Situation, and

the Time class is defined as follows.
Entity ⊑ ∀ entityTime.Time

Action ⊑ ∀ actionTime.Time

Situation ⊑ ∀ situationTime.Time

Time ⊑ ∀ hasTime.Integer ⊓

 (∀ timeEntity.Entity ⊔
 ∀ timeAction.Action ⊔

 ∀ timeSituation.Situation)

As described in section 2.1, a norm is activated

during a period of time, which is determined by the

Condition class along with hasBefore and hasAfter

object properties. An agent can perform an action at

any time in the system. However, in order to an

obligation norm to be fulfilled by the agent, the

regulated action must be performed only while the

norm is active, i.e., during the period of time where

the norm is active. It is necessary to know when the

norm start and finish its activation. Therefore, the

datatype properties hasStart and hasEnd were

included to the execution scenario ontology. Their

domain and range are the ActivationPeriod class and

xsd:integer, respectively. The class ActivationPeriod

represents the timeline period during which a norm

is active. The following axiom was added to the

Norm class and the ActivationPeriod class is defined

as follows.
Norm ⊑ ∀ hasActvPrd.ActivationPeriod

ActivationPeriod ⊑
 ∀ hasStart.Integer ⊓

 ∀ hasEnd.Integer

In this paper, we are considering that a norm can

have at most one before condition and one after

condition. Therefore, a norm can have one of the

five types of activation intervals showed in Figure 1.

The first type is when a norm has no condition and is

always active, i.e., its activation interval starts at

time zero and lasts until +infinite. The second type

refers to a norm associated with only one before

condition. This interval starts from zero and lasts

until whenever that condition happens in the system.

The third type represents a norm with only one after

condition and the interval starts whenever that

condition happens and lasts until +infinite. The

Detection of Runtime Normative Conflict in Multi-Agent Systems based on Execution Scenarios

649

fourth and fifth types refer to a norm associated with

both before and after conditions. They differ each

other by when each condition happens in the system.

If the before condition happens first, then the norm

activation period is characterized by the fourth

interval type. Otherwise, the norm activation period

is represented by the fifth interval type.

Figure 1: Five types of activation intervals.

The fourth interval type is the only one which a

norm has two activation periods, i.e., from zero to

whenever the before condition happens and from

whenever the after condition happens to +infinite.

Therefore, the norms can have one or at most two

activation intervals.

In the norm ontology, six conditions were

defined as subclass of Condition class, which were

the classes ExecutionOfAction, ActivationOfNorm,

DeactivationOfNorm, FulfillmentOfNorm, Violation

OfNorm and Situation. The time when such

conditions happen in the system can be inferred

automatically from the normative system, if the

times when an action was performed by an agent and

when a situation became true to an agent are known

in advance. Assuming these times are known, the

remaining times can be inferred by using SWRL

rules, as follows. The time of the conditions

ExecutionOfAction and Situation can be easily

inferred by using the following rules, respectively.
Rule1: ExecutionOfAction(?c) ∧

hasRelatedAction(?c, ?a) ∧ Action(?a) ∧

hasRelatedEntity(?c, ?e) ∧ Entity(?e) ∧
entityTime(?e, ?t) ∧ Time(?t) ∧

timeAction(?t, ?a) ∧ hasTime(?t, ?ti)

⟶ hasConditionTime(?c, ?ti)

Rule2: Situation(?c) ∧ participateIn(?e,

?c) ∧ Entity(?e) ∧ entityTime(?e, ?t) ∧

Time(?t) ∧ timeSituation(?t, ?c)∧ hasTime

(?t, ?ti) ⟶ hasConditionTime(?c, ?ti)

The norm’s fulfillment depends on its deontic

concept, i.e., if the norm is an obligation, prohibition

or permission. As described in section 2.1, the

fulfillment can be unknown, fulfilled or violated.

When the norm is an obligation, it becomes fulfilled

when the agent performed the action while the norm

is active. If the norm was deactivated, but the agent

did not perform the action, then the norm becomes

violated. If the norm is a prohibition, then the

opposite behavior can be observed. It becomes

violated when the agent performed the action while

the norm is active, and fulfilled when the norm was

deactivated, but the agent did not perform the action.

When the norm is a permission, it becomes violated

when the agent performed the action, but he/she has

no permission to do that, i.e., the norm is not active.

A permission norm never becomes fulfilled because

a permission is an authorization and it is not

expected to be perform by the agent. The condition’s

time for fulfilment and violation of an obligation

norm are shown in rules 3 and 4, respectively.
Rule3: FulfillmentOfNorm(?c) ∧

hasRelatedNorm(?c, ?n) ∧ Norm(?n) ∧
hasDeonticConcept(?n, Obligation) ∧

hasAction(?n, ?a) ∧ Action(?a) ∧

hasEntity(?n, ?e) ∧ Entity(?e) ∧
entityTime(?e, ?t) ∧ Time(?t) ∧

timeAction(?t, ?a) ∧ hasTime(?t, ?ti) ∧

hasActvPrd(?n, ?ap) ∧ hasStart(?ap,

?ts) ∧ hasEnd(?ap, ?te) ∧
swrlb:greaterThanOrEqual(?ti, ?ts) ∧
swrlb:lessThan(?ti, ?te) ⟶

hasConditionTime(?c, ?ti) ∧
hasFulfillmentStatus(?n, Fulfilled)

Rule4: ViolationOfNorm(?c) ∧

hasRelatedNorm(?c, ?n) ∧ Norm(?n) ∧
hasDeonticConcept(?n, Obligation) ∧
ViolatedObligationNorm(?n) ∧ hasActvPrd

(?n, ?ap) ∧ hasEnd(?ap, ?te) ⟶

hasConditionTime(?c, ?te) ∧
hasFulfillmentStatus(?n, Violated)

In a similar manner, the condition’s time for

fulfilment and violation of a prohibition norm can be

inferred, but in the opposite way. The rules 5 and 6

calculates the condition’s time for activation and

deactivation of a norm.
Rule5: ActivationOfNorm(?c) ∧

hasRelatedNorm(?c, ?n) ∧ Norm(?n) ∧
hasActvPrd(?n, ?ap) ∧ hasStart(?ap,

?ts) ⟶ hasConditionTime(?c, ?ts)

Rule6: DeactivationOfNorm(?c) ∧

hasRelatedNorm(?c, ?n) ∧ Norm(?n) ∧
hasActvPrd(?n, ?ap) ∧ hasEnd(?ap, ?te)

⟶ hasConditionTime(?c, ?te)

The start and end times of a norm activation

period cannot be inferred by using SWRL, because

in SWRL there is no way to check the existence of

only one if these relationships: hasBefore and

hasAfter. This verification can be done by using

NOT EXISTS filter expression in SPARQL queries

[Harris at al., 2013]. For example, suppose that n1 is

a norm that has only a relationship with hasBefore

condition, named c1. The activation interval of that

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

650

norm starts at time zero and the end time will

depend on whether or not the condition c1 was

satisfied. If not, the end time is unknown. Otherwise,

the end time is the time when the condition c1

became true in the knowledge base.

3 CONFLICT DETECTION

The execution scenario ontology can be used by the

system designer as a means for providing an

example of execution scenario performed by the

agents in the system. The system designer may want

to evaluate a possible sequence of actions in the

system and know if that sequence would cause any

normative conflict. The conflict detection rule uses

the times provided by the execution scenario

ontology in order to detect conflicts between the

norms in case such execution scenario would be

executed in the system. As described in section 2.2,

the designer only needs to provide the time when an

action would be performed by an agent and when a

situation would become true to an agent. The

remaining times are automatically calculated.

Two active norms are said to be in conflict when

they are associated with the same entity, regulate the

same behavior, have contradictory deontic concepts

(i.e., prohibition versus permission or prohibition

versus obligation), and are defined in the same

context. To detect conflict between two norms that

depends on execution order of runtime events, we

have to compare the activation periods two by two in

order to find intersections between them. The rule 7

shows the detection of normative conflict between

an obligation and a prohibition.
Rule7: Norm(?n1) ∧ Norm(?n2) ∧

hasEntity(?n1, ?e) ∧ hasEntity(?n2, ?e)

∧ hasAction(?n1, ?a) ∧ hasAction(?n2,

?a) hasContext(?n1, ?c) ∧ hasContext
(?n2, ?c) ∧ hasDeonticConcept(?n1,

Obligation) ∧ hasDeonticConcept(?n2,

Prohibition) ∧ hasActvPrd(?n1, ?ac1) ∧

hasStart(?ac1, ?st1) ∧ hasEnd(?ac1,
?ed1) ∧ hasActvPrd(?n2, ?ac2) ∧

hasStart(?ac2, ?st2) ∧ hasEnd(?ac2,
?ed2) ∧ swrlb:lessThan(?st1, ?st2) ∧
swrlb:greaterThanOrEqual(?ed1, ?st2)

⟶ hasConflict(?n1, ?n2)

This rule verifies if any activation periods of two

norms intersects each other by comparing the initial

and final times of their activation intervals. If that

happen, then they are in conflict. A similar rule must

be created in order to identify conflicts between a

permission and a prohibition.

3.1 Conflicting Norms Example

This section presents an example of the detection of

this kind of conflict. Let us assume a daily home

rules for a family with a child called Riley. The

following norms are defined for him.

Norm1: Agent Riley are obligated to perform the

action doHomework.

Norm2: Agent Riley are permitted to perform the

action playGame after fulfill the norm Norm1.

Norm3: Agent Riley are prohibited to perform

playGame after he performs haveLunch and before

the situation doneLunching becomes true for him.

Norm4: Agent Riley are obligated to perform the

action cleanRoom before he performs haveLunch.

Norm5: Agent Riley are prohibited to perform the

action playGame if he violates the norm norm4.

Let us suppose now that the designer provided

the following execution scenario and wanted to

know if there is any normative conflict in case this

scenario would be executed in the system.

 Riley performs doHomework at time 10;

 Riley performs haveLunch at time 20, and;

 The situation doneLunching becomes true for

Riley at time 30.

According to the proposed conflict detection

approached, there is a normative conflict between

the norms N2 and N3, and between N2 and N5

because they are applied to the same agent and

action, they have contradictory deontic concept, and

their activation interval intersect each other. Figure 2

depicts the activation periods for each norm.

Figure 2: Example of norms in conflict.

4 RELATED WORK

Several researchers have investigated mechanisms to

detect normative conflicts in MAS. Some of them

deal with the identification of direct conflicts (Li et

al., 2014, Dos Santos Neto et al., 2013, Uszok et al.,

2008), and others can also detect indirect conflicts

(Aphale et al., 2012; Sensoy et al., 2012 Santos and

Silva, 2016; Da Silva et al., 2015, Lam et al., 2008).

Detection of Runtime Normative Conflict in Multi-Agent Systems based on Execution Scenarios

651

However, to the best of our knowledge, none of

them is able to detect runtime normative conflicts,

i.e., conflicts that may occur depending on execution

order of runtime events, in the design phase.

Lam et al. (2008) proposed an approach that uses

SWRL and OWL DL to represent norm-governed

organizations. A conditional norm with a deadlines

was specified where the condition is only a

xsd:dateTime associated with either before or after

object properties. This approach does not allowed a

norm to have a relationship with both before and

after properties. Also, the authors did not show how

to detect a conflict between norms with conditions.

Moreover, runtime conditions such as those

described in this paper are not supported.

Sensoy et al. (2012) developed a framework for

representing OWL-based policies for distributed

agent-based systems called OWL-POLAR. The

activation and expiration conditions of a norm in

OWL-POLAR are represented by a conjunctive

semantic formula, which are facts in the knowledge

base. However, the authors did not take into account

before and after conditions.

Uszok et al. (2008) developed a policy

framework called KAoS that uses OWL ontology-

based representation and reasoning to specify,

deconflict, and enforce policies. KAoS supports two

main types of norms: (positive and negative)

authorization and (positive and negative) obligation.

However, KAoS does not provide mechanisms to

represent deactivation condition of a norm. Also,

before and after conditions are not supported.

5 CONCLUSIONS

Normative conflicts is an important issue in the

design of multi-agent systems. In this paper, we

have presented an approach to deal with the

detection of normative conflicts that depends on

information about the runtime execution of the MAS

based on execution scenarios. The proposal allows

the designer to provide examples of execution

scenarios of the system and evaluate the conflicts

that may arise if those scenarios would be executed

in the system.

There are several extensions we continue to work

on. Since multi-agent systems are composed of

multiple autonomous and heterogeneous agents,

there is a huge amount of possibilities of execution

scenarios to happen in the system. We would like to

investigate how the proposed approach can be

extended in order to automatically generate

execution scenarios and provide to the designer

potential normative conflicts in the system.

Moreover, we want to extend the proposed approach

to support repetition of before and after conditions.

REFERENCES

Aphale, M. S., Norman, T. J., and Sensoy, M. Goal

directed conflict resolution and policy refinement, In

14th International Workshop on Coordination,

Organizations, Institutions and Norms in Agent

Systems, Valencia, Spain, 2012.

Da Silva, V. T.; Braga, C.; Zahn, J. Indirect Normative

Conflict: Conflict that Depends on the Application

Domain. In: International Conference on Enterprise

Information Systems (ICEIS), 2015, Barcelona.

Dos Santos Neto, B. F., Da Silva, V. T., and De Lucena,

C. J. P. (2013). Developing goal-oriented normative

agents: The NBDI architecture. In Filipe, J. and Fred,

A., editors, Agents and Artificial Intelligence, volume

271 of Communications in Computer and Information

Science, pages 176–191. Springer Berlin Heidelberg.

Harris, S., Seaborne, A., & Prud’hommeaux, E. (2013).

SPARQL 1.1 query language. W3C recommendation,

21(10).

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,

Grosof, B., & Dean, M. (2004). SWRL: A semantic

web rule language combining OWL and RuleML.

W3C Member submission, 21, 79.

Lam, J. S. C., Guerin, F., Vasconcelos, W., & Norman, T.

J. Representing and Reasoning about Norm-Governed

Organisations with Semantic Web Languages. In Sixth

European Workshop on Multi-Agent Systems. Bath,

UK. December, 2008.

Li, T.; Jiang, J.; Aldewereld, H.; De Vos, M.; Dignum, V.;

Padget, J. Contextualized institutions in virtual

organizations. In: Coordination, Organizations,

Institutions, and Norms in Agent Systems IX. Springer

International Publishing, 2014. p. 136-154.

Rudolph, Sebastian. Foundations of description logics.

Reasoning Web. Semantic Technologies for the Web of

Data. Springer Berlin Heidelberg, 2011. 76-136.

Santos, J. S., and Silva, V. T. (2016). Identifying Indirect

Normative Conflicts using the WordNet Database. In

Proceedings of the 18th International Conference on

Enterprise Information Systems - Volume 2: ICEIS,

ISBN 978-989-758-187-8, pages 186-193.

Sensoy, M., Norman, T. J., Vasconcelos, W. W., and

Sycara, K. Owl-polar: A framework for semantic

policy representation and reasoning. Web Semantics:

Science, Services and Agents on the World Wide Web,

12:148–160, 2012.

Uszok, A.; Bradshaw, J. M.; Lott, J.; Breedy, M.; Bunch,

L.; Feltovich, P.; Johnson, M.; Jung, H. New

developments in ontology-based policy management:

Increasing the practicality and comprehensiveness of

KAoS, in: POLICY ’08: Proceedings of IEEE

Workshop on Policies for Distributed Systems and

Networks, 2008.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

652

