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Abstract: In this paper a stochastic parametric simulation model that provides daily values for precipitation indicators, 
maximum and minimum temperature at a single site on a yearlong time-interval is presented. The model is 
constructed on the assumption that these weather elements are non-stationary random processes and their 
one-dimensional distributions vary from day to day. A latent Gaussian process and its threshold 
transformation are used for simulation of precipitation indicators. Parameters of the model (parameters of 
one-dimensional distributions, auto- and cross-correlation functions) are chosen for each location on the 
basis of real data from a weather station situated in this location. Several examples of model applications are 
given. It is shown that simulated data may be used for estimation of probability of extreme weather events 
occurrence (e.g. sharp temperature drops, extended periods of high temperature and precipitation absence). 

1 INTRODUCTION 

For solution of different applied problems in such 
scientific areas as hydrology, agricultural 
meteorology and population biology, it is quite often 
necessary to take into account statistical properties 
of different meteorological processes. For example, 
it may be necessary to consider probability of 
occurrence of meteorological elements combinations 
contributing to forest fires spread, probability of 
frost occurrence in spring and summer, average 
number of dry days, etc. Since real data samples are 
usually small, real data based statistical investigation 
of rare and extreme weather events is in most cases 
unreliable. Therefore, instead of small real data 
samples it is necessary to use samples of simulated 
data. 

In this regard, in recent decades a lot of scientific 
groups all over the world work at development of 
so-called "stochastic weather generator". At its core, 
"generators" are software packages that allow 
numerically simulate long sequences of random 
numbers having statistical properties, repeating the 
basic properties of real meteorological series. Most 
often series of surface air temperature, daily 
minimum and maximum temperatures, precipitation 

and solar radiation are simulated (Furrer, 2007; 
Kargapolova, 2012; Richardson, 1981; Richardson, 
1984; Semenov, 2002). Not only single-site time 
series, but also spatial and spatio-temporal 
meteorological random fields are simulated with the 
use of "weather generators" (Kleiber, 2012; 
Ogorodnikov, 2013; Kargapolova, 2016). It should 
be noted that practically all “weather generators” 
possess same drawback: a model that describes well 
main properties of a weather process over some 
region or at several locations may be totally 
unsuitable over another region (with different 
physiographic characteristics). At the same time, 
models that reproduce well characteristics of a 
weather process on a relatively short time-interval (a 
week, a month) may not be applicable for longer 
periods of time (season, year) and vice versa. It 
means that for each specific applied problem 
solution it is always a good idea to try several 
“weather generators” and then to choose the one that 
“works” better. 

In this paper a stochastic parametric simulation 
model that provides daily values for precipitation 
indicators, maximum and minimum temperature at a 
single site on a yearlong time-interval is presented. 
The model is constructed on the assumption that 
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these weather elements are non-stationary random 
processes and their one-dimensional distributions 
vary from day to day. A latent Gaussian process and 
its non-linear transformation (so called threshold 
transformation) are used for simulation of 
precipitation indicators. Parameters of the model are 
chosen for each location on the basis of real data 
from a weather station situated in this location. 
Several examples of model applications are given. It 
is shown that simulated data may be used for 
estimation of probability of extreme weather events 
occurrence. 

2 MODEL DESPRIPTION 

In this section a formal theoretical description of a 
considered stochastic model is given. Assumptions 
about properties of a real weather proses that were 
used for model construction are specified. 

A model is constructed for simulation of joint 
time-series on twelve-month time interval. It is 
supposed that one-dimensional distribution of daily 
maximum and minimum temperature are Gaussian. 
This assumption is in good agreement (in sense of 

2 -criteria) with long-term observation data from 

weather stations. Parameters of these Gaussian 
distribution vary from day to day. Figure 1 illustrates 
variation of daily maximum and minimum 
temperature sample average on a yearlong interval.  

 

Figure 1: Sample average of daily minimum (1) and 
maximum (2) temperature. Years of observation: 1976 – 
2009. Novosibirsk, Russia. 

Daily precipitation indicator in a day number 

j, j 1, N  is defined as 1  if amount of precipitation 

during this day in more of equal than 0.1 mm  and as 

0  otherwise. It is supposed that N 365  (for 
convenience data for February 29 is not taken into 
consideration). This means that daily precipitation 

indicator is a binary random process. Joint time-
series of mentioned above weather elements are 
assumed to be non-stationary on twelve-month time 
interval. 

Each simulated model trajectory is a matrix 

 T T TM I , A , E
 

, where column-vector 

 TT
1 2 NI I , I , , I


  is a vector whose component 

jI  is daily minimum air temperature in a day 

number j ,  TT
1 2 NA A , A , , A


  is a vector of 

daily maximum temperatures and column-vector 

 TT
1 2 NE E ,E , , E


  is a vector of daily 

precipitation indicators. 
Elements of a joint time-series M  are calculated 

with the help of transformations 
 

I I I
j j j j

A A A
j j j j

E
jj

j E
jj
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A ,

1, c ,
E

0, c ,

  
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



 

 

  
 


 
(2.1)

 

where vectors 
 

I A I A
1 1 1 1
I A I A
2 2 2 2

I A I A
N N N N

, , ,

   
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       
       
       
       
       
       
       
       

   
 

 

are mean and standard deviation vectors, j 1, N . 

Threshold values jc  are defined from equations 
 

 
jc 2

j j
1 t

P E 1 exp dt p , j 1, N.
22 

 
     
 
 

  

 

Values of I A I A
jj j j j, , , , p     are estimated on a 

basis of real data from a weather station. It is 
obvious that such way of model parameters 
definition make it possible to take into account 
seasonal variations of real weather processes It 

should be noted that for all j 1, N  equality jc 0  

is true if and only if jp 0.5 , inequalities jc 0  

and jp 0.5  are equivalent. Hereafter it is supposed 
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that i ip 0, p 1, i 1, N   . Variables  I A E
j j j, ,    

are components of a joint Gaussian process 

     T T TI A E, ,  
 

   
 

  
 with zero mean and 

specific correlation matrix 
 

II IA IE

AI AA AE

EI EA EE

G G G

G G G G .

G G G

 
   
 
 

 

 

Matrix G  must be such that a process 

 T T TI , A , E
 

 after transformation (2.1) has a 

correlation matrix 
 

II IA IE

AI AA AE

EI EA EE

R R R

R R R R ,

R R R

 
   
 
 

 

 

that is equal to sample correlation matrix. Method of 
matrix G  calculation is described below. Dimension 
of matrixes G  and R  is 1095 1095 ( 3N 3N ). 

Element  XYr i, j  of a matrix block XYR  is a 

correlation coefficient between iX  and jY  

(    X, Y I,A,E , i, j 1,2, , N   ). Element 

 XYg i, j  is corresponding to  XYr i, j  correlation 

coefficient of a Gaussian process.  
Let’s take a closer look at the matrix G  and find 

equations that define this matrix when the matrix R  
is given. In (Ogorodnikov, 2009) a special case of 
such equations was considered. Normalisation of 
two correlated Gaussian random variables doesn’t 
change a correlation coefficient between them, 
which implies 
 

II II AA AA

IA IA AI AI

G R , G R ,

G R , G R .

 
 

 (2.2)

 

Definition of a correlation coefficient leads to 
equations  
 

  i j i j
IE

i j

EI E EI EE
r i, j

DI DE


   (2.3)

 
 

 IE 2
j

j j

g i, j
exp c 2 , i, j 1, N.

2 p 1 p
   

 
 

These equations fully define matrix IEG . Matrixes 

EI AE EAG ,G ,G  are defined in a similar way. Since  

 
 
   

   

i j i j
EE

i i j j

E E
i j i ji j

P E 1, E 1 p p
r i, j ,

p 1 p p 1 p

P E 1, E 1 P c , c , i, j 1, N 

  


 

     

 

 

following equalities hold for i, j 1, N & i j,   
 

 
  

   
i j EE i j

EE
i i j j

F c ,c ,g i, j p p
r i, j ,

p 1 p p 1 p




 
 (2.4)

 

where 
 

 

   

2

h k
2 2

2

1
F h,k,

2 1

1
exp x 2 xy y dxdy.

2 1


 




 


 
     

 
 

 
 

 

Obviosly, 
 

   EE EEr i, i g i, i 1, i 1, N.    
 

It should be noted that equations (2.4) don’t have 
any analytical solutions, but it is possible to solve 
them numerically. So, equations (2.2) – (2.4) define 
matrix G  and, finally, we may formulate the 
simulation algorithm. 

Algorithm: 

Step 1. Estimate I A I A
jj j j j, , , , p , j 1, N      on 

a basis of real data. 
Step 2. Solving equations (2.2) – (2.4) define 

matrix G . 
Step 3. Simulate required number of trajectories 

of a joint Gaussian process   with zero mean and 
correlation matrix G . 

Step 4. Using equalities (2.1) transform 
trajectories of a Gaussian processes into trajectories 

of a non-Gaussian process  T T TM I , A , E
 

. 

If verification of obtained trajectories gives 
satisfying result, these trajectories may be used for 
study of rare / extreme events.  

Remark 1. Due to a physical sense of daily 
minimum and maximum temperatures, an inequality 

j jI A  must be true for all j 1, N . But 

transformation (2.1) doesn’t guarantee it. This 
means that one must eliminate from consideration all 
trajectories in which this inequality violates. In 
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practice, it is typical that I A
j j   and I A

j j,   are 

relatively small, so usually there are few trajectories 
with j jI A .  

Remark 2. Equations (2.4) are solved 
numerically, so some computational errors may 
appear. These errors influence on the matrix G  and 
it may happen that obtained matrix G  is not 
positively-defined. In this case before a Gaussian 
process simulation a normalisation of the matrix G  
must be done (see, Ogorodnikov, 1996). There are a 
lot of algorithms for simulation of a Gaussian 
process with given correlation matrix. The most 
common are algorithms based on 
LU  decomposition of the correlation matrix and 
on its spectral representation. 

Remark 3. Numerical solution of equations (2.4) 
is a time-consuming problem. There is a way to 
reduce computational time. So-called Owen’s 
formulas (Owen, 1956) give a representation of 
function  F h,k,  via one-dimensional integrals: 
 

      
   

i j EE i j

i 1 j 2

1 1
F c ,c ,g i, j c c

2 2
1

T c ,a T c ,a ,
2

    

  
 

 

if i jc 0,c 0   or i jc 0,c 0  , and 
 

      
   

i j EE i j

i 1 j 2

1 1
F c ,c ,g i, j c c

2 2

T c ,a T c ,a ,

    

 
 

 

if i jc 0,c 0   or i jc 0,c 0,   where 
 

   
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2
i

0

1
c exp t 2 dt,

2
  

   

 
 

 

 

 

 

2 2a

2
0

j i EE i j EE
1 2

2 2
i jEE EE

c 1 t1 dt
T c,a exp ,

2 2 1 t

c c g i, j c c g i, j
a , a .

c 1 g i, j c 1 g i, j

      
 

 
 

 


 

 

This representation together with the fact that  
 

 i i
1

p c , i 1, N
2

    

 

let to replace equations (2.4) with equations 
 

 
   

   
   

i j i j
EE

i i j j

i 1 j 2

i i j j

1 1
p p p p

2 2r i, j
p 1 p p 1 p

T c ,a T c ,a
,

p 1 p p 1 p

 
 

 




 

 (2.5a)

 

if i jc c 0 ,  
 

 
   

   
   

i j i j
EE

i i j j

i 1 j 2

i i j j

1 1 1
p p p p

2 2 2r i, j
p 1 p p 1 p

T c ,a T c ,a

p 1 p p 1 p

  


 




 

 (2.5b)

 

if i jc c 0 , 
 

 

 
 

 

EE
j

2
EE

EE
j j

g i, j
2T c ,

1 g i, j
r i, j ,

p 1 p

 
  
   


 

(2.5c)

 

if i jc 0,c 0,   
 

 

 
 

 

EE
i

2
EE

EE
i i

g i, j
2T c ,

1 g i, j
r i, j

p 1 p

 
  
   


 

(2.5d)

 
if i jc 0,c 0   and 
 

   EE
EE

2arcsin g i, j
r i, j 


 (2.5e)

 

if i jc c 0  . 

Numerical experiments show that computational 
time required for solution of equations (2.5a) – 
(2.5e) is approximately 4 times less than 
computational time required for solution of 
equations (2.4). This is due to the fact that 
computation of a one-dimensional integral is much 
simpler than computational of a bivariate integral. 

Remark 5. In some numerical experiments, 
obtained matrix G  was ill-conditioned and didn’t let 
accurate simulation of a Gaussian process. It calls 
for further investigations to find out conditions when 
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matrix G  is ill-conditioned. Ways of matrix 
correction are also have to be found. 

Remark 6. Since correlation coefficients 
 EEg i, j  may be found from equations (2.4) (or 

(2.5a) – (2.5e)) independently from each other and 
trajectories of the Gaussian process are also 
simulated independently, parallel computing 
technologies may be easily applied for simulation of 

the process  T T TM I , A , E
 

. 

3 NUMERICAL EXPERIMENTS 

Described above stochastic model was used for 
simulation of joint meteorological non-stationary 
time-series on more than 50 weather stations situated 
in different climatic zones in Russia. Verification of 
the model shows that the model gives satisfactory 
results for most of the stations. Here is an example 
of a process characteristic that was used for the 
model verification. Average numbers of days in a 
month, when minimum temperature is below 0 oC 
and maximum temperature is above 0 oC 
( j jI 0,A 0  ), estimated on basis of real and 

simulated data, were compared. This characteristic is 
not the model input parameter, so it can be used for 
verification. Table 1 presents values of this 
characteristic. It can be seen from Table 1, that the 
model reproduces this characteristic accurately (up 
to a statistical mistake).  

Table 1: Average number of days with j jI 0,A 0  . St. 

Petersburg, Russia. 

Month 
Average number of days 

Real data Simulated data
October 4.7 4.9

November 8.9 9.1
December 5.7 5.3
January 9.3 9.4
February 7.7 7.4

March 16.3 16.8
 

Since the model is adequate to real weather 
processes, it may be used for study of rare / extreme 
events. Here are several examples. Hereafter all 
estimations on basis of real data were done for years 
of observation from 1976 to 2009 and estimations 

based on simulated data were done over 610  
trajectories.  

First considered characteristic is a probability of 
low temperatures and light frosts in spring and 

summer. These weather events may negatively 
influence on open-ground planted crop species. 
Since different species have different resistance to 
frost, it is necessary to take probability of low 
temperatures and light frosts into account when 
choosing a varieties or species of plants. Formally, 
considered characteristic may be written as 

 jP I    when j  varies from 121 (May 1) to 243 

(August 31). Here  oC (deg. Celsius) is a given 
temperature level. Table 2 presents estimations of 

 jP I    obtained on basis of real and simulated 

data. For real and simulated data estimations two 
and three, respectively, fraction digits are 
significant. During years of observation, there were 
no days in considered period with temperature below 

6 oC (this is subminimum temperature for most of 
plants species), but it doesn’t mean that such 
temperature drop is impossible. Simulated data 
provides an estimation of probability of this rare and 
severe weather condition.  

Table 2: Estimations of  jP I    obtained on basis of 

real and simulated data. Novosibirsk, Russia. 

  oC  jP I , j 121,234    

Real data Simulated data
2 0.081 0.085 
0 0.030 0.031 
-2 0.014 0.013 
-6 0.000 0.001 

Table 3: Average number of summer time-intervals lasting 
k  days, with absence of precipitation and daily minimum 
temperature above 20oC. Astrakhan, Russia. 

Period 
length, days 

Average number of time-intervals
Real data Simulated data

k=1 5.3 5.72 
k=2 2.0 2.20 
k=4 0.7 0.76 
k=5 0.6 0.59 
k=6 0.0 0.53 
k=8 0.0 0.37 
k=9 0.3 0.32 
k=10 0.1 0.09 

 

Another weather event that may be dangerous 
both to individuals and to agricultural industry is 
long-term combination of high air temperature and 
absence of precipitation. Such combination may 
negatively influence on individuals’ health and may 
cause soil drying up. Table 3 presents average 
number of time-intervals lasting k  days, when daily 
minimum temperature was above 20oC and there 
were no precipitations (only significant digits are 
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given). Averaging was done over summer months. 
Once again, described in the paper model reproduces 
this characteristic for short time-intervals 
satisfactory, so model results for longer time-
intervals may be considered as reasonable. 

Finally, let’s consider such unpleasant weather 
event as sharp temperature drop or rise during one 

day (formally, j jA I   , where  oC is given 

level.). Numerical analysis shows that this 
characteristic is reproduced well for  5,14 . For 

14  oC real data estimations are unreliable. This 

means that for applied problems solutions it is better 
to use simulated data estimations. Table 4 presents 
seasonal probabilities of such temperature variation 
with 20  oC.  

Table 4: Seasonal probabilities of j jA I 20  oC. Ulan-

Ude, Russia. 

Season 
Seasonal average number of days
Real data Simulated data

Winter 0.011 0.009
Spring 0.120 0.124

Summer 0.027 0.025
Autumn 0.017 0.021

4 CONCLUSIONS 

In this paper a model for simulation of 
meteorological time-series was considered. It was 
also shown that simulated trajectories may be used 
for study of rare / extreme events. 

There are several ways of the model 
improvement. For example, instead of Gaussian one-
dimensional distribution of daily minimum and 
maximum temperatures a mixture of 2 Gaussian 
distributions may be used. This will make 
computation of the matrix G  much more complex, 
because it will require usage of the inverse 
distribution function method, but it will give a 
chance to reproduce temperature behavior more 

precisely. Simulation of precipitation indicators TE


 
may be replaced also by simulation of daily 

precipitation amount  TT
1 2 ND D ,D , ,D


  in a 

form of a multiplicative process 
 

j j jD E C , j 1, N,   
 

where  TT
1 2 NC C ,C , ,C


  is a conditioned 

non-Gaussian random process describing amount of 

daily precipitation on the assumption of their 
presence. Such process representation is used in a 
well-known “weather generator” WGEN 
(Richardson, 1984), but indicator process in WGEN-

model differs fundamentally from process TE


 
considered in this paper. These two model’s 
modifications are subject of further research. 
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