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Abstract: In the context of Spatial Big Data, some NoSQL spatial DBMSs have been developed to deal with the 
Spatiality, Velocity, Variety, and Volume of Spatial Big Data. In this context, some works recently study 
NoSQL logical Data Warehouse (DW) models. However, these proposals do not investigate storing and 
querying spatial data. Therefore, in this paper we, propose a new logical model for document Spatial DWs. 
Moreover, motivated by the expressivity, readability and interoperability offered by UML profile, we 
represent our model using a UML profile. Finally, we present an implementation in document Spatial DBMSs. 

1 INTRODUCTION 

In the era of Spatial Big Data (Shekhar et al., 2012), 
more and more geo-referenced data are available via 
new acquisition data systems (remote sensing, social 
networks, sensors, etc.). In this context, some NoSQL 
Spatial Database Management Systems (SDBMSs) 
have been developed to deal with the Velocity, 
Variety, and Volume of data. Several NoSQL 
databases have been proposed that can be classified 
into four categories: Key-value, Extensible record, 
Graph, and Document. Key-value database is a 
collection of data without a schema and organized as 
a collection of key-value pairs. Data represented by 
the "value" is accessed using "key". Extensible record 
databases represent data with tables, where each row 
can present different attributes (different columns). 
Graph database uses graph structure with nodes, 
edges and properties associated to theses nodes and 
edges to store the data. Graph databases are suited 
for applications in which there are more 
interconnections between the data like social 
networks. Document databases allow storing and 
querying complex structured information as geo-
referenced documents (tweets, images, etc.).  

GeoBusiness Intelligence (GeoBI) technologies 
represent first citizens of systems allowing analysis of 
Spatial Big Data. GeoBI systems include Spatial Data 
Mining, Spatial OLAP, spatial statistical tools, and 

reporting systems. Data Warehouse (DW) and OLAP 
systems allow analyzing huge volume of data 
represented according to the multidimensional model, 
which defines the concept of dimension (the analysis 
axes) and fact (the analysis subject) (Kimball et 
Ross., 2002).  

On one hand, Spatial Data Warehouses (SDWs) 
and Spatial OLAP (SOLAP) systems extend OLAP 
functionalities by integrating spatial data into the 
multidimensional analysis. On the other hand, 
warehousing spatial data raises several challenges 
due to the design, the storage and the visualization of 
spatio-multidimensional data.  

In the context of alphanumeric data, (Chevalier et 
al., 2015) proposes two approaches, “1 collection 
based approach”, and “n collections based 
approach”, for warehousing and OLAPing huge 
volumes of complex data using document DBMSs. 
The “1 collection based approach” proposes to 
represent dimensions and facts in a single document 
collection to avoid “join” operations among 
documents. However, join operations are not natively 
supported by schemaless document DBMSs. The “n 
collections approach” is similar to the relational star 
and snowflake approaches (Kimball et Ross., 2002) 
where facts and dimensions are stored using different 
collections. This approach avoids data redundancy, 
but leads to implement join operators. Therefore, 
(Chevalier et al., 2015) highlights that for most of 
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OLAP queries the “1 collection approach” seems to 
have a better query performance than the “n 
collections approach”. 

Despite of several existing geospatial applications 
using document SDBMSs (Zhang et al., 2014; Lutz et 
al., 2014;), to our knowledge no work studies the 
design of spatio-multidimensional models using 
document DMBSs.  

Therefore, in this paper, based on the “1 
collection” approach, we propose a new logical 
model, called Falling Star, for SDW.  

Falling Star represents an efficient solution for 
storing and querying multidimensional complex geo-
referenced documents. Falling Star proposes a 
particular logical representation of warehoused data 
to handle with issues related to the redundancy of the 
spatial data, which affects storage and computation 
performances (as already shown for Relational 
Spatial DBMSs (Siqueira et al., 2008). Moreover, 
motivated by expressivity, readability and 
interoperability offered by UML, we propose an 
UML profile for the design of: (i) document databases 
and (ii) SOLAP applications using Falling Star based 
on the document databases model.  

Indeed, the benefits of the usage of UML, and its 
associated Computer-Aided Software Engineering 
tools, for designing, developing and maintaining 
complex information systems have been widely 
proved in several computer science and application 
domains. Finally, we evaluate our proposal with some 
experiments. 

The paper is organized in the following way: 
Section 2 presents related work, and section 3 details 
the case study used all along the paper. Section 4 
presents our spatio-multidimensional logical model 
and its UML profile representation. Section 5 shows 
the implementation. Performance study is discussed 
in Section 6, which followed by conclusion and future 
work. 

2 RELATED WORK 

In this section, we present some works that study the 
implementation (Sec 2.1) and the design (Sec 2.2) of 
spatial and/or OLAP applications using document 
DBMSs.  

2.1 Implementation 

Nowadays, among the most popular document 
SDBMSs, we can find CouchBase and MongoDB 
(Filho et al., 2015).  MongoDB is a cross platform 
document database. Classified as a NoSQL database, 

MongoDB eschews the traditional table-based 
relational database structure in favour of JSON-like 
documents with dynamic schemas (MongoDB calls 
the format BSON). MongoDB supports a very rich set 
of spatial data types. Using GeoJSON format, 
MongoDB can store spatial data with a variety of 
geographic data structures. MongoDB natively 
supports topological operators such as intersection, 
union, etc. CouchBase stores data in a collection of 
documents. It provides native types for spatial data 
(i.e. point, line, etc.). Data can be loaded using the 
GeoJSON format. CouchBase provides spatial views 
which support only window queries. Therefore, 
MongoDB have attracted the attention of several 
researchers (Zhang et al., 2014; Lutz et al., 2014). 
(Zhang et al., 2014) propose an approach to 
efficiently store spatial data in the ArcGIS shape 
format, using   MongoDB. In (Lutz et al., 2014), 
MongoDB is used for the provision of measured and 
processed massive data collected by the remote 
sensing. (Xiang et al., 2016) investigate MongoDB to 
manage planar spatial data that are still widely used 
in city-scale spatial applications.  

Despite the existence of several works for storing 
and managing spatial data, the integration of spatial 
data in DWs with NoSQL systems remains 
unexplored. 

Regarding to the implementation of DWs with 
NoSQL DBMSs, several logical designs of DWs 
using NoSQL DBMSs have been proposed 
(Chevalier et al., 2015; Dehdouh et al., 2015). In 
(Dehdouh et al., 2015), three approaches are proposed 
to map the multidimensional conceptual data model 
into a logical modelling adapted to the column DWs.  

Regarding to the implementation of DWs with 
document DBMSs, (Chevalier et al., 2015) proposes 
two logical models named MLD0 and MLD1, both 
based on the “1 collection approach”; and one 
logical model MLD2 based on “n collections 
approach”. MLD2 investigates data normalization 
(one document for facts and one document per 
dimension). The comparative study between these 
models proved that each model has its weaknesses 
and strengths (Chevalier et al., 2015). On one hand, 
MLD2 uses less disk memory, but it is quite 
inefficient to answer queries with joins (i.e. most of 
OLAP queries). On the other hand, MLD0 and MLD1 
do not show significant performance differences. 
However, the above described works do not study the 
impact of storing and querying spatial data. Indeed, 
when spatial data is integrated in DWs, 
multidimensional logical models need to be 
adapted/extended in order to deal with spatial data. 
Spatial data is complex data and requires particular 
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storage and querying methods as widely investigated 
in the context of relational DBMSs. 

2.2 Design  

The conceptual and logical design of DW and SDW 
using UML, have been widely proved effective 
(Mazon et al., 2005; Boulil et al., 2015). Indeed, the 
usage of UML profiles for OLAP and Spatial OLAP 
projects reduce design time efforts since UML 
profiles allow readable, well-formed and familiar 
class diagrams.  

A UML profile is a set of stereotypes, tagged 
values, and constraints used to adapt UML elements 
to a specific application. Stereotypes extend the 
semantics of existing elements for a specific domain. 
Tagged values are used to add new properties to 
existing elements. Finally, constraints are used to 
specify rules to check the validity of a stereotype. 
UML profiles can be easily implemented in 
Computer-Aided Software Engineering (CASE) tools 
such as MagicDraw, Eclipse, etc. 

Moreover, UML profiles can also be associated to 
automatic implementation of CASE tools to obtain 
high-quality, defect-free, and maintainable software 
products. 

Therefore, UML profiles have been proposed for 
conceptual and relational logical spatio-
multidimensional models (Boulil et al., 2015; 
Bimonte et al., 2013 and Cuzzocrea et Fidalgo., 
2012). A UML profile for SDW is proposed in (Boulil 
et al., 2015). Moreover, UML profile have been used 
also for data warehouses integrating complex spatial 
data, such as networks (Bimonte et al., 2013) or  
trajectory data (Oueslati et al., 2014).  

Regarding to NoSQL DBMSs, some works have 
been proposed using UML. For instance, (Gwendal et 
al., 2016) describes the mapping from UML/OCL 
conceptual model to logical model for graph DBMS. 
(Abdelhédi et al., 2016) details an MDA framework 
for column DBMS. Authors propose, in this paper, 
transformation rules to generate two NoSQL models: 
columns-oriented model and documents-oriented 
model. Based on the Model Driven Architecture, a 
method that transforms UML class diagrams into 
HBase based on meta-model is proposed in (Li et al., 
2014).  

3 CASE STUDY 

In this section, we present the case study issued from 
the relational logical model of the Spatial SSB (Star 
Schema Benchmark) which we will use all along the 

paper to present our proposals. Spatial SSB (the only 
existing) is a benchmark for SDWs. It is presented 
using the ICSOLAP UML profile (Boulil et al., 
2015). The ICSOLAP UML profile allows the 
conceptual representation of complex spatio-
multidimensional applications. In particular, it 
contains stereotypes for each spatio-
multidimensional element.  

A <<Fact>> is composed of <<Measure>> and 
is associated to dimensions levels (<<AggLevel>>) 
using a <<DimRelationship>>. An <<AggLevel>> 
is composed of dimensional attribute and can be 
thematic, spatial or temporal. A 
<<SpatialAggLevel>> extends the <<AggLevel>> 
with a geometric attribute (<<LevelGeometry>>).  

As shown in Figure 1, this SDW consists of a fact 
LINEORDER with many measures: QUANTITY, REVENUE, 
TAX, etc. Due to the lack of space, we present only 
QUANTITY. The dimensions are: PART, TIME, CUSTOMER 

and one spatial dimension with the spatial levels: 
SUPPLIER, CITY, NATION and REGION. Using the above 
SDW, it is possible to answer SOLAP queries that 
provide the total revenue of each supplier per year, 
the total revenue of each of supplier per nation and 
year. Due to space limitation, we do not present in 
Figure 1 the levels of the dimensions PART and 
CUSTOMER, but we show them as packages. Using this 
conceptual model, it is possible to answer the 
following queries, issued from Spatial SSB, that are 
representative of SOLAP operators: 

 
Q1: Roll-up 
Total of sales per year 
Q2: Slice 
Total of sales for the product category 

“MFRG#12” 
Q3: Spatial Roll-up 
Total of sales per region 
Q4a: Spatial slice 
Total of sales for the region "AFRICA" 
Q4b: Spatial Slice with spatial predicate 

     Total of sales by suppliers whose regions are 
inside a rectangular window. 

4 LOGICAL SPATIO-MULTI-
DIMENSIONAL MODEL 

4.1 Document Database Model 

In this Section, we present an UML profile for logical 
document DBMSs, defining the stereotypes for main 
elements of a document database, and their associated 
OCL integrity constraints. The proposed 
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Figure 1: Case study DW: SSB conceptual model. 

stereotypes are shown on Figure 2. 
A <<Document>> is an extension of a class, and 

it is composed of a set of attributes. These attributes 
are attributes with particular data types: 
<<attributeAlphanum>> for alphanumeric data type 
(and no type), <<attributeGeom>> for spatial types 
and <<attributeIDSubDoc>> for 
<<subDocument>> data. Indeed, a document can be 
composed of many subdocuments, which are 
represented by the class stereotype 
<<subDocument>>. Moreover, a document is 
composed of an <<attributeID>> identifier attribute.  
When a document is associated to another one it 
contains an attribute <<attributeIDlink>> that is a 
pointer to the <<attributeID>> attribute of the other 
document. The association between these documents 
is stereotyped <<linkingDocuments>>. 
An example of OCL constraints is:  
(type.oclIsUndefined() = false)  and 
(type.oclIsTypeOf(subDocument)) 

It states that the type of an 
<<attributeIDSubDoc>> attribute must be a 
subdocument.  

 

Figure 2: Document database: metamodel. 

Finally, let’s detail the type of the attributes of the 
documents. Since geometrical attributes have a 
particular representation in document DBMSs, we 
have defined three spatial data types: POINT, LINE and 
REGION. Other spatial type could be defined. 
Therefore, using the following OCL statement, we 
constraints an <<attibuteGeom>> attribute to have a 
spatial type: 
(type.oclIsUndefined() = false)  and 
(type.name=’Point’ or 
type.name=’Region’ or 
type.name=’Line’) 
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(a) 

 

(b) 

 

(c) 

Figure 3: Falling Star: a) metamodel, b) model, c) instances. 

Moreover, since document DBMSs do not 
support data type, we allow the OCL constraint  
type.oclIsUndefined()for 
<<attributeAlphanum >>  attributes.  

4.2 Falling Star 

Motivated by the good computation performance of 
the 1 collection approach, and trying to the spatial 
data redundancy issues (Siqueira et al., 2010), we 
describe in this section our new document spatio-
multidimensional logical model, named Falling Star 
model. The main idea is to represent all facts with the 
same spatial member by a single document. It means 
that the list of measures and non-spatial dimension 
members are associated to each spatial member.  

Our proposed model avoids spatial data 
redundancy. Indeed, spatial objects are complex 
objects that require important storage size. For 
example, the representation of a country at a high 
resolution can use millions of points. Falling Star is 

based on the previous UML profile for document 
database described in Section 4.1. 

The UML profile for this approach is represented 
in Figure 3a. We represent a fact with the 
<<FactSD>> stereotype which is composed of 
spatial levels (<<SpatialLevel>>) and their 
geometries (<<LevelGeom>>). Moreover, it 
presents an array attribute of <<LevelsMeasures>> 
type (<<KeyLevelsMeasures>>).  

<<LevelsMeasures>> is a subdocument 
composed of a set of measures and non-spatial levels. 
<<FactSD>> is a document (it extends 
<<Document>>), and <<LevelsMeasures>> 
extends <<subDocument>>. <<SpatialLevel>> and 
<<Level>> are the name of the spatial and non-
spatial levels respectively, and thus they extend 
<<attributeAlphaNum>>. 
Since <<LevelGeom>> represents geometry, it 
extends <<attributeGeom>>. An example of OCL 
constraint is: 

self.ownedMember->select (m | 
m.oclIsTypeOf(attributeIDlink))-
>size()=0 

It states that a fact is not associated to other 
documents, then it does not contain 
<<attributeIDlink>> attributes. 

As an example, our case study SDW is shown in 
Figure 3b. A document LINEORDER represents the 
facts with attributes representing spatial levels names 
(CITY_NAME, REGION_NAME, etc.) and geometries 
(GEOM_CITY, GEOM_REGION, etc.). 

LINEORDER has a set of subdocuments (via the 
<<KeyLevelsMeasures>> fact attribute). FACT has 
<<Level>> attributes for all non-spatial dimensions 
(e.g. DAY, MONTH, YEAR, PART, etc.) and 
<<Measure>> QUANTITY.  

An example of instances is shown on Figure 3c, 
where the ‘Supplier1’ is associated to two facts for 
the two days ‘May29, 1992’ and ‘May30, 1992’. A 
supplier is associated to one geometry. Let us note 
that geometries are not repeated for each day. 
Geometries are present only once for each supplier in 
the instance of the class LINEORDER. 

5 IMPLEMENTATION 

In this section, we present the implementation of our 
UML profile using the CASE tool MagicDraw and 
the implementation of our logical model using 
document DBMSs.  

MagicDraw is a CASE tool supporting UML 
profiling mechanism with OCL constraints. OCL 
constraints are automatically checked by MagicDraw 
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when an instance of a UML profile is defined, and an 
error message is displayed when necessary. By this 
way, MagicDraw allows users to define only models 
that are conform to the defined UML profile. 

Since document databases are not based on a well-
accepted standard yet, to show the generality of our 
implementation, we test it on two different document 
DBMSs: MongoDB and CouchBase. However, due 
to space limitation, we present in this paper only the 
implementation on MongoDB. Instead of taking a 
business subject and breaking it up into multiple 
relational structures, MongoDB can store the business 
subject in the minimal number of documents. 
MongoDB documents are composed of attribute-
value pairs and have the following structure: 
{attribute1: value1, 

      attribute2: value2, 
      … 
      attributeN: valueN } 

All documents are stored in collections. A 
collection is a group of related documents that have a 
set of shared common indexes. MongoDB supports 
search by field, range queries, regular expression 
searches. Queries can return specific fields of 
documents and also include user-
defined JavaScript functions. Therefore, using 
MongoDB, we have implemented the SDW of Figure 
3b as a collection composed of a set of documents. 
The number of documents is the number of the spatial 
dimension members. Each document is composed of 
two parts. The first one is composed of 4 pairs of 
key/value where key is an attribute representing 
spatial level and value is geometric. The second part 
is an array of subdocument called "Fact" that presents 
<<LevelMeasure>>. Each subdocument is 
composed of 48 attributes: 11 of which are measure 
attributes from the fact, and the others come from all 
other non-spatial dimensions levels. An example is 
shown in Figure 4. We can note that geometric 
attributes (geom_nation, geom_region, geom_city) 
are stored only once, but they are associated to two 
facts (one for 29 May, and another for 20 May). In 
this way, spatial data is not redundant. Using 
MongoDB documents each document has a 
maximum size of 16MB. This feature is important to 
ensure that a single document cannot use excessive 
amounts of RAM.  

To deal with this problem, we have developed a 
java ETL program that calculates the size of each 
generated documents and splits it in several different 
documents that repeat the attributes of the spatial 
levels.  

 

 

Figure 4: Falling Star implementation in MongoDB. 

Let us note that, in the same way of relational 
DBMS, logical models must be adapted to fit with the 
DBMS’s implementation. We have implemented the 
queries of Section 3 using native MongoDB query 
language. For example, the query Q4b (Spatial slice 
with query window) is rewriting as following: 
db.falling_star.aggregate ( 
{ $match : {"geom_region" : 
 { $geoWithin:{$polygon: [[-5000,-5000],[-
5000,5000],[5000,5000],[5000,5000]]}}}}, 
,{$unwind : "$Fact"} ,  
{ $group : { _id:null, 
  total: {$sum : "$Fact.revenue"} } ); 

6 EXPERIMENTS  

In this section, we evaluate our proposal and compare 
it to existing logical models for document data 
warehouses. In particular, we evaluate our model with 
Spatial SSB data (Siqueira et al., 2010). Spatial SSB 
extends the SSB benchmark to support SOLAP 
queries with spatial predicates, such as intersection, 
containment queries. Motivated by the lack of 
benchmark for spatial big DW (Chevalier et al., 2015) 
(Dehdouh et al., 2015), we have modified Spatial SSB 
to write generated data on MongoDB using the 
Falling Star Schema. In particular, it generates a 
GeoJson file, which is loaded in MongoDB.  

Data is generated using different scale factors (sf), 
namely sf=1, sf=10, sf=20, sf=50 and sf=100 in our 
experiments. The scale factor sf=1 generates 
approximately 6*10 6 facts and 10,000 suppliers, for 
sf=10 we have approximately 6*107 facts and 100000 
suppliers and so on. We have generated for the 
geometries of spatial levels polygons composed of 
10,000 points.  
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6.1 Storage Performance 

We have compared our approach to the existing “1 
collection” MLD0 model (since as previously 
described in Section 2.1 there is no difference 
between the MLD0 and the MLD1). 

In particular, we have extended the logical model 
MLD0 presented in (Chevalier et al., 2015). MLD0 
stores data in one collection, where each document 
presents an attribute for each level. We have added to 
MLD0 geometrical attribute. We can note that for 
each fact (each document) the geometries of spatial 
levels (polygons composed of 10,000 points) are 
repeated.  

We have compared our proposal and the 
extension of MLD0 under two aspects: data storage 
and query execution time. Experiments were 
conducted on a virtual machine with a 6 VCPU, 32 
GB of main memory, a 9 TB hard disk, Windows 
Server 2012, and MongoDB 3.2. Finally, we do not 
provide any indexes on our data, since the main goal 
of this work is to compare logical models. 

We present in Table 1, the database size of both 
logical models without and with spatial data. For sf=1 
the redundant geometries of the MLD0 model are the 
responsible of the huge size of the database.  

Table 1: Size and loading time of data by the scale factor. 

 
 
 
 
 

Data size 
without spatial 

data  (GB) 
 

Data size with 
spatial data 

(GB)  

Data loading 
time  
(sec) 

MLD0 Falling 
star 

MLD0  
 

Falling 
star 

MLD0  Falling 
star 

sf =1 5.5  5  320  6  1290 326 
sf=10 58  51  3000 60  12679 2730 
sf=20 112  102  6000 120  20784 5212 
sf=50 295  250  15000 280  26413 12480 
sf=100 570  500  30000 3000 45213 34320 

 
Indeed, geometries represent 314.5 GB of a 320 

GB total size. For bigger sf, the SDW size is bigger. 
Due to the lack of hard disk space, we estimate the 
size of the SDW generated by MLD0 from sf=10, 
thus 10, 20, 50 and 100. Therefore, we can conclude 
that the spatial data redundancy is the main factor of 
the huge size of the SDW in the MLD0 model. This 
is not true for the Falling Star model, where since 
geometries are not redundant, they do not affect 
considerably the total size of the SDW. We observe 
that MLD0 needs more disk space than Falling Star, 
because MLD0 repeats spatial attributes values on 
every document. For instance, at scale factor sf=10 
(6*107 facts), Falling Star needs 6GB while MLD0 
needs 320 GB space. We summarize also in Table 1 
data loading time by scale factor. Data is loaded into 
MongoDB using native instructions. By 

consequence, experiments also confirm that Falling 
Star is also better in terms of data loading time. 

6.2 Query Performance 

In the following, we analyse query execution time 
performance for 5 queries of our case study. We 
perform these queries only under the instance of 
MLD0 with sf=1 since MLD0 is not feasible in terms 
of storage as shown in Sec 6.1. 

 

Figure 5: Execution time by model. 

Figure 5 shows that Falling Star is better than 
MLD0 for all queries. This is explained by the small 
quantity of data, of Falling Star with respect to 
MLD0. Indeed, the redundancy of the geometries in 
MLD0 affects query execution time. Therefore, for 
query performance, Falling Star is acceptable 
contrary to MLD0. 

 

Figure 6: Execution time by SOLAP query. 

Let’s consider the query time of the SOLAP 
queries of Sec 3 for Falling Star (Figure 6). 
Performance is inversely proportional to the size of 
the SDW. However, query execution time remains 
acceptable for our PC configuration. Moreover, let’s 
note that execution time of spatial slice queries (Q4a 
and Q4b) is better than the execution time of other 
queries. This is due to the fact that, contrary to 
alphanumeric attributes, MongoDB can directly 
retrieve the documents with the right spatial members 
since with Falling Star they are represented as normal 
attributes. Indeed, non-spatial levels are represented 
with alphanumeric attributes inside an array structure; 
therefore, MongoDB must load all the documents 
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before to unwind the arrays to look for the right non-
spatial members. 

7 CONCLUSION AND FUTURE 
WORK 

In the Spatial Big Data field, many academic and 
industrial communities propose new Spatial DBMSs, 
(such as MongoDB, Cassandra, etc.) to handle with 
the volume and the variety of these very huge 
georeferenced datasets. In particular, document 
Spatial DBMSs appear well-adapted to store complex 
and voluminous spatial data. Despite of important 
spatial analysis possibilities offered by document 
Spatial DBMSs, no work investigates their use in the 
context of Spatial OLAP and Spatial Data 
Warehouse. 

Therefore, in this work, we focus on the logical 
modelling and query processing of document spatial 
data warehouse. We propose a new logical schema for 
Spatial DW using UML profile. We generate datasets 
of different size according to different scale factor 
values. We have tested our models under MongoDB. 
Our experimental work shows that Falling Star model 
is better than existing models for document data 
warehouses, since it explicitly takes into account 
spatial data.  

On-going work involves comparing Falling Star 
with different logical implementations (relational or 
NoSQL) and testing our models in a distributed 
architecture. We will also analyze the impact of query 
selectivity on the performance of Falling Star model. 
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