
Proactive Trust Assessment of Systems as Services

Jorge López1, Natalia Kushik1,2 and Nina Yevtushenko2,3
1SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier 91011 EVRY, France

2Department of Information Technologies, Tomsk State University, 36 Lenin str., 634050 Tomsk, Russia
3 Software Engineering Department, Institute for System Programming of the Russian Academy of Sciences,

25 Alexander Solzhenitsyn str., 109004 Moscow, Russia

Keywords: Systems as Services, Machine Learning, Dynamic Code Analysis, Trust, Software Testing.

Abstract: The paper is devoted to the trust assessment problem for specific types of software/hardware systems,
namely Systems as Services. We assume that such systems are designed and utilized in all application
domains, and therefore the aspects of trust are becoming crucial. Moreover, these systems are mainly used
on-demand and are often represented by a composition of ‘smaller’ services. Thus, an effective method for
estimating/assessing the trust level of a given component service (or a system as a whole) needs to be
utilized. Most known methods and techniques for trust evaluation mainly rely on the passive testing and
system monitoring; in this paper, we propose a novel approach for this problem taking advantage of active
testing techniques. Test sequences to be applied to a system/service under test are derived based on
determining the critical values of non-functional service parameters. A set of these parameters can be
obtained via a static code analysis of the system/service or by addressing available experts. Machine
learning techniques can be applied later on, for determining critical parameter values and thus, deriving
corresponding test sequences. The paper contains an illustrative example of RESTFul web service which
components are checked w.r.t. critical trust properties.

1 INTRODUCTION

The concept of Systems as Services (SaS) is
ambitious and emerging, as it aims to expand the
existing “cloud” concepts to any type of system
(Ardagna et al., 2015). In fact, it is a natural system
evolution to start at different locations, and then
slowly move to a utility service. In recent years,
cloud computing entitled computational resources to
be distributed as a utility service, and this concept
has encouraged to provide any system as a service.
Arguably, augmenting a system with a cloud/web
interface might enable it to become a SaS.
Nevertheless, there exist several issues, such as
interoperability, system/service composition,
trustworthiness, etc., that need to be considered. In
order to rely on such SaS from a user or a provider
point of view, the trustworthy level of SaS needs to
be guaranteed.

Trust as a computer science concept is an active
field of research in the scientific community. In the
literature, two main trust notions are used, namely i)
hard trust, which is based on security policies, and
ii) soft trust, which is based on different dynamic

parameters. The hard trust approach is rigid; the
trustees have predefined sets of privileges granted,
and the system’s interactions are managed by the
acceptance or rejection of actions based on these
predefined privileges. Some examples of pioneering
works on hard trust can be found in (Lee et al., 2009;
Blaze et al., 1996; Jim, 2001). On the other hand,
soft trust is flexible, and the interactions are
managed depending on the trust level of a trustee at
a given time instance. Intuitively, the level of trust
depends on a set of “trust parameters”; according to
the literature, the most common trust parameters
include experience, reputation, and risk. Soft trust
has been applied to different domains, some
examples of such applications can be found in (Chen
and Guo, 2014; López and Maag, 2015).

Both major approaches for trust definition have
their own drawbacks. Hard trust guarantees that
some entities can have access to certain resources
regardless of potentially untrustworthy behavior of
such entities at execution time. Soft trust, on the
other hand, is a reactive approach, i.e., an
untrustworthy behavior needs to occur before
establishing that a trustee is not trustworthy.

López, J., Kushik, N. and Yevtushenko, N.
Proactive Trust Assessment of Systems as Services.
DOI: 10.5220/0006354502710276
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 271-276
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

271

To overcome the inherent and potentially present
disadvantages that the current trust approaches tend
to have, we propose a proactive trust assessment
approach. The key idea behind a proposed approach
is based on guaranteeing that a given system can
only produce trustworthy outputs under critical
inputs to such system. Therefore, the approach can
be seen as some form of a certification method and
could/should be applied to a system under design
when application of critical inputs does not
jeopardize the data of the application or the system’s
data are not susceptible to such input application.
The problem statement we address in this paper is as
follows: what are the important/critical trust
parameters for systems as services, what are the
crucial values of those and how to actively test such
systems to ensure that they can produce only
trustworthy interactions when the parameters reach
their critical values? We mention that testing
techniques have been previously developed for
cloud environments, however they mostly cover the
security checking of the corresponding
applications/services. A comprehensive review of
such techniques is given in (Ardagna et al., 2015).

The method proposed in the paper is divided into
two main phases. The first phase is to determine the
parameters that might affect the trustworthiness of
the system. For this purpose, we propose to build a
dataset of potentially sensitive trust parameters,
given by experts, for example. Such list of
parameters can also be specified by service
providers. Then, by the use of supervised machine
learning techniques a trust prediction model is
derived. The second phase relies on applying a
proper test suite in order to verify the
trustworthiness of the system. The verification of the
trustworthiness of the system is based on the
extraction of the values of the sensitive trust
parameters. The approach is illustrated on a running
example of a RESTFul web service.

The rest of the paper is organized as follows.
Section 2 contains preliminary concepts. Section 3
describes how to extract the sensitive trust variables
from the source code of a System Under Test (SUT).
Section 4 contains the description of the approach
for applying different input (test) sequences to the
SUT that contain sensitive values of critical
variables; the prediction model is used to determine
if the SUT produces values considered to be
untrustworthy. Finally, Section 5 concludes the
paper.

2 PRELIMINARIES

2.1 Systems as Services and Trust
Issues

The concept of Systems as Services (SaS) has
emerged and been used nowadays almost
everywhere. We assume that such systems are
represented as compositions of heterogeneous
hardware and/or software modules. These modules
are usually created by different producers or service
providers. The main goal of such creation is to meet
user requirements and as a result, to deliver a high-
level Quality of Experience (QoE). At the same
time, a user experience can never be guaranteed
before the trust of the service components is
estimated thoroughly.

Grandison and Sloman define trust as “the firm
belief in the competence of an entity to act
dependably, securely, and reliably within a specified
context” (Grandison and Sloman, 2000). In other
words, the trustworthiness of a SaS involves
different aspects. For example, it is assumed that a
SaS must be capable (competent) of performing the
task it is designed, and inquired for. If the SaS
contains defects (or bugs), the SaS is not considered
to be trustworthy. The levels of trustworthiness of a
SaS can vary. It is naturally to use three different
trust levels (López and Maag, 2015): Trustworthy,
for systems that are entirely trusted; Untrustworthy,
for systems that are distrusted; and Neutrally
Trusted, for systems that are partially trusted. We
note that the systems associated with the last trust
level can be of a wide use as well. For example, one
might still interact with a SaS which has neutral
trust, using a limited set of non-critical operations.

2.2 Active Testing Techniques

Active testing techniques and approaches are used in
software testing for assuring the software quality.
Usually, active testing includes the generation of test
sequences or test cases, application/executions of
those against a SUT and drawing the conclusion
about the SUT properties. The notion active in this
case underlines the fact that the system is being
stimulated via its input interfaces. Various test
generation strategies define the test fault coverage,
i.e. the set of (program) faults that can be detected
by a given test suite. The test length is another
important test quality criterion, and therefore, there
have been proposed numerous test generation
approaches. These approaches start from random
input generation and finish with complex model

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

272

based techniques that demonstrate lower
performance but higher fault coverage.

The known trust assessment approaches in
telecommunication systems mostly rely on passive
testing techniques or monitoring (López, 2015)
when only system observation is performed. In this
paper, we take advantage of stimulating the SUT for
producing the untrustworthy actions, i.e. we
intensely try to apply the critical input data to the
SaS which can potentially be never observed during
its ordinary monitoring. The decision about which
actions can be considered ‘suspicious’ is done with
the use of supervised machine learning techniques.

2.3 Supervised Machine Learning

Machine learning algorithms are designed to learn
from available data in order to make
predictions/estimations. Typically, the machine
learning algorithms operate by building a model.
The model “learns” to predict from the data without
being explicitly instructed. Supervised machine
learning algorithms take training examples along
with their expected outputs as the algorithm’s inputs.
The final goal is to get a machine (after learning)
that maps the training examples to their expected
outputs.
Formally, the inputs are called features. A feature
vector is an ݊-tuple of the different inputs. The
expected output for a given feature vector is a label.
The set of examples, called a training set, consists of
pairs of a feature vector and a label. The objective is
to find a function called the hypothesis, that maps a
given feature vector to a label. Therefore, the
objective is, in fact, to find the function that
minimizes the error between the predictions and the
real output.

There exist various known machine learning
techniques starting from the classical linear
regressions and decision trees, and finishing with
Support Vector Machines (SVMs) and their
modifications. In this paper, we use such techniques
in order to estimate if the SUT behaves in a
trustworthy manner. The corresponding training set
is derived based on the example data provided by an
expert’s assessment. Another important step before
training the model, is the relevant features’ selection.
If a certain parameter pi does not affect the overall
prediction result (a label), deleting this parameter
makes the process more scalable. Usually, such
statistical parameter analysis is considered as a pre-
processing phase. There exist some well-known
methods for selecting the relevant parameters. In
(Blum and Langley, 1997), the authors showcase a
number of such methods.

3 EXTRACTING RELEVANT
PARAMETERS FOR SAS
TRUST ASSESSMENT

Different systems have different parameters that
influence the trustworthiness of the system. Some
parameters might be related to functional properties
of the system while others can represent various
non-functional ones, such as, for example response
time for a given request. Occasionally, the trust
parameters might be observable as system outputs.
For example, a trust parameter can be the support of
certain algorithms of encryption of the
communication, and the respective size of the
encryption key of a SUT. On the other hand, a
desired trust parameter can be an internal variable,
which might influence the behavior of the SUT.
Thus, we assume that the trust parameters are
variables and outputs in the associated source code
of the system. Therefore, the question arises: how
can different trust parameters be observed?

In order to better exemplify which trust
parameters may be associated with the source code,
consider a SaS with a RESTFul web service
(Pautasso et al., 2008). RESTFul web services use
the hyper text transfer protocol (HTTP) as an
underlying communication protocol. HTTP defines
standard request methods, however, the HTTP
version 1.1 as specified in RFC 2616, allows
arbitrary extension methods. Further specifications
such as the semantics and content of HTTP version
1.1 found in the RFC 7231 state that additional
methods need to be registered in AINA (see section
4.1 and 8.2 of the RFC). However, widely-spread
web servers as the Apache HTTP Server might
allow extension methods and leave the
application/framework to ‘decide’ how to process it.
Many frameworks allow the use of extended
methods. The behavior of such frameworks for
extended methods can include treating an extended
method as a normal GET request. However, some
policies of authentication are only applied to GET or
POST request. The result is that the application
might allow bypassing security/authentication
mechanisms by a request with an extended method
(Dabirsiaghi, 2016). Other frameworks might even
output the source code of the application.

Assume a SaS framework/application is
implemented as shown in the pseudo-code below:

$httpMethod=getMethod($httpRequest);
…
$startTime = getTime();
($responseCode, $httpResponse) =
 processData($httpMethod, $URI);
$time = startTime – getTime();
…

Proactive Trust Assessment of Systems as Services

273

The variable $httpMethod contains the HTTP
request method, $URI contains the requested
resource, and $responseCode contains the response
code after the request is processed. The variable
$time contains the time to process the request. A
trust/security expert might find untrustworthy if a
known method to a given resource replies a
redirection (3xx HTTP response code), and an
extended method replies with success (2xx HTTP
response code). The expert can find untrustworthy
the systems that exceed one second to process a
request, given the fact that the implementation does
not reply in a proper time. Therefore, from the
observation of the internal variables and outputs of
the source code the expert can provide a trust
assessment. The trust parameters in this example
are: $httpMethod, $responseCode, $URI, and $time.

Given the fact that different systems have
different trust parameters, we assume that the initial
selection of them is performed by an expert which
can often be represented by a developer or a service
provider. Furthermore, the expert can provide a set
of ranges for those parameters when the application
is considered to be trustworthy. Based on the
assessment of the expert a dataset can be derived;
this dataset contains different classifications of the
trustworthiness of a system. For example, the expert
can define three different classes of trust, trusted (3),
not trusted (1) and neutrally trusted (2). The dataset
D contains a set of vectors of values for all trust
parameters p1, p2, …, pn. Each vector of values ቀ݌ଵೕ, ,ଶೕ݌ … , ቁ has an associated trust evaluation	௡ೕ݌
Tj ∈ [1-3], for j = 1, 2,…, m, where m is the size of
the dataset. The dataset D can be used as a training
set for a supervised machine learning problem. In
(López and Maag, 2015), the authors proposed a
multi-class classification trust prediction model
based on Support Vector Machines (Boser et al.,
1992). Depending on the characteristics of the
dataset, one might be interested to use other
supervised machine learning techniques, which are
faster, such as the well-known logistic regression or
a scalable prediction model based on logic circuits
(Kushik et al., 2016). In general, the prediction
model is adapted to its requirements. The trust
prediction model separates the data into the trusted,
untrusted, and neutrally trusted hyperspaces. By the
observation of the different values of the system
parameters, one can conclude about the level of
trustworthiness of the system. After selecting the
parameters, the relevant feature selection pre-
processing should be performed.

On the other hand, after the relevant feature (and
training example) selection, the dataset can be used
to build a trust prediction model using any
supervised machine learning technique which allows
multi-class classification. Then, the model M that

predicts the trust level (in the [1-3] range) based on
the sensitive trust parameters is obtained.

4 ACTIVE TESTING
TECHNIQUES FOR TRUST
ASSESSMENT

As mentioned above, to the best of our knowledge
existing trust evaluation methodologies for
telecommunications mostly rely on passive testing
assessment, i.e. when the conclusions are being
made while only observing the behavior of the SUT.
The idea behind the proposed approach is, on the
contrary, trying to violate the SUT by applying
specific inputs that can make this SUT behave
untrustworthy. The approach relies on the machine
learning techniques that can be used to predict the
trust level of the SUT under the given values of its
internal/external variables. In this case, the machine
that predicts such trust level plays a role of an oracle
or a specification that ‘knows’ the expected
outcome, i.e. the level of trust for the SUT under the
given conditions. The test suite to be executed
against the SUT can be derived in different ways,
starting from random simulation and finishing with
model based test generation techniques. If the source
code of the SUT is (partially) open, the test suite TS
can be also derived using static analysis.

Given the SUT Sys, its source code SC, a set
P = {p1, …, pn} of relevant SUT variables and a
machine M that predicts the trust level T based on
the values v1, …, vn of p1, …, pn, correspondingly,
TS is a test suite derived for the SUT Sys.
Algorithm 1 can be used to assess the
trustworthiness of Sys w.r.t. P = {p1, …, pn}. We
assume that the SUT Sys behaves trustworthy if for a
given test sequence the machine M assures the trust
level T greater or equal to a given constant K1. We
also take into account how many sequences of a test
suit actually bring the SUT to an untrustworthy state.
We compare this value with a given constant K2 that
represents the ‘allowed’ level of fluctuations, i.e.,
represents the percentage of test sequences for which
the oracle M returns a level T < K1. We note that as
M is the machine that was previously learned by
experts and/or users/developers, this percentage K2
is usually chosen as K2 < 10.

Algorithm 1 returns the verdict ‘Pass’ whenever
the oracle M represented by a (self-) adaptive model
replies that the values v1, …, vn of variables p1, …,
pn do not reach their critical (from the trust point of
view) values more than for K2 percent of test cases.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

274

Algorithm 1 for assessing the trustworthiness of the
SUT based on active testing
Input: SUT Sys with the source code SC, a set
P = {p1, …, pn} of parameters/variables, a machine
M, a minimal trust level K1, an allowed
untrustworthy percentage K2, a test suite TS
Output: ‘Pass’ or ‘Fail’
1. i := 1; j := 0;
2. If (i > | TS |)
 then Return the verdict ‘Pass’.
3. Execute the test sequence αi ∈	TS against the SUT
Sys;
Trace (observe in the code SC) the values v1, …, vn
of p1, …, pn, correspondingly;
Apply the vector (v1, …, vn) to the machine M and
obtain the output value t of the trust level T, i.e.
simulate M over (v1, …, vn).
If (t < K1) then j := j + 1;
If ((j / |TS|) > K2)
then Return the verdict ‘Fail’.
4. i := i + 1; and Go to Step 2.

The main idea of the proposed approach is

schematically represented in Fig. 1.

Figure 1: The idea behind the proposed approach.

For better illustration, consider the following
inputs for Algorithm 1, taken from the example of
RESTFul service (Section 3). The source code SC is
the pseudo-code shown above. Let p1 be a parameter
that represents the response time, i.e., $time. Let p2

be a parameter that represents the response code, i.e.
$responseCode. As we are only interested in the
HTTP codes 3xx and 2xx, we consider p2 to be a
Boolean variable, where 0 stands for 2xx and 3xx
for 1, correspondingly. Assume also that as a
prediction model we use a linear combination ܯ ൌሿ0.4 ൅ ଵ݌0.6 ൅ ଶሾ (result is round w.r.t the݌2
nearest integer). Let K1 = 2, and K2 = 0 and the test
suite TS = {GET /login.php HTTP/1.1, POST
/login.php HTTP/1.1, FAKE /login.php HTTP/1.1}.
This test suite contains three input sequences of
length one. Each sequence represents a typical

HTTP request. For example, the first sequence GET
/login.php HTTP/1.1 denotes that a method GET is
sent, the URL is /login.php and the protocol of
version 1.1 is being used.

Assume that the traces shown in Table 1 are
obtained for the above source code.

Table 1: Example values from traces of the SaS1 under
test.

Test sequence p1 p2 Trust
level

GET /login.php HTTP/1.1 1 1 3
POST /login.php
HTTP/1.1

0,001 1 2

FAKE /login.php
HTTP/1.1

1 1 3

Algorithm 1 returns the verdict ‘Pass’ for values
in Table 1. On the other hand, assume the traces of
the SaS are different, as shown in Table 2.

Table 2: Example values from traces of the SaS2 under
test.

Test sequence p1 p2 Trust
level

GET /login.php HTTP/1.1 1 1 3
POST /login.php
HTTP/1.1

0 1 2

FAKE /login.php
HTTP/1.1

1 0 1

In the latter case, Algorithm 1 returns the verdict
‘Fail’. Indeed, the SaS2 is not trustworthy for the
criteria listed above.

We mention that the effectiveness of the
algorithm essentially relies of the fact how a test
suite TS has been generated. Many test generation
techniques focus on conformance testing, namely on
assuring functional requirements of a SaS or its
components. In this case, the test suite TS has
another objective, i.e. an application of a test
sequence should bring the SUT to a state or to a
configuration (when internal variables are
introduced as inputs of the machine M) where this
SUT behaves untrustworthy. Therefore, the
proposed approach can also be used for estimating
the correlation between functional tests and their
non-functional properties, namely ‘trust estimating’
properties. A given functional test suite TS can be
very effective/powerful with respect specific fault
domain, however it can rarely bring the SUT to an
untrustworthy state. On the other hand, it is also
possible that random tests that are known to have
rather low fault coverage can probably propagate the
critical values of the sensitive variables more often.
Thus, one of interesting questions for future work

Proactive Trust Assessment of Systems as Services

275

can be a test prioritization, when test sequences or
test cases are distributed between several classes. In
functional testing, these classes are usually
represented by the number of faults or the number of
mutants that can be killed by a given test case. In the
case of active trust assessment, test cases can be
assigned with the scores as the trust levels obtained
from a SUT. Studying the dependencies between
functional and non-functional score assignment is
one of the directions of our future work.

5 CONCLUSIONS

In this paper, we have proposed an active testing
based trust assessment approach. The approach can
be applied to any entity of a telecommunication
system; however, we preferred to draw our attention
to the emerging concept of Systems as Services.

In order to decide which input sequences can be
included into a test suite under derivation, we
proposed to use a machine learning approach. In this
case, the machine that represents the prediction
engine is built based on the training set provided by
the experts. Later on, the machine allows to choose
the test sequences that can potentially cause the
system under test to produce untrustworthy outputs.
To the best of our knowledge, it is the first proposal
for using active testing techniques for SaS trust
assessment, and the proposed approach brings a lot
of challenges for the future work. In particular, we
would like to perform experiments with the various
SaS for estimating its validity and effectiveness.
Later on, we would like to consider the test
prioritization problem when the test sequences are
being classified according to their abilities of setting
the system to untrustworthy states. Finally, the
active assessment of trustworthiness of an entity
might be the first step in a trust certification process.
Investigation of the applicability of the approach for
the SaS trust certification is another challenge.

The issues listed above form the nearest
directions of the future work.

ACKNOWLEDGEMENTS

The work was partially supported by the Russian
Science Foundation (RSF), project № 16-49-03012.

REFERENCES

Ardagna C.A., Asal R., Damiani E., Vu Q.H., 2015. From
Security to Assurance in the Cloud: A Survey. In

 ACM Computing Surveys , 48(1), pp. 1-50.
Blum, A., Langley, P., 1997. Selection of Relevant

IFeatures and Examples in Machine Learning. In
Artificial Intelligence. V. 97, I. 1-2, pp. 245-271.

Kushik, N., Yevtushenko, N., Evtushenko, T., 2016.
Novel machine learning technique for predicting
teaching strategy effectiveness. In International
Journal of Information Management, DOI:
10.1016/j.ijinfomgt.2016.02.006.

López, J., Maag, S., 2015. Towards a Generic Trust
Management Framework Using a Machine-Learning-
Based Trust Model. In IEEE Trustcom / BigDataSE /
ISPA, Helsinki, pp. 1343-1348. doi:
10.1109/Trustcom.2015.528.

Lee, A.J., Winslett, M., Perano, K.J., 2009. TrustBuilder2:
A Reconfigurable Framework for Trust Negotiation.
In the IFIP International Conference on Trust
Management. pp. 176-195.

Blaze, M., Feigenbaum, J., Lacy, J., 1996. Decentralized
Trust Management. In the IEEE Symposium on
Security and Privacy. pp. 164-173.

Jim, T., 2001. SD3: A Trust Management System with
Certified Evaluation. In the IEEE Symposium on
Security and Privacy. pp. 106-115.

Chen, I., Guo, J., 2014. Dynamic Hierarchical Trust
Management of Mobile Groups and Its Application to
Misbehaving Node Detection. In the IEEE
International Conference on Advanced Information
Networking and Applications. pp. 49-56.

López, J., Maag, S., Morales, G., 2016. Behavior
evaluation for trust management based on formal
distributed network monitoring. In World Wide Web
V. 19, I. 1, pp. 21-39.

Pautasso, C., Zimmermann, O., Leymann, F., 2008.
Restful web services vs. “big”’ web services: making
the right architectural decision. In the 17th
international conference on World Wide Web. pp.
805-814.

Dabirsiaghi, A. 2016. Bypassing VBAAC with HTTP
Verb Tampering: How to inadvertently allow hackers
full access to your web application, Electronic
resource:http://cdn2.hubspot.net/hub/315719/file-
1344244110-pdf/download-
files/Bypassing_VBAAC_with_HTTP_Verb_Tamperi
ng.pdf?t=1479325184680 (seen 01/12/2016).

Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training
algorithm for optimal margin classifiers. In the Fifth
Annual Workshop on Computational Learning
Theory. pp.144–152.

Grandison, T., Sloman, M., 2003. Trust management tools
for internet applications. In Trust Management,
Springer First International Conference, iTrust,
Heraklion, Crete, Greece. pp. 91–107.

López, J., 2015. Distributed on-line network monitoring
for trust assessment. Thesis of the University of Paris-
Saclay, France.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

276

